1
|
Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From Stem Cells to Bone-Forming Cells. Int J Mol Sci 2021; 22:ijms22083989. [PMID: 33924333 PMCID: PMC8070464 DOI: 10.3390/ijms22083989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Correspondence:
| |
Collapse
|
2
|
Patyra K, Jaeschke H, Löf C, Jännäri M, Ruohonen ST, Undeutsch H, Khalil M, Kero A, Poutanen M, Toppari J, Chen M, Weinstein LS, Paschke R, Kero J. Partial thyrocyte-specific Gα s deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice. FASEB J 2018; 32:fj201800211R. [PMID: 29799790 DOI: 10.1096/fj.201800211r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Thyroid function is controlled by thyroid-stimulating hormone (TSH), which binds to its G protein-coupled receptor [thyroid-stimulating hormone receptor (TSHR)] on thyrocytes. TSHR can potentially couple to all G protein families, but it mainly activates the Gs- and Gq/11-mediated signaling cascades. To date, there is a knowledge gap concerning the role of the individual G protein cascades in thyroid pathophysiology. Here, we demonstrate that the thyrocyte-specific deletion of Gs-protein α subunit (Gαs) in adult mice [tamoxifen-inducible Gs protein α subunit deficient (iTGαsKO) mice] rapidly impairs thyrocyte function and leads to hypothyroidism. Consequently, iTGαsKO mice show reduced food intake and activity. However, body weight and the amount of white adipose tissue were decreased only in male iTGαsKO mice. Unexpectedly, hyperplastic follicles and papillary thyroid cancer-like tumor lesions with increased proliferation and slightly increased phospho-ERK1/2 staining were found in iTGαsKO mice at an older age. These tumors developed from nonrecombined thyrocytes still expressing Gαs in the presence of highly elevated serum TSH. In summary, we report that partial thyrocyte-specific Gαs deletion leads to hypothyroidism but also to tumor development in thyrocytes with remaining Gαs expression. Thus, these mice are a novel model to elucidate the pathophysiological consequences of hypothyroidism and TSHR/Gs/cAMP-mediated tumorigenesis.-Patyra, K., Jaeschke, H., Löf, C., Jännäri, M., Ruohonen, S. T., Undeutsch, H., Khalil, M., Kero, A., Poutanen, M., Toppari, J., Chen, M., Weinstein, L. S., Paschke, R., Kero, J. Partial thyrocyte-specific Gαs deficiency leads to rapid-onset hypothyroidism, hyperplasia, and papillary thyroid carcinoma-like lesions in mice.
Collapse
Affiliation(s)
- Konrad Patyra
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Holger Jaeschke
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Christoffer Löf
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Meeri Jännäri
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Henriette Undeutsch
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Moosa Khalil
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary,
Alberta, Canada
| | - Andreina Kero
- Department of Pediatrics, Turku University Hospital, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Finland
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ralf Paschke
- Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jukka Kero
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Finland
| |
Collapse
|
3
|
Schenkel LC, Rodenhiser DI, Ainsworth PJ, Paré G, Sadikovic B. DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome. Crit Rev Clin Lab Sci 2016; 53:147-65. [PMID: 26758403 DOI: 10.3109/10408363.2015.1113496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders.
