1
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
3
|
Rasaeifar K, Zavareh S, Hajighasem-Kashani M, Nasiri M. Effects of pulsed electromagnetic fields and N-acetylcysteine on transplantation of vitrified mouse ovarian tissue. Electromagn Biol Med 2023; 42:67-80. [PMID: 37573526 DOI: 10.1080/15368378.2023.2246503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023]
Abstract
In this experimental study, adult female NMRI mice were randomly assigned to five groups: control ;(fresh ovarian transplantation, OT); sham ;(vitrified OT); NAC ;(vitrified OT treated with N-acetyl cysteine, NAC); EMF ;(vitrified OT treated with pulsed electromagnetic fields, PEMF); and NAC+EMF ;(vitrified OT combined with NAC and PEMF). We conducted histological assessments to evaluate follicle reservation and vascularization. Furthermore, we examined the relative expression of Fgf-2, Vegf, Tnf-α, Il-6, Il-1, and Cd31 genes on days 2 and 7 after OT. Additionally, we measured total antioxidant capacity (TAC), malondialdehyde (MDA) levels, as well as the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Our results demonstrated that NAC, PEMF, and NAC+PEMF treatments significantly increased the number of follicles. Moreover, we observed a more pronounced development of vascularization in the NAC, PEMF, and PEMF+NAC groups. The relative expression levels of Fgf-2, Vegf, Tnf-α, Il-1β, and Il-6 were significantly elevated in the NAC, PEMF, and NAC+PEMF groups. Notably, TAC levels decreased significantly in the NAC group compared to the control group. Additionally, the MDA level showed a significant decrease in the PEMF+NAC group when compared to the other groups. Overall, the combination of NAC and PEMF exhibited a synergistic effect in promoting angiogenesis and protecting against oxidative stress and inflammation during OT.
Collapse
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
| | | | - Meysam Nasiri
- School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
4
|
Sharma S, Shukla MK, Sharma KC, Tirath, Kumar L, Anal JMH, Upadhyay SK, Bhattacharyya S, Kumar D. Revisiting the therapeutic potential of gingerols against different pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:633-647. [PMID: 36585999 PMCID: PMC9803890 DOI: 10.1007/s00210-022-02372-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
The rhizomes of ginger have been in use in many forms of traditional and alternative medicines. Besides being employed as condiment and flavoring agent, it is used in the treatment of nausea, osteoarthritis, muscle pain, menstrual pain, chronic indigestion, Alzheimer's disease, and cancer. Ginger rhizome contains volatile oils, phenolic compounds and resins, and characterization studies showed that [6]-gingerol, [6]-shogaol, and [6]-paradol are reported to be the pharmacologically active components. Gingerol is a major chemical constituent found as volatile oil in the rhizomes of ginger. It has several medicinal benefits and used for the treatment of rheumatoid arthritis, nausea, cancer, and diabetes. Many studies have been carried out in various parts of the world to isolate and standardize gingerol for their use as a complementary medicine. The present review summarizes wide range of research studies on gingerol and its pharmacological roles in various metabolic diseases.
Collapse
Affiliation(s)
- Samridhi Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Krishan Chander Sharma
- Department of Entomology, School of Agriculture, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Tirath
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh-173229 India
| | - Jasha Momo H. Anal
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | | | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei Chongqing, 400715 People’s Republic of China
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| |
Collapse
|
5
|
Ding Y, Yi J, Wang J, Sun Z. Interleukin-1 receptor antagonist: a promising cytokine against human squamous cell carcinomas. Heliyon 2023; 9:e14960. [PMID: 37025835 PMCID: PMC10070157 DOI: 10.1016/j.heliyon.2023.e14960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation, especially chronic inflammation, is closely linked to tumor development. As essential chronic inflammatory cytokines, the interleukin family plays a key role in inflammatory infections and malignancies. The interleukin-1 (IL-1) receptor antagonist (IL1RA), as a naturally occurring receptor antagonist, is the first discovered and can compete with IL-1 in binding to the receptor. Recent studies have revealed the association of the polymorphisms in IL1RA with an increased risk of squamous cell carcinomas (SCCs), including squamous cell carcinoma of the head and neck (SCCHN), cervical squamous cell carcinoma, cutaneous squamous cell carcinoma (cSCC), esophageal squamous cell carcinoma (ESCC), and bronchus squamous cell carcinoma. Here, we reviewed the antitumor potential of IL1RA as an IL-1-targeted inhibitor.
