1
|
Hu Y, Lin L, Liu K, Liu E, Han S, Gong Z, Xiao W. L-Theanine alleviates heat stress-induced impairment of immune function by regulating the p38 MAPK signalling pathway in mice. Food Funct 2023; 14:335-343. [PMID: 36511090 DOI: 10.1039/d2fo02775e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the current trend of global warming, heat stress-induced impairment could seriously endanger human health. L-Theanine is a non-protein amino acid in tea with various biological activities, including immunoregulatory, anti-anxiety, and anti-oxidation. However, its effect on immune function under heat stress and the underlying mechanism are currently unclear. In this study, male BALB/c mice were used as experimental objects to explore the effect of L-theanine on heat stress-induced changes in immune function and its mechanism. Three doses of L-theanine were used: low (100 mg kg-1 d-1), medium (200 mg kg-1 d-1), and high (400 mg kg-1 d-1). Treatment with L-theanine could attenuate the heat stress-induced reductions in body weight and feed intake in mice, alleviate damage in the liver and jejunum, and inhibit the inflammatory factors IL-6, IL-1β, and TNF-α. Aspartate aminotransferase and alanine transaminase activity levels and the malondialdehyde content decreased, while the IgA, IgM, and IgG contents increased in response to L-theanine. It is possible that L-theanine affects the P38 signalling pathway and inhibits the increase in p-P65/P65 caused by the overexpression of HSP27 and regulation of PPAR-γ and Foxp3 proteins, thereby alleviating immune dysfunction caused by heat stress.
Collapse
Affiliation(s)
- Yuan Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Kehong Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Enshuo Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Shumin Han
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.,Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.,Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| |
Collapse
|
2
|
Zheng S, Liang Y, Li L, Tan Y, Liu Q, Liu T, Lu X. Revisiting the Old Data of Heat Shock Protein 27 Expression in Squamous Cell Carcinoma: Enigmatic HSP27, More Than Heat Shock. Cells 2022; 11:cells11101665. [PMID: 35626702 PMCID: PMC9139513 DOI: 10.3390/cells11101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022] Open
Abstract
Initially discovered to be induced by heat shock, heat shock protein 27 (HSP27, also called HSPB1), a member of the small HSP family, can help cells better withstand or avoid heat shock damage. After years of studies, HSP27 was gradually found to be extensively engaged in various physiological or pathophysiological activities. Herein, revisiting the previously published data concerning HSP27, we conducted a critical review of the literature regarding its role in squamous cell carcinoma (SCC) from the perspective of clinicopathological and prognostic significance, excluding studies conducted on adenocarcinoma, which is very different from SCC, to understand the enigmatic role of HSP27 in the tumorigenesis of SCC, including normal mucosa, dysplasia, intraepithelial neoplasm, carcinoma in situ and invasive SCC.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China;
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
- Correspondence: ; Tel./Fax: +86-991-436-6447
| |
Collapse
|
3
|
Liu K, Liu E, Lin L, Hu Y, Yuan Y, Xiao W. L-Theanine mediates the p38MAPK signaling pathway to alleviate heat-induced oxidative stress and inflammation in mice. Food Funct 2022; 13:2120-2130. [PMID: 35112126 DOI: 10.1039/d1fo03077a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
L-Theanine, an active ingredient in the tea plant (Camellia sinensis) associated with calming, is widely used as a functional ingredient and dietary supplement. In this study, a heat stress mouse model was used to evaluate the anti-heat stress effect of L-theanine and its possible mechanism of action. Mice subjected to heat stress (40 °C) that were administered L-theanine at various doses (100, 200, and 400 mg kg-1 d-1) had reduced oxidative stress and inflammatory factors when L-theanine was administered both long-term and as a preventative treatment. Our L-theanine intervention countered the reduction in growth and feed intake of mice under heat stress and reversed liver and jejunum tissue damage. Moreover, L-theanine countered the increase in inflammatory factors TNF-α, IL-6, and IL-1β and antioxidant enzymes SOD and CAT; it also counteracted GSH-Px inactivation, the upregulation of AST and ALT enzyme activity, and MDA production. The mechanism of action may involve mediation of the P38 signaling pathway, inhibition of MK2 overexpression, and downregulation of p-P65/P65 caused by the overexpression of downstream HSP27. This would inhibit the heat stress-induced imbalance in oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Kehong Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Enshuo Liu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ling Lin
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yuan Hu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yong Yuan
- Hunan Tea Group Co., Ltd, Changsha 410128, China
| | - Wenjun Xiao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
4
|
Rühle A, Thomsen A, Saffrich R, Voglstätter M, Bieber B, Sprave T, Wuchter P, Vaupel P, Huber PE, Grosu AL, Nicolay NH. Multipotent mesenchymal stromal cells are sensitive to thermic stress – potential implications for therapeutic hyperthermia. Int J Hyperthermia 2020; 37:430-441. [DOI: 10.1080/02656736.2020.1758350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Thomsen
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Saffrich
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Maren Voglstätter
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birgit Bieber
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Sprave
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter E. Huber
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Freiburg University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Scieglinska D, Krawczyk Z, Sojka DR, Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones 2019; 24:1027-1044. [PMID: 31734893 PMCID: PMC6882751 DOI: 10.1007/s12192-019-01044-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Heat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.