Collapse
Affiliation(s)
| | - David I Rodenhiser
- b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Peter J Ainsworth
- a Departments of Pathology and Laboratory Medicine .,b Departments of Biochemistry , Oncology and Paediatrics, Western University , London , ON , Canada .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| | - Guillaume Paré
- f Department of Pathology and Molecular Medicine , and.,g Department of Clinical Epidemiology and Biostatistics , McMaster University , Hamilton , ON , Canada
| | - Bekim Sadikovic
- a Departments of Pathology and Laboratory Medicine .,c London Regional Cancer Program, London Health Sciences Centre , London , ON , Canada .,d Molecular Genetics Laboratory, London Health Sciences Centre , London , ON , Canada .,e Children's Health Research Institute , London , ON , Canada
| |
Collapse
|
4
|
Sengupta S, Ravindran RD, Kannusamy V, Tamrakar V. Bilateral simultaneous disc edema and cataract associated with albright hereditary osteodystrophy. Middle East Afr J Ophthalmol 2012; 19:166-8. [PMID: 22346135 PMCID: PMC3277018 DOI: 10.4103/0974-9233.92136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A 16-year-old female presented with poor vision in both eyes. On clinical examination, she had bilateral cataracts and optic disc edema bilaterally on ultrasound examination. Extensive intracranial calcification was evident on computerized tomography. Physical examination revealed short stature, rounded chubby face, dental abnormalities, brachydactyly, and obesity. Laboratory evidence of hypocalcemia, hyperphosphatemia, elevated parathyroid hormone level (indicative of pseudohypoparathyroidism) along with the constellation of phenotypical characteristics lead to a diagnosis of Albright's hereditary osteodystrophy. This case is being presented to increase awareness regarding presence of coexisting and previously undiagnosed hypocalcemic syndromes in pediatric cataracts. The role of an ophthalmologist may be pivotal in diagnosing such an entity as documented in the present case.
Collapse
Affiliation(s)
- Sabyasachi Sengupta
- Department of Pediatric Ophthalmology, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Pondicherry, India
| | | | | | | |
Collapse
|
5
|
Raghavan P, Katz CM. Pseudohypoparathyroidism type Ia manifesting as intractable epilepsy in a 23-year-old female. Int Med Case Rep J 2012; 5:49-54. [PMID: 23754923 PMCID: PMC3658254 DOI: 10.2147/imcrj.s34079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pseudohypoparathyroidism is a rare disorder of calcium metabolism that involves target organ resistance to the action of the parathyroid hormone. As a result, calcium levels may become dangerously low, sometimes leading to seizures and other symptoms. We present a case of a 23-year-old Somalian female on antiepileptic therapy presenting with intractable epilepsy. She was subsequently found to have pseudohypoparathyroidism type Ia. She had multiple reasons accounting for loss of seizure control, including worsening hypocalcemia from resistance to the parathyroid hormone; vitamin D deficiency, which could have resulted from lack of exposure to direct sunlight and her antiepileptic medication; and extensive calcium deposition in the brain due to pseudohypoparathyroidism. The patient was stabilized with intravenous therapy and oral calcium, vitamin D, and calcitriol. Her antiepileptic therapy was changed to a medication that did not interfere with vitamin D metabolism or contribute to worsening hypocalcemia.
Collapse
Affiliation(s)
- Pooja Raghavan
- Department of Medicine, Mount Carmel Health, Columbus, OH, USA
| | | |
Collapse
|
6
|
Liu S. Increasing alternative promoter repertories is positively associated with differential expression and disease susceptibility. PLoS One 2010; 5:e9482. [PMID: 20208995 PMCID: PMC2830428 DOI: 10.1371/journal.pone.0009482] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/07/2010] [Indexed: 12/03/2022] Open
Abstract
Background Alternative Promoter (AP) usages have been shown to enable diversified transcriptional regulation of individual gene in a context-specific (e.g., pathway, cell lineage, tissue type, and development stage et. ac.) way. Aberrant uses of APs have been directly linked to mechanism of certain human diseases. However, whether or not there exists a general link between a gene's AP repertoire and its expression diversity is currently unknown. The general relation between a gene's AP repertoire and its disease susceptibility also remains largely unexplored. Methodology/Principal Findings Based on the differential expression ratio inferred from all human microarray data in NCBI GEO and the list of disease genes curated in public repositories, we systemically analyzed the general relation of AP repertoire with expression diversity and disease susceptibility. We found that genes with APs are more likely to be differentially expressed and/or disease associated than those with Single Promoter (SP), and genes with more APs are more likely differentially expressed and disease susceptible than those with less APs. Further analysis showed that genes with increased number of APs tend to have increased length in all aspects of gene structure including 3′ UTR, be associated with increased duplicability, and have increased connectivity in protein-protein interaction network. Conclusions Our genome-wide analysis provided evidences that increasing alternative promoter repertories is positively associated with differential expression and disease susceptibility.