Collapse
Affiliation(s)
- Yujie Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhida Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding author. Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Malkova AM, Gubal AR, Petrova AL, Voronov E, Apte RN, Semenov KN, Sharoyko VV. Pathogenetic role and clinical significance of interleukin-1β in cancer. Immunology 2023; 168:203-216. [PMID: 35462425 DOI: 10.1111/imm.13486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023] Open
Abstract
In recent years, pro-oncogenic mechanisms of the tumour microenvironment (ТМЕ) have been actively discussed. One of the main cytokines of the TМЕ is interleukin-1 beta (IL-1β), which exhibits proinflammatory properties. Some studies have shown an association between an increase in IL-1β levels and tumour progression. The purpose of this review is to analyse the pathogenic mechanisms induced by IL-1β in the TМЕ, as well as the diagnostic significance of the presence of IL-1β in patients with cancer and the efficacy of treatment with IL-1β inhibitors. According to the literature, IL-1β can induce an increase in tumour angiogenesis due to its effects on the differentiation of epithelial cells, pro-angiogenic molecule secretion and expression of adhesion molecules, thus increasing tumour growth and metastasis. IL-1β is also involved in the suppression of anti-tumour immune responses. The expression and secretion of IL-1β has been noted in various types of tumours. In some clinical studies, an elevated level of IL-1β was found to be associated with low efficacy of anti-cancer therapy and a poor prognosis. In most experimental and clinical studies, the use of IL-1β inhibitors contributed to a decrease in tumour mass and an increase in the response to anti-tumour drugs.
Collapse
Affiliation(s)
- Anna M Malkova
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Anna R Gubal
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Konstantin N Semenov
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia.,Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| |
Collapse
|
7
|
Gono R, Sugimoto K, Yang C, Murata Y, Nomura R, Shirazaki M, Harada K, Harada T, Miyashita Y, Higashisaka K, Katada R, Matsumoto H. Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats. J Cereb Blood Flow Metab 2023; 43:812-827. [PMID: 36651110 PMCID: PMC10108195 DOI: 10.1177/0271678x231151569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cerebral edema following cerebral infarction can be severe and directly affect mortality and mobility. Exercise therapy after cerebral infarction is an effective therapeutic approach; however, the molecular mechanism remains unclear. Myokines such as interleukin-1 receptor antagonist (IL-1RA) are released during skeletal muscle contraction with effects on other organs. We hypothesized that myokine release during exercise might improve brain edema and confirmed the hypothesis using transient middle cerebral artery occlusion (tMCAO) model rats. Rats subjected to tMCAO were divided according to the severity of illness and further assigned to exercise and non-exercise groups. Treadmill exercises were performed at a speed of 2-8 m/min for 10 min from 1-6 days post-reperfusion after tMCAO. Exercise significantly reduced edema and neurological deficits in severely ill rats, with a reduction in aquaporin-4 (AQP4) expression in the ischemic core and increased blood IL-1RA release from the stroke-unaffected hindlimb muscle after tMCAO. Administration of IL-1RA into the lateral ventricles significantly reduced edema and AQP4 expression in the ischemic core. In conclusion, treadmill exercise performed in the early phase of stroke onset alleviated the decrease in blood IL-1RA following ischemic stroke. IL-1RA administration decreased astrocytic AQP4 expression in the ischemic core, suppressing brain edema.
Collapse
Affiliation(s)
- Rina Gono
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kana Sugimoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chihpin Yang
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yukie Murata
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Reiko Nomura
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mai Shirazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kazuo Harada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teiji Harada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yohei Miyashita
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuma Higashisaka
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuichi Katada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Matsumoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
8
|
Zheng Y, Yang S, Si J, Zhao Y, Zhao M, Ji E. Shashen-Maidong Decoction inhibited cancer growth under intermittent hypoxia conditions by suppressing oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115654. [PMID: 36058477 DOI: 10.1016/j.jep.2022.115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung cancer is one of the most common malignant tumours and has become the leading cause of cancer-related deaths worldwide. Abnormal microcirculation during tumour growth leads to intermittent hypoxia (IH), which is responsible for promoting cancer cell proliferation and migration. Patients with advanced lung cancers show deficiency of both Qi and Yin Syndrome (DQYS) in TCM, and studies have confirmed that IH exposure is related to DQYS. Shashen-Maidong Decoction (SMD), has been widely applied clinically targeting DQYS and has a long history for treating lung cancer by nourishing the body's "zheng qi" and resisting "xie qi". However, whether SMD could be beneficial to lung cancer under IH conditions remains unclear. AIM OF THE STUDY This study aimed to clarify the effects and mechanism of SMD on non-small cell lung cancer (NSCLC) growth under IH conditions. MATERIALS AND METHODS C57 mice were injected subcutaneously into the right axilla with Lewis lung cancer (LLC) cells and exposed to IH conditions (21%-5% O2, 5 min/cycle, 8 h/day) for 21 days. SMDs were orally treated with different concentrations (2.6, 5.2 or 10.4 g/kg/day) 30 min before IH exposure. Tumour proliferation and migration were assessed by HE and IHC staining, and oxidative stress was assessed by DHE staining and MDA or SOD detection. IL-6, IL-1β and TNF-α levels were assessed by IHC staining, and the IL-6/JAK2/STAT3 signalling pathway was detected by western blotting. RESULTS Our results showed that SMD treatment inhibited tumour growth and liver metastasis in LLC-bearing mice exposed to IH, decreased Ki67, CD31, VEGF, and MMP-2, and increased E-cadherin expression in tumourt tissue. SMD reduced ROS production, increased SOD levels and SOD-2 expression, and decreased MDA levels and NOX-2 expression. SMD decreased IL-6, IL-1β and TNF-α levels, reduced IL-6 expression and inhibited JAK2 and STAT3 phosphorylation. Additionally, SMD treatment improved DQYS and liver and kidney function in LLC-bearing mice under IH conditions. CONCLUSION Our research suggests that SMD treatment can inhibit tumour growth in mice exposed to IH. The antitumour effect of SMD may be related to attenuated oxidative stress and inflammation through inactivation of the IL-6/JAK2/STAT3 signalling pathway under IH conditions.