Collapse
Affiliation(s)
- Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
6
|
Zhang Y, Chen Y, Yu J, Liu G, Huang Z. Integrated transcriptome analysis reveals miRNA–mRNA crosstalk in laryngeal squamous cell carcinoma. Genomics 2014; 104:249-56. [DOI: 10.1016/j.ygeno.2014.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
|
7
|
Strozyk E, Kulms D. The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int J Mol Sci 2013; 14:15260-85. [PMID: 23887651 PMCID: PMC3759859 DOI: 10.3390/ijms140815260] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
Induction of DNA damage by UVB and UVA radiation may generate mutations and genomic instability leading to carcinogenesis. Therefore, skin cells being repeatedly exposed to ultraviolet (UV) light have acquired multilayered protective mechanisms to avoid malignant transformation. Besides extensive DNA repair mechanisms, the damaged skin cells can be eliminated by induction of apoptosis, which is mediated through the action of tumor suppressor p53. In order to prevent the excessive loss of skin cells and to maintain the skin barrier function, apoptotic pathways are counteracted by anti-apoptotic signaling including the AKT/mTOR pathway. However, AKT/mTOR not only prevents cell death, but is also active in cell cycle transition and hyper-proliferation, thereby also counteracting p53. In turn, AKT/mTOR is tuned down by the negative regulators being controlled by the p53. This inhibition of AKT/mTOR, in combination with transactivation of damage-regulated autophagy modulators, guides the p53-mediated elimination of damaged cellular components by autophagic clearance. Alternatively, p53 irreversibly blocks cell cycle progression to prevent AKT/mTOR-driven proliferation, thereby inducing premature senescence. Conclusively, AKT/mTOR via an extensive cross talk with p53 influences the UV response in the skin with no black and white scenario deciding over death or survival.
Collapse
Affiliation(s)
- Elwira Strozyk
- Experimental Dermatology, Department of Dermatology, TU Dresden, 01307 Dresden, Germany; E-Mail:
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU Dresden, 01307 Dresden, Germany; E-Mail:
| |
Collapse
|
8
|
Zhang B, Qu JQ, Xiao L, Yi H, Zhang PF, Li MY, Hu R, Wan XX, He QY, Li JH, Ye X, Xiao ZQ, Feng XP. Identification of heat shock protein 27 as a radioresistance-related protein in nasopharyngeal carcinoma cells. J Cancer Res Clin Oncol 2012; 138:2117-25. [PMID: 22847231 DOI: 10.1007/s00432-012-1293-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/16/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE To identify the proteins involved in radioresistance in nasopharyngeal cancer (NPC) cells. METHODS Sublethal ionizing radiation was applied to establish a radioresistant NPC cell line from its parental NPC cell line CNE1. Clonogenic survival assay, cell growth assay and flow cytometry analysis were used to examine the difference of radiosensitivity in the radioresistant CNE1 cells (CNE1-IR) and control CNE1 cells. Comparative proteomics was performed to identify the differential proteins in the two cell lines. Association of HSP27, one of upregulated proteins in CNE1-IR cells, with NPC cell radioresistance was selected for further investigation using antisense oligonucleotides (ASOs), clonogenic survival assay, Hoechst 33258 staining of apoptotic cells and MTT assay of cell viability. RESULTS Radioresistant NPC cell line CNE1-IR derived from its parental cell line CNE1 was established. Thirteen differential proteins in the CNE1-IR and CNE1 cells were identified by proteomics, and differential expression of HSP27, one of identified proteins, was selectively confirmed by western blot. Inhibition of HSP27 expression by HSP27 ASOs decreased clonogenic survival and cell viability and increased cell apoptosis of CNE1-IR cells after irradiation, that is, enhanced radiosensitivity of CNE1-IR cells. CONCLUSION The data suggest that HSP27 is a radioresistant protein in NPC cells, and its upregulation may be involved in the NPC radioresistance.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Histology and Embryology, Xiangya School Medicine, Central South University, Changsha, 410008, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kanagasabai R, Karthikeyan K, Vedam K, Qien W, Zhu Q, Ilangovan G. Hsp27 protects adenocarcinoma cells from UV-induced apoptosis by Akt and p21-dependent pathways of survival. Mol Cancer Res 2010; 8:1399-412. [PMID: 20858736 DOI: 10.1158/1541-7786.mcr-10-0181] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional activation of p53 target genes, due to DNA damage, causes either apoptosis or survival by cell cycle arrest and DNA repair. However, the regulators of the choice between cell death and survival signaling have not been completely elucidated. Here, we report that human adenocarcinoma cells (MCF-7) survive UV-induced DNA damage by heat shock protein 27 (Hsp27)-assisted Akt/p21 phosphorylation/translocation. Protein levels of the p53 target genes, such as p21, Bcl-2, p38MAPK, and Akt, showed a positive correlation to Hsp27 level during 48 hours postirradiation, whereas p53 expression increased initially but started decreasing after 12 hours. Hsp27 prevented the G(1)-S phase cell cycle arrest, observed after 8 hours of post-UV irradiation, and PARP-1 cleavage was inhibited. Conversely, silencing Hsp27 enhanced G(1)-S arrest and cell death. Moreover, use of either Hsp27 or Akt small interference RNA reduced p21 phosphorylation and enhanced its retention in nuclei even after 48 hours postirradiation, resulting in enhanced cell death. Our results showed that Hsp27 expression and its direct chaperoning interaction increases Akt stability, and p21 phosphorylation and nuclear-to-cytoplasm translocation, both essential effects for the survival of UV-induced DNA-damaged cells. We conclude that the role of Hsp27 in cancer is not only for enhanced p53 proteolysis per se, rather it is also a critical determinant in p21 phosphorylation and translocation.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Cardiovascular Medicine, Davis Heartand Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
10
|