Collapse
Affiliation(s)
- Song Liu
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, New York, United States of America.
| |
Collapse
|
7
|
de Nanclares GP, Fernández-Rebollo E, Gaztambide S, Castaño L. Genetics of pseudohypoparathyroidism: bases for proper genetic counselling. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2008; 55:476-483. [PMID: 22980463 DOI: 10.1016/s1575-0922(08)75844-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/10/2008] [Indexed: 06/01/2023]
Abstract
Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia due to resistance to parathyroid hormone (PTH). Patients with PHP-Ia often show additional hormone resistance and characteristic physical features that are collectively termed Albright's hereditary osteodystrophy (AHO). These features are also present in pseudopseudohypoparathyroidism (PPHP), but patients with this disorder do not show hormone resistance. PHP-Ib patients, on the other hand, predominantly show renal PTH resistance and lack features of AHO. From the genetic point of view, PHP-I is caused by defects in the GNAS gene or in the 5' region of this gene locus. PHP-Ia is caused by heterozygous inactivating mutations in any of the 13 exons codifying the alpha subunit of the stimulatory guanine nucleotide-binding protein (Gsα), while PHP-Ib is due to alterations in the methylation pattern of the 5' regions of the locus, usually associated with upstream microdeletions that are maternally transmitted. The imprinting pattern that affects the GNAS locus has important implications for the inheritance pattern and consequently for appropriate genetic counselling.
Collapse
Affiliation(s)
- Guiomar Pérez de Nanclares
- Grupo de Investigación en Endocrinología y Diabetes. Hospital de Cruces. Baracaldo. Vizcaya. España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII. Baracaldo. Vizcaya. España
| | | | | | | |
Collapse
|
8
|
Abstract
Imprinting is defined as the parental allele-specific expression of a very limited set of genes (about 50-80). This regulation depends upon an epigenetic marking of parental alleles during gametogenesis. Monoallelic expression ensures that the levels of the proteins encoded by imprinted genes, important factors of embryonic growth, placental growth or adult metabolism, are assured. Without precise control of their expression, developmental abnormalities result, as is shown by a number of hereditary over-growth syndromes, including Beckwith-Wiedemann syndrome. The regulation of imprinted genes is largely dependent on methylation marks, which are laid down during embryological development of germ cells. Once in place, the methylation status of precise chromosomal regions, Imprinting Control Regions (ICRs), is read by either of two mechanisms, chromatin barrier formation or untranslated RNAs, thereby ensuring that only the maternal or paternal allele is expressed. Each imprinted gene is classified as maternal or paternal according to the expressed allele. The stability of the marked regions in somatic cells is maintained through each cellular replication by a methylation enzyme complex containing Dnmt1. Although the major reading mechanisms of imprinted status are known, chromatin boundary formation by CTCF and untranslated RNAs, the molecules elaborating the initial ICR methylation, are just being uncovered. Mis-regulation of imprinted gene expression (loss of imprinting [LOI]) is seen frequently and precociously in a large variety of human tumours, making LOI a potentially valuable tool for both diagnosis and treatment. In fact, LOI is presently considered the most abundant and most precocious alteration in cancer. The present review proposes a mechanism responsible for LOI, as well as its eventual value in tumour diagnosis and prognosis.