Collapse
Affiliation(s)
- Yuying Zheng
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Shengchang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Jianchao Si
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Yang Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ming Zhao
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China
| | - Ensheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People's Republic of China; Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
9
|
Wang JD, Xu JQ, Zhang XN, Huang ZW, Liu LL, Zhang L, Lei XX, Xue MJ, Weng JY, Long ZJ. Mutant C/EBPα p30 alleviates immunosuppression of CD8 + T cells by inhibiting autophagy-associated secretion of IL-1β in AML. Cell Prolif 2022; 55:e13331. [PMID: 36124714 DOI: 10.1111/cpr.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Mutant C/EBPα p30 (mp30), the product of C/EBPα double mutations (DM), lacks transactivation domain 1 and has C-terminal loss-of-function mutation. Acute myeloid leukaemia (AML) patients harbouring C/EBPα DM could be classified as a distinct subgroup with favourable prognosis. However, the underlying mechanism remains elusive. MATERIALS AND METHODS Autophagy regulated by mp30 was detected by western blot and immunofluorescence. Immune infiltration analysis and GSEA were performed to investigate autophagic and inflammatory status of AML patients from the GSE14468 cohort. Flow cytometry was applied to analyse T cell activation. RESULTS Mp30 inhibited autophagy by suppressing nucleus translocation of NF-κB. Autophagy-associated secretion of IL-1β was decreased in mp30-overexpressed AML cells. Bioinformatic analysis revealed that inflammatory status was attenuated, while CD8+ T cell infiltration was upregulated in C/EBPα DM AML patients. Consistently, the proportion of CD8+ CD69+ T cells in peripheral blood mononuclear cells (PBMCs) was upregulated after co-culture with mp30 AML cell conditional culture medium. Knock-out of IL-1β in AML cells also enhanced CD8+ T cell activation. Accordingly, IL-1β expression was significantly reduced in the bone marrow (BM) cells of C/EBPα DM AML patients compared to the wildtype, while the CD8+ CD69+ T cell proportion was specifically elevated. CONCLUSIONS C/EBPα DM alleviates immunosuppression of CD8+ T cells by inhibiting the autophagy-associated secretion of IL-1β, which elucidated that repression of autophagy-related inflammatory response in AML patients might achieve a favourable clinical benefit.
Collapse
Affiliation(s)
- Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hematology, Sun Yat-sen University, Guangzhou, China.,Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jue-Qiong Xu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Xue-Ning Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Ze-Wei Huang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Ling-Ling Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Ling Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Man-Jie Xue
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Yu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Ennin IE, Frempong MA, Dodoo D, Yeboah FA, Maalman RSE. White Blood Cell Count and Serum Cytokine Profile in Tropical Hardwood Workers in Kumasi. Mediators Inflamm 2022; 2022:8245717. [PMID: 35795404 PMCID: PMC9252711 DOI: 10.1155/2022/8245717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Occupational exposure to wood dust particles has long been reported of its associated varying degrees of negative health effects due to different extractive chemicals present in the various timber species. However, tropical hardwood is also reported to have higher levels of extractive chemicals of antihistamine, antioxidant, and anti-inflammatory properties. In Ghana, woodworkers have for years been exposed to wood dust from mixed tropical hardwood species, with little or no protective equipment such as nose masks, yet with less significant respiratory conditions. This study seeks to investigate the serum cytokine profile in tropical hardwood workers in Kumasi to provide a better understanding of the immunoregulatory pattern activated in the woodworkers. Method The study was carried out among woodworkers, teachers, and security men located in Kumasi. A cross-sectional sampling of adult male workers was selected to participate in the study (86 woodworkers and 89 nonwoodworkers). Participants donated blood collected by venepuncture into EDTA tubes and spun to separate serum for cytokine assay. Cytokines including IFN-gamma, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, and IL-17 were assayed using the Human Premixed Multianalyte Kit (R&D System, Inc., Minneapolis, USA) following the manufacturer's procedure. The cytokine levels were quantified using the Luminex∗200 analyser. Results The mean concentration levels for the various cytokines were significantly different (p < 0.05) between woodworkers and nonwoodworkers except IL-2. There were significantly increased levels of Th1 and Th2 cytokines expressed in the woodworkers more than the nonwoodworkers. Conclusions The results from this study reveal that exposed woodworkers of mixed tropical hardwood species show a high level of Th1 and Th2 cytokines in their serum than nonwoodworkers.
