1
|
Zhong Z, Wang X, Yin X, Tian J, Komatsu S. Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. Int J Mol Sci 2021; 22:12239. [PMID: 34830127 PMCID: PMC8618018 DOI: 10.3390/ijms222212239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023] Open
Abstract
Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Xiaojian Yin
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, China;
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
2
|
UV Lighting in Horticulture: A Sustainable Tool for Improving Production Quality and Food Safety. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultraviolet (UV) is a component of solar radiation that can be divided into three types defined by waveband: UV-A (315–400 nm), UV-B (280–315 nm), and UV-C (<280 nm). UV light can influence the physiological responses of plants. Wavelength, intensity, and exposure have a great impact on plant growth and quality. Interaction between plants and UV light is regulated by photoreceptors such as UV Resistance Locus 8 (UVR8) that enables acclimation to UV-B stress. Although UV in high doses is known to damage quality and production parameters, some studies show that UV in low doses may stimulate biomass accumulation and the synthesis of healthy compounds that mainly absorb UV. UV exposure is known to induce variations in plant architecture, important in ornamental crops, increasing their economic value. Abiotic stress induced by UV exposure increases resistance to insects and pathogens, and reduce postharvest quality depletion. This review highlights the role that UV may play in plant growth, quality, photomorphogenesis, and abiotic/biotic stress resistance.
Collapse
|
3
|
Häder DP, Cabrol NA. Monitoring of Solar Irradiance in the High Andes. Photochem Photobiol 2020; 96:1133-1139. [PMID: 32347559 DOI: 10.1111/php.13276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/14/2020] [Indexed: 11/27/2022]
Abstract
Solar radiation has been measured in the high Andes near Laguna Lejia (latitude 23° 26' 23.30" S, longitude 67° 38' 14.29" W) at an elevation of 4715 m between December 2016 and December 2017. Irradiances were monitored in four wavelength channels: PAR (400-700 nm), UV-A (315-400 nm), UV-B (295-315 nm) and short-wavelength UV-B (295-310 nm) with a new radiometer. In addition, ambient temperatures were recorded. Record values have been found for PAR (exceeding 600 W m-2 ), UV-A (close to 95 W m-2 ), UV-B (3.13 W m-2 ) and short-wavelength UV-B (0.144 W m-2 ) during Austral spring. The winter irradiance values slightly exceeded 50% of these values. Maximal cloud effects due to multiple reflections were 45, 38, 32 and 35% higher than values under cloudless skies for PAR, UV-A, UV-B and short-wavelength UV-B, respectively. Record irradiance for this site shows a UV index reaching and exceeding 20, which is due to low solar zenith angles, the altitude, low water vapor and aerosol concentrations in the atmosphere as well as low total column ozone concentrations.
Collapse
Affiliation(s)
- Donat-Peter Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | | |
Collapse
|
4
|
Lee JH, Oh MM, Son KH. Short-Term Ultraviolet (UV)-A Light-Emitting Diode (LED) Radiation Improves Biomass and Bioactive Compounds of Kale. FRONTIERS IN PLANT SCIENCE 2019; 10:1042. [PMID: 31481968 PMCID: PMC6710713 DOI: 10.3389/fpls.2019.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine the influence of two types of UV-A LEDs on the growth and accumulation of phytochemicals in kale (Brassica oleracea var. acephala). Fourteen-day-old kale seedlings were transferred to a growth chamber and cultivated for 3 weeks. The kale plants were subsequently subjected to two types of UV-A LEDs (370 and 385 nm) of 30 W/m2 for 5 days. Growth characteristics were all significantly increased in plants exposed to UV-A LEDs, especially at the 385 nm level, for which dry weight of shoots and roots were significantly increased by 2.22 and 2.5 times, respectively, at 5 days of treatment. Maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ratio) began to decrease after 3 h of treatment compared to the control. The total phenolic content of plants exposed to the two types of UV-A LEDs increased by 25% at 370 nm and 42% at 385 nm at 5 days of treatment, and antioxidant capacity also increased. The two types of UV-A LEDs also induced increasing contents of caffeic acid, ferulic acid, and kaempferol. The reactive oxygen species (ROS) temporarily increased in plants exposed to the two types of UV-A LEDs after 3 h of treatment. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) genes and PAL enzyme activity were higher in plants treated with UV-A LEDs. Our results suggested that short-term UV-A LEDs were effective in increasing growth and improving antioxidant phenolic compounds in kale, thereby representing a potentially effective strategy for enhancing the production of phytochemicals.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Myung-Min Oh
- Division of Animal, Horticultural and Food Science, Chungbuk National University, Cheongju, South Korea
- Brain Korea Center for Bio-Resource Development, Chungbuk National University, Cheongju, South Korea
| | - Ki-Ho Son
- Department of Horticultural Science, College of Life Science, Gyeongnam National University of Science and Technology, Jinju, South Korea
| |
Collapse
|
5
|
Verdaguer D, Jansen MAK, Llorens L, Morales LO, Neugart S. UV-A radiation effects on higher plants: Exploring the known unknown. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 255:72-81. [PMID: 28131343 DOI: 10.1016/j.plantsci.2016.11.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 05/02/2023]
Abstract
Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account.