Collapse
Affiliation(s)
- P Jelinic
- Division of Experimental Pathology, University Institute of Pathology, Lausanne, Switzerland
| | | |
Collapse
|
9
|
Mantovani G, Spada A. Resistance to growth hormone releasing hormone and gonadotropins in Albright's hereditary osteodystrophy. J Pediatr Endocrinol Metab 2006; 19 Suppl 2:663-70. [PMID: 16789632 DOI: 10.1515/jpem.2006.19.s2.663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteo-dystrophy (AHO). Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action (pseudohypoparathyroidism type Ia [PHP-Ia), recent studies have provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad and pituitary. Accordingly, patients with PHP-Ia display variable degrees of resistance to parathyroid hormone (PTH), thyroid stimulating hormone (TSH), gonadotropins and growth hormone (GH) releasing hormone (GHRH). Although the incidence and the clinical and biochemical characteristics of PTH and TSH resistance have been widely investigated and described, the cause and significance of the reproductive dysfunction in AHO is still poorly understood. The clinical finding of alterations of GH secretion in these patients was described for the first time only 2 years ago. The present report briefly reviews the literature focusing on the actual knowledge about these last two subjects.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Institute of Endocrine Sciences, University of Milan, Ospedale Maggiore IRCCS, Milan, Italy
| | | |
Collapse
|
10
|
Spada A, Mantovani G, Lania A. Inactivating and activating mutations of the Gs alpha gene. ANNALES D'ENDOCRINOLOGIE 2005; 66:258-63. [PMID: 15988388 DOI: 10.1016/s0003-4266(05)81759-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- A Spada
- Institute of Endocrine Sciences, University of Milan, Ospedale Maggiore IRCCS, Via F. Sforza 35-20122 Milano Italy.
| | | | | |
Collapse
|
11
|
Lania A, Mantovani G, Spada A. Genetics of pituitary tumors: Focus on G-protein mutations. Exp Biol Med (Maywood) 2003; 228:1004-17. [PMID: 14530508 DOI: 10.1177/153537020322800904] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years the demonstration that human pituitary adenomas are monoclonal in origin has provided further evidence that pituitary neoplasia arise from the replication of a single mutated cell in which growth advantage results from either activation of proto-oncogenes or inactivation of tumor suppressor genes. While common oncogenes, such as Ras, are only exceptionally involved, the only mutations identified in a significant proportion of pituitary tumors, and particular in GH-secreting adenomas, occur in the Gsalpha gene (GNAS1) and cause constitutive activation of the cAMP pathway (gsp oncogene). Moreover, pituitary tumors overexpress hypothalamic releasing hormones, growth factors, and their receptors as well as cyclins involved in cell cycle progression. As far as the role of tumor suppressor genes in pituitary tumorigenesis is concerned, reduced expression of these genes seems to frequently occur in pituitary tumors as a consequence of abnormal methylation processes. Although the only mutational change so far identified in pituitary tumors is the gsp oncogene, this oncogene is not associated with a clear phenotype in patients bearing positive tumors. Mechanisms able to counteract the cAMP pathway, such as high sensitivity to somatostatin, and induction of genes with opposite actions, such as phosphodiesterases, CREB end ICER, or instability of mutant Gsalpha, have been proposed to account for the lack of genotype/phenotype relationships.