Collapse
Affiliation(s)
- Isaac Ekow Ennin
- Department of Basic Medical Sciences, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | | | - Daniel Dodoo
- University of Ghana, Legon, Greater Accra, Ghana
| | - Francis A. Yeboah
- Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana
| | - Raymond Saa-Eru Maalman
- Department of Basic Medical Sciences, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| |
Collapse
|
11
|
Kashem MA, Lischynski J, Stojak B, Li L, Yuan XY, Liang B, Kimani J, Plummer FA, Luo M. High level of plasma TILRR protein is associated with faster HIV seroconversion. EBioMedicine 2022; 78:103955. [PMID: 35339895 PMCID: PMC8960884 DOI: 10.1016/j.ebiom.2022.103955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background TILRR (Toll-like Interleukin-1 Receptor Regulator) is a modulator of many genes in NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling. It promotes the production of inflammatory mediators and the migration of immune cells. Recently, we showed that TILRR protein circulates in human blood. Thus, it could influence systemic inflammation. Systemic and mucosal inflammations increase the susceptibility to HIV infection. In this study, we analyzed the TILRR protein levels of the archived plasma samples of women enrolled in the Pumwani cohort to determine whether the plasma TILRR protein levels before seroconversion are correlated with differential risk of HIV seroconversion. Methods TILRR protein of 941 archived HIV negative plasma samples from 390 women who were HIV negative at the cohort enrollment was quantified with an in-house developed multiplex bead array method. Proinflammatory cytokines/chemokines were measured using a 14-plex bead array method. Spearman rank correlation analysis was used to determine the correlation between plasma TILRR protein and proinflammatory cytokines/chemokines. Kaplan-Meier survival analysis was conducted to evaluate whether the median plasma TILRR protein levels correlate with increased risk of HIV seroconversion. Findings The level of plasma TILRR protein was positively correlated with plasma IL-1β (rho: 0.2593, p<0.0001), MCP-1 (rho: 0.2377, p<0.0001), and IL-17A (rho: 0.1225, p=0.0216). Women with median plasma TILRR protein levels ≥100 ng/ml seroconverted significantly faster than women with plasma TILRR protein levels <100 ng/ml (log-rank= 100.124, p<0.0001; relative risk= 3.72 and odds ratio= 15.29). Furthermore, the factors causing genital inflammation, such as STIs (sexually transmitted infections), vaginal discharge, and genital ulcers were not statistically significantly different among women with different median plasma TILRR protein levels. Interpretation The high plasma TILRR protein levels are highly correlated with several plasma proinflammatory cytokines/chemokines. High median plasma TILRR protein (≥100 ng/ml) strongly predicted an increased risk of HIV seroconversion. Reducing plasma TILRR protein levels may reduce the risk of HIV acquisition. Funding The study was funded by an operating grant from the Canadian Institutes of Health Research (CIHR), operating grant-PA: CHVI Vaccine Discovery and Social Research (http://www.cihr-irsc.gc.ca/e/193.html), and National Microbiology Laboratory of Canada.