Collapse
Affiliation(s)
- Dolors Verdaguer
- Environmental Sciences Department, Faculty of Sciences, University of Girona, Campus de Montilivi, C/Maria Aurèlia Capmany I Farnés, 69, E-17003 Girona, Spain.
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Field, North Mall, Cork, Ireland.
| | - Laura Llorens
- Environmental Sciences Department, Faculty of Sciences, University of Girona, Campus de Montilivi, C/Maria Aurèlia Capmany I Farnés, 69, E-17003 Girona, Spain.
| | - Luis O Morales
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany.
| |
Collapse
|
6
|
Pallozzi E, Fortunati A, Marino G, Loreto F, Agati G, Centritto M. BVOC emission from Populus × canadensis saplings in response to acute UV-A radiation. PHYSIOLOGIA PLANTARUM 2013; 148:51-61. [PMID: 22931545 DOI: 10.1111/j.1399-3054.2012.01687.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/16/2012] [Accepted: 06/25/2012] [Indexed: 05/13/2023]
Abstract
Hybrid poplar (Populus × canadensis) saplings were subjected to acute ultraviolet-A (UV-A) irradiation (30 W m(-2) , ambient treatment, 60, 90 and 120 W m(-2) of UV-A irradiance) to determine the effects on photosynthesis and biogenic volatile organic compound (BVOC) emissions in two different short-term experiments (i.e. sequential increase in UV-A irradiance and UV-A intensity-response relationships). Both intensity-response experiments showed that the UV-A ambient treatment did not affect photosynthesis and BVOC emissions. Whereas exposition at 60, 90 and 120 W m(-2) of UV-A (first experiment), increasingly inhibited photosynthesis. This increasing inhibition was also detected by decreasing trends of both photochemical reflectance index (PRI) and fluorescence yield. Isoprene emission resulted to be very sensitive to increasing UV-A irradiances. Methanol was also very sensitive to high UV-A radiation, suggesting the occurrence of strong damages of cellular structures. The second experiment, which was performed both in the middle of July and repeated towards the end of the summer, showed a temporal variations in the UV-A intensity-response relationships. In fact, there were no longer significant differences in photosynthesis, PRI and isoprene emission in response to high UV-A radiation toward the end of the summer season. The adaxial flavonoid level increased significantly over the period monitored, resulting 85% higher toward the end of the summer than during the middle of the summer. This dramatic increase in the adaxial flavonoids may have played a protective role against UV-A radiation by shielding leaves. Our findings add to the understanding of physiological processes involved in plant response to UV radiation.
Collapse
Affiliation(s)
- Emanuele Pallozzi
- Institute of AgroEnvironmental and Forest Biology, National Research Council, 00015, Monterotondo Scalo, RM, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Chen YP. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B. PLANT SIGNALING & BEHAVIOR 2009; 4:571-3. [PMID: 19820308 PMCID: PMC2710544 DOI: 10.4161/psb.4.7.8794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/20/2009] [Indexed: 05/24/2023]
Abstract
To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.