Arrigo AP. The cellular "networking" of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:14-26. [PMID: 17205671 DOI: 10.1007/978-0-387-39975-1_2] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells possess effective mechanisms to cope with chronic or acute disturbance of homeostasis. Key roles in maintaining or restoring homeostasis are played by the various heat shock or stress proteins (Hsps). Among the Hsps, the group of proteins characterized by low molecular masses (between 20 to 30 kDa) and homology to alpha-crystallin are called small stress proteins (denoted sHsps). The present chapter summarizes the actual knowledge of the protective mechanisms generated by the expression of mammalian Hsp27 (also denoted HspB1 in human) against the cytotoxicity induced by heat shock and oxidative stress. It also describes the anti-apoptotic properties of Hsp27 and their putative consequences in different pathological conditions.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire Stress Oxydant, Chaperons et Apoptose, CNRS UMR 5534, Centre de Génétique Moléculaire et Cellulaire, Université Claude Bernard, 16 rue Dubois, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
11
|
Niu P, Liu L, Gong Z, Tan H, Wang F, Yuan J, Feng Y, Wei Q, Tanguay RM, Wu T. Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 2006; 11:162-9. [PMID: 16817322 PMCID: PMC1484517 DOI: 10.1379/csc-175r.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 70 (Hsp70) comprises proteins that have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli; however, little is known about whether Hsp70 protects against DNA damage. In this study, we investigated the relationship between Hsp70 expression and the levels of ultraviolet C (UVC)-induced DNA damage in A549 cells with normal, inhibited, and overexpressed Hsp70 levels. Hsp70 expression was inhibited by treatment with quercetin or overexpressed by transfection of plasmids harboring the hsp70 gene. The level of DNA damage was assessed by the comet assay. The results showed that the levels of DNA damage (shown as the percentage of comet cells) in A549 cells increased in all cells after exposure to an incident dose of 0, 10, 20, 40, and 80 J/m2 whether Hsp70 was inhibited or overexpressed. This response was dose dependent: a protection against UVC-induced DNA damage in cells with overexpressed Hsp70 was observed at UVC dose 20 J/m2 with a maximum at 40 J/m2 when compared with cells with normal Hsp70 levels and in quercetin-treated cells. This differential protection disappeared at 80 J/m2. These results suggest that overexpressed Hsp70 might play a role in protecting A549 cells from DNA damage caused by UVC irradiation, with a threshold of protection from at UVC irradiation-induced DNA damage by Hsp70. The detailed mechanism how Hsp70 is involved in DNA damage and possible DNA repair warrants further investigation.
Collapse
Affiliation(s)
- Piye Niu
- Institute of Occupational Medicine and The Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Croute F, Beau B, Murat JC, Vincent C, Komatsu H, Obata F, Soleilhavoup JP. Expression of stress-related genes in a cadmium-resistant A549 human cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2005; 68:703-18. [PMID: 16020198 DOI: 10.1080/15287390590925447] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study was designed to explain the basis for Cd-acquired tolerance of A549 cells cultured in the presence of Cd. Thirty-day exposure of cultured human pneumocytes (A549 cell line) to 10 microM Cd was previously found to induce an acquired resistance persisting over several weeks of culture. Moreover, these Cd-resistant cells (R-cells) were found to proliferate faster than controls. No difference was found between R-cells and control cells (S-cells) concerning the basal and Cd-induced level of metallothioneins expression. However, after exposure to Cd, cell glutathione levels were unchanged in R-cells while they were either increased (at 10 microM Cd) or decreased (at 25 microM Cd) in S-cells. cDNA array analysis showed that genes encoding for (GPx1) glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase were similarly expressed in R- and S-cells, whereas the gene of (GPx2) glutathione peroxidase was overexpressed in R-cells. Most genes encoding stress proteins were similarly expressed, except for HSP27 and GRP94 genes, which were respectively under- (ratio 0.5 +/- 0.1) and over- (1.8 +/- 0.5) expressed in R-cells. Acute exposure to Cd was found to trigger the upregulation of genes encoding the chaperone proteins HSP90A, HSP27, HSP40, GRP78, HSP72, and HO-1 in S-cells. In R-cells, only HO-1 and HSP72 were overexpressed but at a lower level. This suggests that the Cd-related adverse conditions, leading to protein misfolding, are lowered in R-cells. It is likely that the upregulation of GPx2 in R-cells leads to a higher antioxidant defense in these cells.
Collapse
Affiliation(s)
- Françoise Croute
- Laboratoire de Biologie Cellulaire et Pollution, Faculté de Médecine Toulouse-Purpan, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 2005; 7:414-22. [PMID: 15706088 DOI: 10.1089/ars.2005.7.414] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small stress proteins [small heat shock proteins (sHsps)] are molecular chaperones that modulate the ability of cells to respond to oxidative stress. The current knowledge concerning the protective mechanism generated by the expression of mammalian heat shock protein-27 (Hsp27) that allows cells to increase their resistance to oxidative stress is presented. We describe the effects mediated by Hsp27 expression toward crucial enzymes such as glucose-6-phosphate dehydrogenase and glutathione reductase that uphold glutathione in its reduced form. New data are presented showing that the expression of sHsps correlates with a drastic decrease in the intracellular level of iron, a catalyzer of hydroxyl radical (OH( . )) generation. A decreased ability of sHsps expressing cells to concentrate iron will therefore end up in a decreased level of oxidized proteins. In addition, we propose a role of Hsp27 in the presentation of oxidized proteins to the proteasome degradation machinery. We also present an analysis of several Hsp27 mutants that suggests that the C-terminal part of this stress protein is essential for its protective activity against oxidative stress.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire stress oxydant, chaperons et apoptose, Centre de Génétique Moléculaire et Cellulaire, CNRS UMR-5534, Université Claude Bernard, Lyon-I, Bât. Gregor Mendel, 16 rue Dubois, 69622 Villeurbanne Cédex, France.