Collapse
Affiliation(s)
- Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jennifer Lischynski
- The Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Brittany Stojak
- The Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Lin Li
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xin-Yong Yuan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Binhua Liang
- JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada; Institute for Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya; Center for STD/HIV Research & Training, University of Nairobi
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada; JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
13
|
Liu Y, Wang Z, Gan Y, Chen X, Zhang B, Chen Z, Liu P, Li B, Ru F, He Y. Curcumin attenuates prostatic hyperplasia caused by inflammation via up-regulation of bone morphogenetic protein and activin membrane-bound inhibitor. PHARMACEUTICAL BIOLOGY 2021; 59:1026-1035. [PMID: 34357837 PMCID: PMC8354175 DOI: 10.1080/13880209.2021.1953539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Inflammation and epithelial-mesenchymal transition (EMT) play important roles in the occurrence and development of benign prostatic hyperplasia (BPH); curcumin exerts anti-proliferative, anti-inflammatory, and anti-EMT effects. OBJECTIVE To explore the anti-inflammatory and anti-EMT mechanisms of curcumin in BPH. MATERIALS AND METHODS Ten-week-old male C57BL/6 mice were administered lipopolysaccharide (LPS, 100 µg/kg) in the prostate lobules to establish an inflammatory BPH model (LPS group), and curcumin (120 mg/kg) was administered into the abdominal cavity for 2 weeks (three times a week, curcumin-treated group). A group of healthy mice served as the control group. The expression of Toll-like receptor 4 (TLR4), bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), EMT markers, inflammatory cytokines, and transforming growth factor β1 (TGF-β1) was detected by PCR and western blotting. TGF-β1 (0.1 ng/mL) and LPS (100 ng/mL) were used to induce EMT in benign prostatic hyperplasia epithelial cells (BPH-1). RESULTS In vivo, curcumin reduced the size of the prostate, suppressed the expression of vimentin and TLR4, and increased the expression of E-cadherin and BAMBI in the LPS-induced BPH mouse model. Moreover, curcumin decreased the levels of IL-6 and TNF-α by 44.52 and 46.17%, respectively. In vitro, curcumin attenuated cell proliferation, suppressed the expression of vimentin and TLR4, and increased the expression of E-cadherin and BAMBI in BPH-1 cells. Furthermore, BAMBI knockdown reversed the expression of vimentin and E-cadherin induced by curcumin. DISCUSSION AND CONCLUSION This study demonstrated that curcumin alleviated hyperplasia, EMT, and inflammation in vivo. Furthermore, curcumin suppressed EMT by targeting BAMBI via the TLR4/BAMBI/TGF-β1 signalling pathway in vitro, demonstrating its potential utility in BPH treatment.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Urology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhaohui Wang
- Department of Urology, Hunan Children's Hospital, Changsha, Hunan, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peihuan Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Chu F, Li Y, Meng X, Li Y, Li T, Zhai M, Zheng H, Xin T, Su Z, Lin J, Zhang P, Ding X. Gut Microbial Dysbiosis and Changes in Fecal Metabolic Phenotype in Precancerous Lesions of Gastric Cancer Induced With N-Methyl-N'-Nitro-N-Nitrosoguanidine, Sodium Salicylate, Ranitidine, and Irregular Diet. Front Physiol 2021; 12:733979. [PMID: 34803728 PMCID: PMC8599278 DOI: 10.3389/fphys.2021.733979] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background and Aims: Precancerous lesions of gastric cancer (PLGC) are the most important pathological phase with increased risk of gastric cancer (GC) and encompass the key stage in which the occurrence of GC can be prevented. In this study, we found that the gut microbiome changed significantly during the process of malignant transformation from chronic gastritis to GC in N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) multiple factors-induced rat model. Accumulating evidence has shown that alterations in gut microbiota and metabolism are potentially linked to chronic inflammation and cancer of the gastrointestinal tract. However, the correlation of gut microbiota and metabolites, inflammatory factors, and the potential mechanism in the formation of PLGC have not yet been revealed. Methods: In this study, multiple factors including MNNG, sodium salicylate drinking, ranitidine feed, and irregular diet were used to establish a PLGC rat model. The pathological state of the gastric mucosa of rats was identified through HE staining and the main inflammatory cytokine levels in the serum were detected by the Luminex liquid suspension chip (Wayen Biotechnologies, Shanghai, China). The microbial composition and metabolites in the stool samples were tested by using 16S ribosomal RNA (rRNA) gene sequencing and non-targeted metabolomics. The correlation analysis of gut microbiota and inflammatory cytokines in the serum and gut microbiota and differential metabolites in feces was performed to clarify their biological function. Results: The results showed that compared to the control group, the gastric mucosa of the model rats had obvious morphological and pathological malignant changes and the serum levels of inflammatory cytokines including interleukin-1β (IL-1β), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and macrophage colony-stimulating factor (M-CSF) increased significantly, while the level of chemokine (C-X-C motif) ligand 1 (CXCL1) in serum reduced significantly. There were significant differences in the composition of the gut microbiota and fecal metabolic profiles between the model and control rats. Among them, Lactobacillus and Bifidobacterium increased significantly, while Turicibacter, Romboutsia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-005, and Ruminococcus_1 reduced significantly in the model rats compared to the control rats. The metabolites related to the lipid metabolism and peroxisome proliferator-activated receptor (PPAR) signaling pathway have also undergone significant changes. In addition, there was a significant correlation between the changes of the differential inflammatory cytokines in the serum, fecal metabolic phenotypes, and gut microbial dysbiosis in model rats. Conclusion: The activation of the inflammatory response, disturbance of the gut microbiota, and changes in the fecal metabolic phenotype could be closely related to the occurrence of PLGC. This study provides a new idea to reveal the mechanism of risk factors of chronic gastritis and GC from the perspective of inflammation-immune homeostasis, gut microbiota, and metabolic function balance.