Collapse
Affiliation(s)
- Andrea Lania
- Institute of Endocrine Sciences, University of Milan, Ospedale Maggiore IRCCS, 20122, Milano, Italy
| | | | | |
Collapse
|
12
|
Simonds WF. G Protein-Regulated Signaling Dysfunction in Human Disease. J Investig Med 2003. [DOI: 10.1177/108155890305100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, Maryland
| |
Collapse
|
13
|
Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001; 22:675-705. [PMID: 11588148 DOI: 10.1210/edrv.22.5.0439] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The heterotrimeric G protein G(s) couples hormone receptors (as well as other receptors) to the effector enzyme adenylyl cyclase and is therefore required for hormone-stimulated intracellular cAMP generation. Receptors activate G(s) by promoting exchange of GTP for GDP on the G(s) alpha-subunit (G(s)alpha) while an intrinsic GTPase activity of G(s)alpha that hydrolyzes bound GTP to GDP leads to deactivation. Mutations of specific G(s)alpha residues (Arg(201) or Gln(227)) that are critical for the GTPase reaction lead to constitutive activation of G(s)-coupled signaling pathways, and such somatic mutations are found in endocrine tumors, fibrous dysplasia of bone, and the McCune-Albright syndrome. Conversely, heterozygous loss-of-function mutations may lead to Albright hereditary osteodystrophy (AHO), a disease characterized by short stature, obesity, brachydactyly, sc ossifications, and mental deficits. Similar mutations are also associated with progressive osseous heteroplasia. Interestingly, paternal transmission of GNAS1 mutations leads to the AHO phenotype alone (pseudopseudohypoparathyroidism), while maternal transmission leads to AHO plus resistance to several hormones (e.g., PTH, TSH) that activate G(s) in their target tissues (pseudohypoparathyroidism type IA). Studies in G(s)alpha knockout mice demonstrate that G(s)alpha is imprinted in a tissue-specific manner, being expressed primarily from the maternal allele in some tissues (e.g., renal proximal tubule, the major site of renal PTH action), while being biallelically expressed in most other tissues. Disrupting mutations in the maternal allele lead to loss of G(s)alpha expression in proximal tubules and therefore loss of PTH action in the kidney, while mutations in the paternal allele have little effect on G(s)alpha expression or PTH action. G(s)alpha has recently been shown to be also imprinted in human pituitary glands. The G(s)alpha gene GNAS1 (as well as its murine ortholog Gnas) has at least four alternative promoters and first exons, leading to the production of alternative gene products including G(s)alpha, XLalphas (a novel G(s)alpha isoform that is expressed only from the paternal allele), and NESP55 (a chromogranin-like protein that is expressed only from the maternal allele). A fourth alternative promoter and first exon (exon 1A) located approximately 2.5 kb upstream of the G(s)alpha promoter is normally methylated on the maternal allele and transcriptionally active on the paternal allele. In patients with isolated renal resistance to PTH (pseudohypoparathyroidism type IB), the exon 1A promoter region has a paternal-specific imprinting pattern on both alleles (unmethylated, transcriptionally active), suggesting that this region is critical for the tissue-specific imprinting of G(s)alpha. The GNAS1 imprinting defect in pseudohypoparathyroidism type IB is predicted to decrease G(s)alpha expression in renal proximal tubules. Studies in G(s)alpha knockout mice also demonstrate that this gene is critical in the regulation of lipid and glucose metabolism.
Collapse
Affiliation(s)
- L S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
Hypoparathyroidism is a heterogeneous group of disorders with diverse etiologies. During the past decade, major advances have been made towards unraveling the precise cellular and molecular mechanisms that underlie the pathogenesis of this endocrinopathy. Studies of patients afflicted with the disease and of genetically altered mice with strategically engineered mutations have paved new and exciting avenues of investigation into its causes. While focusing on these discoveries, we review areas of controversy and discuss possible approaches for their resolution.
Collapse
Affiliation(s)
- N Garfield
- Division of Endocrinology, Dept of Medicine and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, H3T 1E2, Montréal, Canada
| | | |
Collapse
|
15
|
Affiliation(s)
- M Lalande
- Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut, 263 Farmington Avenue, Farmington, Connecticut 06030-3301, USA.
| |
Collapse
|
16
|
Pasolli HA, Huttner WB. Expression of the extra-large G protein alpha-subunit XLalphas in neuroepithelial cells and young neurons during development of the rat nervous system. Neurosci Lett 2001; 301:119-22. [PMID: 11248437 DOI: 10.1016/s0304-3940(01)01620-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
XLalphas ('extra large' alpha) is a 78 kDa splice variant of the alpha-subunit of the heterotrimeric G protein, Gs (Nature 372 (1994) 804). Prompted by its neuroendocrine-specific tissue distribution in the adult (J. Biol. Chem. 275 (2000) 33622) and its ability to activate adenylyl cyclase (J. Biol. Chem. 275 (2000) 33633), we investigated the expression of XLalphas in the developing rat nervous system using immunofluorescence. Remarkably, XLalphas expression in the neural tube was found to begin at the onset of neurogenesis, being observed in a subset of mitotic neuroepithelial cells as well as in young neurons. At later developmental stages, XLalphas was associated with a subset of neurons in certain regions of the nervous system such as diencephalon, midbrain, hindbrain, spinal cord and sympathetic trunk. These results suggest a role of XLalphas in neuronal differentiation.