| | | | | | | | | | | |
Collapse
|
14
|
Hook GJ, Spitz DR, Sim JE, Higashikubo R, Baty JD, Moros EG, Roti Roti JL. Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields. Radiat Res 2004; 162:497-504. [PMID: 15624304 DOI: 10.1667/rr3251] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of this study was to determine whether radiofrequency (RF) radiation is capable of inducing oxidative stress or affecting the response to oxidative stress in cultured mammalian cells. The two types of RF radiation investigated were frequency-modulated continuous-wave with a carrier frequency of 835.62 MHz (FMCW) and code division multiple access centered on 847.74 MHz (CDMA). To evaluate the effect of RF radiation on oxidative stress, J774.16 mouse macrophage cells were stimulated with gamma-interferon (IFN) and bacterial lipopolysaccharide (LPS) prior to exposure. Cell cultures were exposed for 20-22 h to a specific absorption rate of 0.8 W/kg at a temperature of 37.0 +/- 0.3 degrees C. Oxidative stress was evaluated by measuring oxidant levels, antioxidant levels, oxidative damage and nitric oxide production. Oxidation of thiols was measured by monitoring the accumulation of glutathione disulfide (GSSG). Cellular antioxidant defenses were evaluated by measuring superoxide dismutase activity (CuZnSOD and MnSOD) as well as catalase and glutathione peroxidase activity. The trypan blue dye exclusion assay was used to measure any changes in viability. The results of these studies indicated that FMCW- and CDMA-modulated RF radiation did not alter parameters indicative of oxidative stress in J774.16 cells. FMCW- and CDMA-modulated fields did not alter the level of intracellular oxidants, accumulation of GSSG or induction of antioxidant defenses in IFN/LPS-stimulated cells. Consistent with the lack of an effect on oxidative stress parameters, no change in toxicity was observed in J774.16 cells after either optimal (with or without inhibitors of nitric oxide synthase) or suboptimal stimulation.
Collapse
Affiliation(s)
- Graham J Hook
- Department of Radiation Oncology, Washington University, St. Louis, Missouri 63108, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wano C, Kita K, Takahashi S, Sugaya S, Hino M, Hosoya H, Suzuki N. Protective role of HSP27 against UVC-induced cell death in human cells. Exp Cell Res 2004; 298:584-92. [PMID: 15265704 DOI: 10.1016/j.yexcr.2004.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/22/2004] [Indexed: 11/18/2022]
Abstract
It is an intriguing problem whether heat shock proteins (HSPs) play a protective role in UVC-induced cell death in human cells, and the problem has not been solved. To search for the HSPs involved in UVC resistance, gene expression profiles using cDNA array were compared between UVC-sensitive human RSa cells and their UVC-resistant variant AP(r)-1 cells. The expression levels of heat shock protein 27 (HSP27) were lower in RSa cells than in AP(r)-1 cells. RSa cells transfected with sense HSP27 cDNA showed slightly lower sensitivity to UVC-induced cell death than the control cells transfected with a vector alone and much lower sensitivity than RSa cells transfected with the antisense HSP27 cDNA. Furthermore, the removal capacities of the two major types of UVC-damaged DNA (thymine dimers and (6-4)photoproducts) in the cells with the up-regulation of HSP27 were moderately elevated compared with those in the control cells, while those in the cells with down-regulation were remarkably suppressed. These results suggest that HSP27 is involved in the UVC-resistance of human cells, at least those tested, possibly via functioning in nucleotide excision repair.
Collapse
Affiliation(s)
- Chieko Wano
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Xian Ma Y, Fan S, Xiong J, Yuan RQ, Meng Q, Gao M, Goldberg ID, Fuqua SA, Pestell RG, Rosen EM. Role of BRCA1 in heat shock response. Oncogene 2003; 22:10-27. [PMID: 12527903 DOI: 10.1038/sj.onc.1206061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Revised: 09/18/2002] [Accepted: 09/24/2002] [Indexed: 11/09/2022]
Abstract
The heat shock response is an evolutionarily conserved response to heat and other stresses that promotes the maintenance of key metabolic functions and cell survival. We report that exposure of human prostate (DU-145) and breast (MCF-7) cancer cells to heat (42 degrees C) caused a rapid disappearance of the breast cancer susceptibility gene-1 (BRCA1) protein, starting at approximately 1 h after the onset of heating and slightly lagging behind the increase in heat shock protein 70 (HSP70) levels. The heat-induced loss of BRCA1 occurred at the protein level, since: (1) BRCA1 mRNA expression was unaffected; and (2) the BRCA1 protein loss was also observed in DU-145 cells that expressed exogenous wild-type BRCA1 (wtBRCA1). In addition to heat regulation of BRCA1 protein levels, we also found that BRCA1 could modulate the heat shock response. Thus, wtBRCA1 overexpressing DU-145 cell clones showed significantly decreased sensitivity to heat-induced cytotoxicity; and Brca1 mutant mouse embryo fibroblasts showed increased sensitivity to heat. The DU-145 wtBRCA1 clones also showed increased expression of the small heat shock protein HSP27; and reporter assays revealed that wtBRCA1 stimulated a two to four-fold increase in HSP27 promoter activity, consistent with its ability to upregulate HSP27 mRNA and protein levels. In studies using epitope-tagged truncated BRCA1 proteins, the ability to stimulate the HSP27 promoter and to mediate heat-induced degradation required the amino-terminus but not the carboxyl-terminus of BRCA1. Although the heat-induced loss of BRCA1 appeared to be due to protein degradation, various protein metabolic agents (or combinations) failed to block this event, including: MG132 (a 26S proteasomal inhibitor), N-acetyl-leucyl-leucyl-norleucinal (a calpain inhibitor), z-VAD-fmk (a pan-caspase inhibitor), and ammonium chloride and chloroquine (which stabilize lysosomes). These findings suggest that in addition to its other functions, BRCA1 may participate in mammalian heat shock response pathways.