Collapse
Affiliation(s)
- Fuhao Chu
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yicong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiangmei Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Li
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyin Zhai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianxi Xin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zeqi Su
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Research Center for Spleen and Stomach Diseases of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Zhong C, Wang R, Hua M, Zhang C, Han F, Xu M, Yang X, Li G, Hu X, Sun T, Ji C, Ma D. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front Immunol 2021; 12:661939. [PMID: 34211462 PMCID: PMC8239362 DOI: 10.3389/fimmu.2021.661939] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.
Collapse
Affiliation(s)
- Chaoqing Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Hematology, Shandong Yantai Mountain Hospital, Yantai, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
16
|
Bell M, Gottschalk S. Engineered Cytokine Signaling to Improve CAR T Cell Effector Function. Front Immunol 2021; 12:684642. [PMID: 34177932 PMCID: PMC8220823 DOI: 10.3389/fimmu.2021.684642] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Adoptive immunotherapy with T cells genetically modified to express chimeric antigen receptors (CARs) is a promising approach to improve outcomes for cancer patients. While CAR T cell therapy is effective for hematological malignancies, there is a need to improve the efficacy of this therapeutic approach for patients with solid tumors and brain tumors. At present, several approaches are being pursued to improve the antitumor activity of CAR T cells including i) targeting multiple antigens, ii) improving T cell expansion/persistence, iii) enhancing homing to tumor sites, and iv) rendering CAR T cells resistant to the immunosuppressive tumor microenvironment (TME). Augmenting signal 3 of T cell activation by transgenic expression of cytokines or engineered cytokine receptors has emerged as a promising strategy since it not only improves CAR T cell expansion/persistence but also their ability to function in the immunosuppressive TME. In this review, we will provide an overview of cytokine biology and highlight genetic approaches that are actively being pursued to augment cytokine signaling in CAR T cells.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States.,Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Hou G, Zhao X, Li L, Yang Q, Liu X, Huang C, Lu R, Chen R, Wang Y, Jiang B, Yu J. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res 2021; 49:2859-2877. [PMID: 33577677 PMCID: PMC7969013 DOI: 10.1093/nar/gkab065] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
N 6-Methyladenosine (m6A) is the most abundant modification within diverse RNAs including mRNAs and lncRNAs and is regulated by a reversible process with important biological functions. Human YTH domain family 2 (YTHDF2) selectively recognized m6A-RNAs to regulate degradation. However, the possible regulation of YTHDF2 by protein post-translational modification remains unknown. Here, we show that YTHDF2 is SUMOylated in vivo and in vitro at the major site of K571, which can be induced by hypoxia while reduced by oxidative stress and SUMOylation inhibitors. SUMOylation of YTHDF2 has little impact on its ubiquitination and localization, but significantly increases its binding affinity of m6A-modified mRNAs and subsequently results in deregulated gene expressions which accounts for cancer progression. Moreover, Disease-free survival analysis of patients with lung adenocarcinoma derived from TCGA dataset reveals that higher expression of YTHDF2 together with higher expression of SUMO1 predicts poor prognosis. Our works uncover a new regulatory mechanism for YTHDF2 recognition of m6A-RNAs and highlight the importance of YTHDF2 SUMOylation in post-transcriptional gene expression regulation and cancer progression.
Collapse
Affiliation(s)
- Guofang Hou
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Xian Zhao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lian Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianqian Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojia Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Caihu Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Runhui Lu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Chen
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Jiang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai 201999, China
| | - Jianxiu Yu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Pro-Inflammatory Cytokines in the Formation of the Pre-Metastatic Niche. Cancers (Basel) 2020; 12:cancers12123752. [PMID: 33322216 PMCID: PMC7764404 DOI: 10.3390/cancers12123752] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of the pre-metastatic niche, a favorable microenvironment in an organ distant from a primary tumor, is critical for tumor metastasis. We review the role of a key player, a class of proteins named pro-inflammatory cytokines secreted from both tumor cells and other cells in tissues, in helping to build the pre-metastatic niche. Various drugs have been developed to target pro-inflammatory cytokines, and their effects on tumor metastases are under investigation. Future clinical studies should focus on combining those drugs and applying them during cancer surgery, a critical moment for the establishment of the pre-metastatic niche. Abstract In the presence of a primary tumor, the pre-metastatic niche is established in secondary organs as a favorable microenvironment for subsequent tumor metastases. This process is orchestrated by bone marrow-derived cells, primary tumor-derived factors, and extracellular matrix. In this review, we summarize the role of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, CC-chemokine ligand 2 (CCL2), granulocyte-colony stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF), stromal cell-derived factor (SDF)-1, macrophage migration inhibitory factor (MIF), and Chemokine (C–X–C motif) ligand 1 (CXCL1) in the formation of the pre-metastatic niche according to the most recent studies. Pro-inflammatory cytokines released from tumor cells or stromal cells act in both autocrine and paracrine manners to induce phenotype changes in tumor cells, recruit bone marrow-derived cells, and form an inflammatory milieu, all of which prime a secondary organ’s microenvironment for metastatic cell colonization. Considering the active involvement of pro-inflammatory cytokines in niche formation, clinical strategies targeting them offer ways to inhibit the establishment of the pre-metastatic niche and therefore attenuate metastatic progression. We review clinical trials targeting different inflammatory cytokines in patients with metastatic cancers. Due to the pleiotropy and redundancy of pro-inflammatory cytokines, combined therapies should be designed in the future.