Collapse
Affiliation(s)
- H A Pasolli
- Department of Neurobiology, Interdisciplinary Center of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | | |
Collapse
|
17
|
Abstract
Heterotrimeric guanine nucleotide binding proteins (G-proteins) mediate the effects of numerous hormones, neurotransmitters or sensory stimuli by coupling their transmembranous receptors to various effectors like enzymes and ion channels. Changes in the activity of these effector molecules eventually lead to the regulation of multiple cellular functions ranging from short term regulatory processes like the control of secretion rates, muscle tonus or metabolic processes to long term effects like regulation of growth and differentiation. Heterotrimeric G-proteins play a pivotal role in this transmembrane signaling process as they take part in processing and sorting of incoming signals as well as in adjusting the sensitivity of the system. This review describes some of the new insights into the biological role of G-protein mediated signaling processes provided by the analysis of mice genetically engineered to lack distinct G-protein alpha-subunits.
Collapse
Affiliation(s)
- S Offermanns
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest 2000; 106:1167-74. [PMID: 11067869 PMCID: PMC301417 DOI: 10.1172/jci10431] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pseudohypoparathyroidism type IB (PHPIB) is characterized by renal resistance to parathyroid hormone (PTH) and the absence of other endocrine or physical abnormalities. Familial PHPIB has been mapped to 20q13, near GNAS1, which encodes G(s)alpha, the G protein alpha-subunit required for receptor-stimulated cAMP generation. However, G(s)alpha function is normal in blood cells from PHPIB patients, ruling out mutations within the G(s)alpha coding region. In mice G(s)alpha is expressed only from the maternal allele in renal proximal tubules (the site of PTH action) but is biallelically expressed in most other tissues. Studies in patients with Albright hereditary osteodystrophy suggest a similar G(s)alpha imprinting pattern in humans. Here we identify a region upstream of the G(s)alpha promoter that is normally methylated on the maternal allele and unmethylated on the paternal allele, but that is unmethylated on both alleles in all 13 PHPIB patients studied. Within this region is an alternative promoter and first exon (exon 1A), generating transcripts that are normally expressed only from the paternal allele, but that are biallelically expressed in PHPIB patients. Therefore, PHPIB is associated with a paternal-specific imprinting pattern of the exon 1A region on both alleles, which may lead to decreased G(s)alpha expression in renal proximal tubules. We propose that loss of exon 1A imprinting is the cause of PHPIB.