Collapse
Affiliation(s)
- Yong Xian Ma
- Department of Radiation Oncology, Long Island Jewish Medical Center, New Hyde Park, NY 11040, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Boxman ILA, Kempenaar J, de Haas E, Ponec M. Induction of HSP27 nuclear immunoreactivity during stress is modulated by vitamin C. Exp Dermatol 2002; 11:509-17. [PMID: 12473058 DOI: 10.1034/j.1600-0625.2002.110603.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For the investigation of the skin irritancy potential of chemicals in an in vitro model it is necessary to have sensitive endpoints that predict the effects of those compounds on native human skin. Recently, we have identified that 27-kDa heat shock protein (HSP27) can serve as a sensitive marker of skin irritation, as exposure of human skin to sodium lauryl sulfate (SLS) both in vitro and in vivo induced relocalization of HSP27 from the cytoplasm to the cell nucleus. The aim of the present study was to determine whether nuclear localization of HSP27 could be used as a parameter for evaluation of potential skin irritants in screening assays in vitro. For this purpose, human skin equivalent consisting of epidermis reconstructed on de-epidermized dermis was exposed to SLS or UV light. Stress-induced nuclear relocalization of HSP27 was observed in excised skin exposed to SLS or UV light and in reconstructed epidermis only when the latter was generated in the absence of vitamin C. The omission of vitamin C results in an impaired barrier function. In the presence of vitamin C, however, the barrier function was comparable with excised skin, suggesting that vitamin C may control the response to stress in the reconstructed epidermis. Besides the presence of vitamin C, the response of skin equivalents may strongly depend on other conditions under which they are generated, because the stress-induced HSP27 relocalization was not detected in the commercially available epidermal kit EpiDerm. The results of the present study show that HSP27 nuclear staining can serve as a sensitive marker for skin irritation or cellular stress in excised skin as well as in certain well-characterized human skin equivalents in vitro.
Collapse
Affiliation(s)
- Ingeborg L A Boxman
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | |
Collapse
|
18
|
Arrigo AP, Paul C, Ducasse C, Sauvageot O, Kretz-Remy C. Small stress proteins: modulation of intracellular redox state and protection against oxidative stress. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:171-84. [PMID: 11908058 DOI: 10.1007/978-3-642-56348-5_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- André-Patrick Arrigo
- Laboratoire Stress Oxydant, Chaperons et Apoptose, Centre de Génétique Moléculaire et Cellulaire, CNRS UMR-5534, Université Claude Bernard Lyon-I, 69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|
19
|
Jonak C, Klosner G, Kokesch C, FOdinger D, HOnigsmann H, Trautinger F. Subcorneal colocalization of the small heat shock protein, hsp27, with keratins and proteins of the cornified cell envelope. Br J Dermatol 2002; 147:13-9. [PMID: 12100179 DOI: 10.1046/j.1365-2133.2002.04667.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND hsp27 is a member of the small heat shock protein family. Its expression in epidermal keratinocytes in situ and in tissue culture correlates with differentiation. Experimental evidence points to the fact that hsp27 is a molecular chaperone and is involved in the regulation of cell growth and differentiation. OBJECTIVES To investigate whether epidermal hsp27 through its chaperone function plays a role in the assembly of keratin filaments and the cornified cell envelope. METHODS We performed double staining immunofluorescence and immunogold microscopy on normal human skin (n = 15). We analysed the colocalization of hsp27 with actin, keratins and proteins of the cornified cell envelope (loricrin, filaggrin, transglutaminase 1). RESULTS Actin staining did not reveal detectable colocalization with hsp27. For keratins, transglutaminase, loricrin and filaggrin colocalization was found in more than 60% of the samples. Colocalization was confined to a narrow subcorneal layer with varying patterns of expression. Electron microscopy revealed that loricrin and filaggrin colocalize with hsp27 indirectly through binding to intermediate filaments. CONCLUSIONS These results provide morphological evidence that in normal human skin hsp27 might act as a chaperone of cornification. Investigations of the molecular hsp27 interactions with the proteins of the cornified cell envelope are necessary to gain further insight into terminal keratinocyte differentiation and disorders of keratinization.
Collapse
Affiliation(s)
- C Jonak
- Division of Special and Environmental Dermatology, University of Vienna, Währinger Gürtel 18-20, Austria.
| | | | | | | | | | | |
Collapse
|
20
|
Merendino AM, Paul C, Vignola AM, Costa MA, Melis M, Chiappara G, Izzo V, Bousquet J, Arrigo AP. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress-mediated apoptosis: possible implication in asthma. Cell Stress Chaperones 2002; 7:269-80. [PMID: 12482203 PMCID: PMC514827 DOI: 10.1379/1466-1268(2002)007<0269:hspphb>2.0.co;2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inflammation of the human bronchial epithelium, as observed in asthmatics, is characterized by the selective death of the columnar epithelial cells, which desquamate from the basal cells. Tissue repair initiates from basal cells that resist inflammation. Here, we have evaluated the extent of apoptosis as well as the Hsp27 level of expression in epithelial cells from bronchial biopsy samples taken from normal and asthmatic subjects. Hsp27 is a chaperone whose expression protects against oxidative stress. We report that in asthmatic subjects the basal epithelium cells express a high level of Hsp27 but no apoptotic morphology. In contrast, apoptotic columnar cells are devoid of Hsp27 expression. Moreover, we observed a decreased resistance to hydrogen peroxide-induced apoptosis in human bronchial epithelial 16-HBE cells when they were genetically modified to express reduced levels of Hsp27.