Collapse
|
19
|
Kunjiappan S, Pavadai P, Vellaichamy S, Ram Kumar Pandian S, Ravishankar V, Palanisamy P, Govindaraj S, Srinivasan G, Premanand A, Sankaranarayanan M, Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev Res 2020; 82:309-340. [DOI: 10.1002/ddr.21758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics Arulmigu Kalasalingam College of Pharmacy Krishnankoil Tamilnadu India
| | | | | | - Ponnusamy Palanisamy
- School of Mechanical Engineering Vellore Institute of Technology Vellore Tamilnadu India
| | - Saravanan Govindaraj
- Department of Pharmaceutical Chemistry MNR College of Pharmacy Sangareddy Telangana India
| | - Gowshiki Srinivasan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Adhvitha Premanand
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | | | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry Swamy Vivekananda College of Pharmacy Elayampalayam, Namakkal Tamilnadu India
| |
Collapse
|
20
|
Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim Biophys Acta Rev Cancer 2020; 1874:188427. [PMID: 32961257 DOI: 10.1016/j.bbcan.2020.188427] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Macrophages are innate phagocytic leukocytes that are highly present in solid tumors, where they are referred to as tumor-associated macrophages (TAMs). In solid tumors, the microenvironment is often immunosuppressive and hypoxic regions are prevalent. These hypoxic conditions impose tumor cells to reprogram their metabolism, shifting from oxidative phosphorylation to anaerobic glycolysis. This so-called glycolytic switch enables hypoxic tumor cells to survive, proliferate, and eventually to outcompete untransformed cells. The hypoxia-induced change in tumor cell metabolism leads to the production of oncometabolites, among which are the glycolytic end-metabolite lactate and the tricarboxylic acid cycle intermediate succinate. TAMs can react to these oncometabolites, resulting in an altered maturation and the adoption of pro-angiogenic features. These angiogenesis-promoting TAMs have been reported to cooperate with tumor cells in the formation of new vessels, and even have been considered an important cause of resistance against anti-angiogenic therapies. For a long time, the mechanisms by which lactate and succinate activated pro-angiogenic TAMs were not understood. Researchers now start to unravel and understand some of the underlying mechanisms. Here, the importance of microenvironmental cues in inducing different macrophage activation states is discussed, as well as the role of hypoxia in the recruitment and activation of pro-angiogenic macrophages. In addition, the latest findings on the oncometabolites lactate and succinate in the activation of angiogenesis supporting macrophages are reviewed. Finally, various oncometabolite-targeting therapeutic strategies are proposed that could improve the response to anti-angiogenic therapies. SIGNIFICANCE STATEMENT: Tumor-associated macrophages (TAMs) are known promotors of tumor neovascularization, and significantly contribute to the emergence of resistance to anti-angiogenic therapies. Recent evidence suggests that the angiogenesis promoting phenotype of TAMs can be activated by hypoxic tumor cell-derived oncometabolites, including lactate and succinate. Here, the latest findings into the lactate- and succinate-mediated mechanistic activation of pro-angiogenic TAMs are reviewed, and therapeutic strategies that interfere with this mechanism and may delay or even prevent acquired resistance to anti-angiogenic agents are discussed.
Collapse
|
21
|
Murata Y, Sugimoto K, Yang C, Harada K, Gono R, Harada T, Miyashita Y, Higashisaka K, Katada R, Tanaka J, Matsumoto H. Activated microglia-derived macrophage-like cells exacerbate brain edema after ischemic stroke correlate with astrocytic expression of aquaporin-4 and interleukin-1 alpha release. Neurochem Int 2020; 140:104848. [PMID: 32920036 DOI: 10.1016/j.neuint.2020.104848] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Brain edema following brain infarction affects mobility and mortality. The mechanisms underlying this process remain to be elucidated. Animal studies have shown that aquaporin-4 (AQP4) expression in astrocytes increases after stroke, and its deletion significantly reduces brain swelling. Recently, two kinds of cells, resident microglia-derived macrophage-like cells (MG-MΦ) and bone marrow-derived macrophages (BM-MΦ), have been reported to accumulate in the ischemic core and stimulate adjacent astrocytes. Therefore, we hypothesized that these cells play crucial roles in the expression of AQP4 and ultimately lead to exacerbated brain edema. To verify this hypothesis, we investigated the role of MG- or BM-MΦ in brain edema using a rat model of transient middle cerebral artery occlusion and rat astrocyte primary cultures. AQP4 expression significantly increased in the peri-infarct tissue at 3-7 days post-reperfusion (dpr) and in the core tissue at 5 and 7 dpr, which synchronized with the expression of Iba1, Il1a, Tnf, and C1qa mRNA. Interleukin (IL)-1α treatment or coculture with MG- and BM-MΦ increased AQP4 expression in astrocytes, while an IL-1 receptor type I antagonist reduced these effects. Furthermore, aggravated animals exhibited high expression of Aqp4 and Il1a mRNA in the ischemic core at 7 dpr, which led to the exacerbation of brain edema. MG-MΦ signature genes were highly expressed in the ischemic core in aggravated rats, while BM-MΦ signature genes were weakly expressed. These findings suggest that IL-1α produced by MG-MΦ induces astrocytic AQP4 expression in the peri-infarct and ischemic core tissues, thereby exacerbating brain edema. Therefore, the regulation of MG-MΦ may prevent the exacerbation of brain edema.