Collapse
Affiliation(s)
- J Liu
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, and. Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892-1752, USA
| | | | | | | | | | | |
Collapse
|
19
|
Pasolli HA, Klemke M, Kehlenbach RH, Wang Y, Huttner WB. Characterization of the extra-large G protein alpha-subunit XLalphas. I. Tissue distribution and subcellular localization. J Biol Chem 2000; 275:33622-32. [PMID: 10931823 DOI: 10.1074/jbc.m001335200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our group previously described a new type of G protein, the 78-kDa XLalphas (extra large alphas) (Kehlenbach, R. H., Matthey, J., and Huttner, W. B. (1994) Nature 372, 804-809 and (1995) Nature 375, 253). Upon subcellular fractionation, XLalphas labeled by ADP-ribosylation with cholera toxin was previously mainly detected in the bottom fractions of a velocity sucrose gradient that contained trans-Golgi network and was differentially distributed to Galphas, which also peaked in the top fractions containing plasma membrane. Here, we investigate, using a new antibody specific for the XL domain, the tissue distribution and subcellular localization of XLalphas and novel splice variants referred to as XLN1. Upon immunoblotting and immunofluorescence analysis of various adult rat tissues, XLalphas and XLN1 were found to be enriched in neuroendocrine tissues, with a particularly high level of expression in the pituitary. By both immunofluorescence and immunogold electron microscopy, endogenous as well as transfected XLalphas and XLN1 were found to be predominantly associated with the plasma membrane, with only little immunoreactivity on internal, perinuclear membranes. Upon subcellular fractionation, immunoreactive XLalphas behaved similarly to Galphas but was differentially distributed to ADP-ribosylated XLalphas. Moreover, the bottom fractions of the velocity sucrose gradient were found to contain not only trans-Golgi network membranes but also certain subdomains of the plasma membrane, which reconciles the present with the previous observations. To further investigate the molecular basis of the association of XLalphas with the plasma membrane, chimeric proteins consisting of the XL domain or portions thereof fused to green fluorescent protein were analyzed by fluorescence and subcellular fractionation. In both neuroendocrine and non-neuroendocrine cells, a fusion protein containing the entire XL domain, in contrast to one containing only the proline-rich and cysteine-rich regions, was exclusively localized at the plasma membrane. We conclude that the physiological role of XLalphas is at the plasma membrane, where it presumably is involved in signal transduction processes characteristic of neuroendocrine cells.
Collapse
Affiliation(s)
- H A Pasolli
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg and Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 110, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
20
|
Offermanns S. Mammalian G-protein function in vivo: new insights through altered gene expression. Rev Physiol Biochem Pharmacol 2000; 140:63-133. [PMID: 10857398 DOI: 10.1007/bfb0035551] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- S Offermanns
- Institut für Pharmakologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany
| |
Collapse
|
21
|
Berry R, Schroeder JJ, French AJ, McDonnell SK, Peterson BJ, Cunningham JM, Thibodeau SN, Schaid DJ. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet 2000; 67:82-91. [PMID: 10820130 PMCID: PMC1287105 DOI: 10.1086/302994] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1999] [Accepted: 04/18/2000] [Indexed: 11/03/2022] Open
Abstract
Recent studies suggest that hereditary prostate cancer is a complex disease involving multiple susceptibility genes and variable phenotypic expression. While conducting a genomewide search on 162 North American families with > or =3 members affected with prostate cancer (PRCA), we found evidence for linkage to chromosome 20q13 with two-point parametric LOD scores >1 at multiple sites, with the highest two-point LOD score of 2.69 for marker D20S196. The maximum multipoint NPL score for the entire data set was 3.02 (P=.002) at D20S887. On the basis of findings from previous reports, families were stratified by the presence (n=116) or absence (n=46) of male-to-male transmission, average age of diagnosis (<66 years, n=73; > or =66 years, n=89), and number of affected individuals (<5, n=101; > or =5, n=61) for further analysis. The strongest evidence of linkage was evident with the pedigrees having <5 family members affected with prostate cancer (multipoint NPL 3.22, P=.00079), a later average age of diagnosis (multipoint NPL 3.40, P=.0006), and no male-to-male transmission (multipoint NPL 3.94, P=.00007). The group of patients having all three of these characteristics (n=19) had a multipoint NPL score of 3.69 (P=.0001). These results demonstrate evidence for a PRCA susceptibility locus in a subset of families that is distinct from the groups more likely to be linked to previously identified loci.
Collapse
Affiliation(s)
- Rebecca Berry
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| | - Jennifer J. Schroeder
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| | - Amy J. French
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| | - Shannon K. McDonnell
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| | - Brett J. Peterson
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| | - Julie M. Cunningham
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| | - Stephen N. Thibodeau
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| | - Daniel J. Schaid
- Departments of Laboratory Medicine and Pathology and Health Sciences Research, Mayo Clinic/Foundation, Rochester, MN
| |
Collapse
|