Collapse
Affiliation(s)
- Anna M Merendino
- Instituto di Medicina Generale e Pneumologia, Università di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nédellec P, Edling Y, Perret E, Fardeau M, Vicart P. Glucocorticoid treatment induces expression of small heat shock proteins in human satellite cell populations: consequences for a desmin-related myopathy involving the R120G alpha B-crystallin mutation. Neuromuscul Disord 2002; 12:457-65. [PMID: 12031619 DOI: 10.1016/s0960-8966(01)00306-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A missense mutation (R120G) of the molecular chaperone alpha B-crystallin has recently been linked to a familial form of desmin-related myopathy characterized by intrasarcoplasmic aggregates of desmin. It was previously demonstrated that the mutant R120G had a defective chaperone-like function. However, the cellular and physiopathological consequences of R120G mutant expression in human muscle cells are as yet unclear. Thus, we developed a cellular model for the study of this R120G alpha B-crystallin-related desmin-related myopathy. We demonstrate that dexamethasone enhances alpha B-crystallin and HSP27 expression in normal and desmin-related myopathy-derived muscle cells. In the undifferentiated desmin-related myopathy satellite cell population no intracytoplasmic aggregates were observed. However, in differentiated satellite cells derived from a related myopathy patient, we observed an enhanced plasma membrane localization of alpha B-crystallin following glucocorticoid. We also observed that the protective effect against stress of alpha B-crystallin is altered upon glucocorticoid-induced small heat shock protein expression for the desmin-related myopathy-derived cells.
Collapse
Affiliation(s)
- Patrick Nédellec
- Laboratoire Cytosquelette et Développement, Université Paris VI, CNRS UMR 7000, Faculté de Médecine Pitié-Salpêtrière, 105 Boulevard De l'Hôpital, 75634 Cedex 13, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Thompson HS, Clarkson PM, Scordilis SP. The repeated bout effect and heat shock proteins: intramuscular HSP27 and HSP70 expression following two bouts of eccentric exercise in humans. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:47-56. [PMID: 11851596 DOI: 10.1046/j.1365-201x.2002.00922.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exercise-induced damage significantly and predictably alters indirect indicators of muscle damage after one bout of damaging exercise but this response is dampened following a second bout of the same exercise performed 1-6 weeks later. Previously we have described a marked increase in the levels of heat shock proteins (HSPs) HSP27 and HSP70 in human biceps muscle following one bout of high-force eccentric exercise. The purpose of the present study was to examine the intramuscular HSP27 and HSP70 response following two identical bouts of exercise [bout 1 (B1) and bout 2 (B2), separated by 4 weeks] relative to indirect indices of muscle damage. Ten human subjects performed 50 high-force eccentric contractions with their non-dominant forearm flexors; muscle damage of the biceps brachii was evaluated 48 h post-exercise with indirect indices [serum creatine kinase (CK) activity, soreness, isometric maximal voluntary contraction (MVC) force and relaxed arm angle] and immunoblotting of high ionic strength muscle biopsy extracts for both HSPs. Not unexpectedly, the indirect indicators of damage changed dramatically and significantly (P < 0.01) after B1 but had a much smaller response after B2. The magnitude of the HSP response was the same after both bouts of exercise, though the control and exercised samples of B2 demonstrated a lower basal HSP expression. Thus, though both indirect and cellular indicators of exercise-induced muscle damage demonstrate an adaptation consequent to the first bout of exercise, these adaptations are quite different. It is possible that the lower basal HSP expression of the cellular response mediates the attenuation of damage associated with B2 as indicated by indirect indices.
Collapse
Affiliation(s)
- H S Thompson
- Department of Exercise Science, University of Massachusetts, Amherst, MA 01655, USA
| | | | | |
Collapse
|
23
|
Trautinger F. Heat shock proteins in the photobiology of human skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 63:70-7. [PMID: 11684453 DOI: 10.1016/s1011-1344(01)00203-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All organisms respond to sudden environmental changes with the increased transcription of genes belonging to the family of heat shock proteins (hsps). Hsp-inducing stress factors include elevated temperatures, alcohol, heavy metals, oxidants, and agents leading to protein denaturation. The induction of heat shock proteins is followed by a transient state of increased resistance to further stress and the heat shock response is generally thought to represent an evolutionary conserved adaptive mechanism to cope with hostile environmental conditions. Since the skin as a barrier organ has to cope with the potentially harmful consequences of exposure to ultraviolet radiation (UV), it appears reasonable to question whether hsps constitute a natural defence mechanism against UV. Hsps have been detected in resting as well as in stressed epidermal and dermal cells and overexpression of hsps is associated with increased resistance to UV-induced cell death. Furthermore, UV itself is able to induce the expression of specific hsps. Thus, hsps might provide an adaptive cellular response to increasing UV and enhancing the expression of hsps might turn out as a new way to deal with the immediate and long-term consequences of UV exposure. Prerequisite for the utilization of this concept is the development of non-toxic heat shock inducers and their evaluation for clinical efficacy and safety.