Collapse
Affiliation(s)
- Yi-Ping Chen
- SKLLQG, Institute of Earth Environment, Chinese Academy of Science, Xi'an, China.
| |
Collapse
|
8
|
Qi Z, Yue M, Han R, Wang XL. The Damage Repair Role of He-Ne Laser on Plants Exposed to Different Intensities of Ultraviolet-B Radiation¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750680tdrroh2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Qi Z, Yue M, Han R, Wang XL. The damage repair role of He-Ne laser on plants exposed to different intensities of ultraviolet-B radiation. Photochem Photobiol 2002; 75:680-6. [PMID: 12081332 DOI: 10.1562/0031-8655(2002)075<0680:tdrroh>2.0.co;2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Light-grown broad bean (Vicia faba L.) seedlings were subjected to different intensities of UV-B radiation (0, 0.05, 0.15, 0.45, 0.90, 1.45 and 1.98 W m(-2)) for 7 h under photosynthetically active radiation (70 micromol m(-2) s(-1)) and then exposed to He-Ne laser (632.8 nm, 5.43 mW mm(-2)) radiation for 5 min or red light radiation for 4 h without ambient light radiation. When He-Ne laser radiated leaves were treated using lower intensity UV-B, the activities of superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6) improved significantly. Moreover, the UV-B-injured plants treated with laser light recovered faster from UV-B treatment because the concentration of malondialdehyde and the rate of electrolyte leakage from leaf disks reached control levels (no UV-B or laser treatment) early compared with those exposed only to ambient light or in dark conditions. Laser treatment, however, had no repair effect on seedling damage induced by higher UV-B radiation (1.45 and 1.98 W m(-2)), even with higher laser flux rates and longer laser treatment. In addition, the red light treatment had no repair effect on UV-B-induced damage. Meanwhile, the long-term physiological effect of He-Ne laser treatment on UV-B damaged plants was presented and evaluated. The results showed that the laser had a long-term positive physiological effect on the growth of UV-B-damaged plants. With the exception of the severe damage caused by higher UV-B radiation, a laser with the proper flux rate and treatment time can repair UV-B-induced damage and shorten the recovery time.
Collapse
Affiliation(s)
- Zhi Qi
- Department of Biology, Northwest University, Xi'an, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Lehner G, Delatorre J, Lütz C, Cardemil L. Field studies on the photosynthesis of two desert Chilean plants: Prosopis chilensis and Prosopis tamarugo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 64:36-44. [PMID: 11705728 DOI: 10.1016/s1011-1344(01)00187-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Photosynthetic parameters were investigated in relation to light intensity (PAR and UV-B) in two Chilean Prosopis sp., Prosopis chilensis and Prosopis tamarugo in their natural habitats. The objective of this work was to compare the photosynthetic responses and to determine the degree of adaptation of both species to visible- and UV-radiation stress. One of the study sites was Refresco in the Atacama Desert, where P. tamarugo is an endemic plant and P. chilensis was introduced, and the other was Peldehue in the valley of Central Chile where only P. chilensis is present. Due to latitude, light intensity (UV-B and PAR) is higher in Refresco than in Peldehue. The parameters investigated in both species were photosystem II fluorescence, CO(2) assimilation, stomatal conductance, photosynthetic pigment composition, flavonoid absorption patterns and composition of chlorophyll-protein complexes. Fluorescence studies, CO(2) assimilation and stomatal conductance studies demonstrated that photosynthetic activity is more efficient and stable throughout the day in P. tamarugo than in P. chilensis in Refresco. Chlorophyll-protein complexes also seemed to be more stable in P. tamarugo than in P. chilensis. Photosynthetic pigment analyses indicated possible photodamage in P. chilensis trees in Refresco, but not in Peldehue. Such photodamage was absent in P. tamarugo. There was a considerable change in the flavonoid pattern between noon and afternoon hours in both species at both study sites. The physiological implications of these changes indicate that P. tamarugo is more adapted to high solar radiation than P. chilensis.
Collapse
Affiliation(s)
- G Lehner
- GSF -Research Center for Environment and Health, Institute of Soil Ecology, Environmental Engineering, Neuherberg, Germany
| | | | | | | |
Collapse
|