Collapse
Affiliation(s)
- F Trautinger
- University of Vienna, Division of Special and Environmental Dermatology, Department of Dermatology, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
24
|
Wong JW, Shi B, Farboud B, McClaren M, Shibamoto T, Cross CE, Isseroff RR. Ultraviolet B-mediated phosphorylation of the small heat shock protein HSP27 in human keratinocytes. J Invest Dermatol 2000; 115:427-34. [PMID: 10951279 DOI: 10.1046/j.1523-1747.2000.00077.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exposure of human keratinocytes to environmental stress is known to induce changes in the expression, phosphorylation, and subcellular relocalization of the 27 kDa heat shock protein. This study demonstrates that ultraviolet B (280-320 nM) irradiation with physiologic doses induces a dose-dependent phosphorylation of 27 kDa heat shock protein, generating the more acidic 27 kDa heat shock protein B, C, and D isoforms. Ultraviolet B also induces perinuclear cytoplasmic relocation and nuclear translocation of 27 kDa heat shock protein and caused aggregation of cytoplasmic actin filaments into a broad perinuclear distribution. The ultraviolet B-induced phosphorylation is reversible, returning to baseline levels 4 h after exposure, and this coincides with the reversal of ultraviolet B-induced actin reorganization. The ultraviolet B-induced phosphorylation is not affected by the protein kinase C inhibitor, GF 109203X, is partially inhibited by epidermal growth factor receptor tyrosine kinase inhibitor, PD 153035, and is substantially inhibited by the specific p38 mitogen-activated protein kinase inhibitor, SB 203580. In addition, pretreatment of cells with the anti-oxidant N-acetyl cysteine partially inhibits ultraviolet B-and oxidant-induced 27 kDa heat shock protein phosphorylation. The p38 mitogen-activated protein kinase cascade is thus the major transduction pathway for ultraviolet B-induced 27 kDa heat shock protein phosphorylation, and reactive oxygen species generated in response to ultraviolet B also contribute to this phosphorylation. As 27 kDa heat shock protein phosphorylation and relocalization has been associated with increased cell survival after environmental insult, our data suggest that ultraviolet B, in addition to initiating recognized cytotoxic events in keratinocytes, also initiates a signaling pathway that may provide cellular protection against this ubiquitous environmental insult.
Collapse
Affiliation(s)
- J W Wong
- Department of Environmental Toxicology, University of California School of Medicine, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Apoptosis is a genetically programmed, physiological method of cell destruction. A variety of genes are now recognised as positive or negative regulators of this process. Expression of inducible heat shock proteins (hsp) is known to correlate with increased resistance to apoptosis induced by a range of diverse cytotoxic agents and has been implicated in chemotherapeutic resistance of tumours and carcinogenesis. Intensive research on apoptosis over the past number of years has provided significant insights into the mechanisms and molecular events that occur during this process. The modulatory effects of hsps on apoptosis are well documented, however, the mechanisms of hsp-mediated protection against apoptosis remain to be fully defined, although several hypotheses have been proposed. Elucidation of these mechanisms should reveal novel targets for manipulating the sensitivity of leukaemic cells to therapy. This review aims to explain the currently understood process of apoptosis and the effects of hsps on this process. Several proposed mechanisms for hsp protection against apoptosis and the therapeutic implications of hsps in leukaemia are also discussed.
Collapse
Affiliation(s)
- E M Creagh
- Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Ireland
| | | | | |
Collapse
|
26
|
Shinohara T, Singh DP, Chylack LT. Review: Age-related cataract: immunity and lens epithelium-derived growth factor (LEDGF). J Ocul Pharmacol Ther 2000; 16:181-91. [PMID: 10803429 DOI: 10.1089/jop.2000.16.181] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This short review summarizes our recent work and relevant publications on autoimmunity and cataract. A complete review of this subject is beyond the scope of this paper. Age-related cataract (ARC) is the leading cause of world blindness. In spite of more than fifty years of basic and clinical research, there is no nonsurgical intervention to prevent or treat ARC, but there is a better understanding of the manifold complexities of this age-related condition. ARC is a multifactorial condition in which incidence and progress are modified by factors such as age, sex, radiation [visible, ultraviolet (UV), and X-ray], oxidation, physical trauma, diet, and medications. The lens contains at least three different cell types: central epithelial cells, dividing germinative epithelial cells, and fiber cells. The central epithelial cells covering the anterior axial part of the lens do not divide but survive throughout life. The bulk of the lens comprises anucleate fiber cells, differentiated germinative epithelial cells, which have undergone an apoptosis-like change "diffoptosis" to become elongated, crystallin-rich, organelle-deficient, cells. The epithelial cells and their active transport mechanisms maintain lens homeostasis and clarity. The survival mechanisms of the central lens epithelial cells (LECs) are unknown. In other cells, growth or survival factors, when present, enhance survival and, when absent or deficient, induce programmed cell death "apoptosis". Many developing mammalian cells produce signal proteins, or require signal proteins from other cells, to avoid apoptosis. Although much is known about the role of growth factors in the lens, less is known about how such signals are involved in the survival and death of LECs. We have hypothesized that LECs, like other mammalian cells, use signal proteins to regulate growth, survival, and apoptosis, and we have begun a search for such molecules. Furthermore, we have hypothesized that such factors, if found, may also be involved in the death of LECs, the consequent alteration of lens homeostasis and, eventually, certain types of ARC.
Collapse
Affiliation(s)
- T Shinohara
- Center for Ophthalmic Research, Brigham and Women's Hospital, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
27
|
Abstract
Defects in apoptosis signaling pathways are common in cancer cells. Such defects may play an important role in tumor initiation because apoptosis normally eliminates cells with damaged DNA or dysregulated cell cycle, i.e., cells with increased malignant potential. Moreover, impaired apoptosis may enhance tumor progression and promote metastasis by enabling tumor cells to survive the transit in the bloodstream and to grow in ectopic tissue sites lacking the otherwise required survival factors. Finally, raised apoptosis threshold may have deleterious consequences by rendering cancer cells resistant to various forms of therapy. The intensive apoptosis research during the past decade has resulted in the identification of several proteins which may promote tumorigenesis by inhibiting apoptosis. Of special relevance in human cancer are those commonly expressed in primary tumors and functioning at the common part of the signaling pathway leading to apoptosis. Proteins fulfilling these criteria include antiapoptotic members of the Bcl-2 protein family, heat shock proteins, Hsp70 and Hsp27, as well as survivin, the novel cancer-associated member of the inhibitor of apoptosis protein family. Understanding the molecular mechanisms of action of these proteins may offer novel modes of rationally and selectively manipulating the sensitivity of cancer cells to therapy.
Collapse
Affiliation(s)
- M Jäättelä
- Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, Copenhagen, DK-2100, Denmark.
| |
Collapse
|
28
|
Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 1999; 61:243-82. [PMID: 10099689 DOI: 10.1146/annurev.physiol.61.1.243] [Citation(s) in RCA: 2588] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.
Collapse
Affiliation(s)
- M E Feder
- Department of Organismal Biology and Anatomy and Committee on Evolutionary Biology, University of Chicago, Illinois 60637, USA.
| | | |
Collapse
|
29
|
Jantschitsch C, Kindas-Mügge I, Metze D, Amann G, Micksche M, Trautinger F. Expression of the small heat shock protein HSP 27 in developing human skin. Br J Dermatol 1998; 139:247-53. [PMID: 9767238 DOI: 10.1046/j.1365-2133.1998.02361.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 27 kDa heat shock protein (HSP 27) is expressed in keratinocytes of the upper epidermal layers, and recent evidence suggests that this protein is involved in the regulation of epidermal differentiation. The expression of HSP 27 was investigated in developing human skin by immunohistochemistry utilizing a specific monoclonal antibody. We used formalin-fixed, paraffin-embedded tissue of abdominal skin obtained from 34 human fetuses ranging between 13 and 30 weeks estimated gestational age (EGA). We found that HSP 27 is not expressed in keratinocytes until week 14 EGA. At this stage staining is observed in the periderm and the upper intermediate cells but not in hair germs. During further development, HSP 27 expression correlates with increasing epidermal differentiation, i.e. shedding of the periderm and beginning of keratinization. HSP 27 expression is confined to the upper cell layers and sparse basal cells. In hair follicles, HSP 27 can be detected in the innermost cell layer of the outer root sheath and in keratinocytes of the bulge identical to what is observed in adult skin. The hair papilla, matrix cells and sebaceous glands are negative for HSP 27 and remain so during further development. In eccrine sweat glands of the 24th week EGA, HSP 27 is confined to the superficial cell layer of the sweat ducts. In the present report we demonstrate differentiation-related expression of HSP 27 in developing human skin. Further in vitro studies will address the molecular function of HSP 27 in epidermal differentiation and development.
Collapse
Affiliation(s)
- C Jantschitsch
- Institute of Tumour Biology, University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Downs CA, Heckathorn SA. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett 1998; 430:246-50. [PMID: 9688548 DOI: 10.1016/s0014-5793(98)00669-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional inactivation of the mitochondrial small heat-shock protein (lmw Hsp) in submitochondrial vesicles using protein-specific antibodies indicated that this protein protects NADH:ubiquinone oxidoreductase (complex I), and consequently electron transport from complex I to cytochrome c:O2 oxidoreductase (complex IV). Lmw Hsp function completely accounted for heat acclimation of complex I electron transport in pre-heat-stressed plants. Addition of purified lmw Hsp to submitochondrial vesicles lacking this Hsp increased complex I electron transport rates 100% in submitochondrial vesicles assayed at high temperatures. These results indicate that production of the mitochondrial lmw Hsp is an important adaptation to heat stress in plants.
Collapse
Affiliation(s)
- C A Downs
- Department of Biology, University of Charleston, SC 29424, USA.
| | | |
Collapse
|
31
|
Shah M, Stanek J, Handwerger S. Differential localization of heat shock proteins 90, 70, 60 and 27 in human decidua and placenta during pregnancy. THE HISTOCHEMICAL JOURNAL 1998; 30:509-18. [PMID: 10192534 DOI: 10.1023/a:1003259907014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little is known about the localization of heat shock proteins (HSPs) in the decidua and placenta during the course of normal pregnancy. In this study, we have examined the localization of the HSPs in decidual and placental tissues obtained from women during the first, second and third trimesters of pregnancy (five in each trimester) by immunohistochemistry using highly specific antisera. HSPs 90, 70, 60 and 27 were detected in decidual stromal cells during each trimester. The intensity of staining did not change during gestation for HSPs 60 and 27, whereas it decreased with advancing gestation for HSPs 90 and 70. HSPs 90 and 60 were localized primarily in the nucleus, whereas HSP 70 was present equally in the nucleus and the cytoplasm; HSP 27 was primarily in the cytoplasm. In the placenta, HSPs 90, 70 and 60 were localized in cytotrophoblast, syncytiotrophoblast, intermediate trophoblast, Hofbauer and endothelial cells. HSPs 90 and 60 were localized primarily in the nucleus, while HSP 70 was in the nucleus and the cytoplasm. In the placenta, HSP 27 was detected only in the intermediate trophoblast and syncytiotrophoblast cells and only in the first two trimesters. These results indicate that there are striking differences in the subcellular localization of HSPs in the decidua and the placenta during normal pregnancy.
Collapse
Affiliation(s)
- M Shah
- Department of Pediatrics, University of Cincinnati, OH 45229, USA
| | | | | |
Collapse
|