Collapse
Affiliation(s)
- Yukie Murata
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Kana Sugimoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Chihpin Yang
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Kazuo Harada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Rina Gono
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Teiji Harada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Yohei Miyashita
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Kazuma Higashisaka
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Ryuichi Katada
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan.
| | - Hiroshi Matsumoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Liu Y, Sun Y, Wu J, Xiong Z, Du S, Niu F, Jin T, Guo L. Polymorphisms in IL-1A are associated with endometrial cancer susceptibility among Chinese Han population: A case-control study. Int J Immunogenet 2020; 47:169-174. [PMID: 31981288 DOI: 10.1111/iji.12463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/16/2019] [Accepted: 11/13/2019] [Indexed: 01/12/2023]
Abstract
Endometrial cancer (EC) is one of the most common malignant tumours of the female genital tract, and it has become a serious malignant disease of the female genital tract in China. Existing researches have revealed the association between polymorphisms of IL-1A and several gynaecological diseases. In this research, we analysed the association between IL-1A gene polymorphisms and endometrial cancer susceptibility in Chinese female population. A total of 81 patients and 198 healthy people were selected. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression. Genetic models and analyses showed that IL-1A rs3783550 TT and rs3783546 CC increased the risk of endometrial cancer under the recessive model, respectively (rs3783550: OR = 2.80, 95%CI: 1.32-5.92, p = .008; rs3783546: OR = 2.79, 95%CI: 1.32-5.89, p = .008). In the recessive model, we also found that both IL-1A rs1609682 and IL-1A rs3783521 increased the risk of endometrial cancer, respectively (rs1609682: OR = 2.79, 95%CI: 1.32-5.89, p = .0081; rs3783521: OR = 2.80, 95%CI: 1.32-5.92, p = .008). Haplotype analysis was performed that did not reveal any significant results. In summary, IL-1A rs3783550, rs3783546, rs1609682 and rs3783521 polymorphisms may be associated with an increased risk of endometrial cancer in Chinese female populations.
Collapse
Affiliation(s)
- Ying Liu
- Department of Blood Transfusion, Baoji City Maternal and Child Health Hospital, Baoji, China
| | - Yao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Northwest University, Xi'an, China
| | - Jiamin Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Northwest University, Xi'an, China
| | - Zichao Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Northwest University, Xi'an, China
| | - Shuli Du
- Xi'an 21st Century Biological Science and Technology Co., Ltd, Xianyang, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Northwest University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Northwest University, Xi'an, China.,Xi'an 21st Century Biological Science and Technology Co., Ltd, Xianyang, China
| | - Ling Guo
- Department of Pathology, The First People Hospital of Xianyang, Xianyang, China
| |
Collapse
|
23
|
Li H, Duan N, Zhang Q, Shao Y. IL1A & IL1B genetic polymorphisms are risk factors for thyroid cancer in a Chinese Han population. Int Immunopharmacol 2019; 76:105869. [DOI: 10.1016/j.intimp.2019.105869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022]
|
24
|
Pak JH, Lee JY, Jeon BY, Dai F, Yoo WG, Hong SJ. Cytokine Production in Cholangiocarcinoma Cells in Response to Clonorchis sinensis Excretory-Secretory Products and Their Putative Protein Components. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:379-387. [PMID: 31533404 PMCID: PMC6753296 DOI: 10.3347/kjp.2019.57.4.379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 01/23/2023]
Abstract
Clonorchis sinensis is a carcinogenic human liver fluke that promotes hepatic inflammatory environments via direct contact or through their excretory-secretory products (ESPs), subsequently leading to cholangitis, periductal fibrosis, liver cirrhosis, and even cholangiocarcinoma (CCA). This study was conducted to examine the host inflammatory responses to C. sinensis ESPs and their putative protein components selected from C. sinensis expressed sequenced tag (EST) pool databases, including TGF-β receptor interacting protein 1(CsTRIP1), legumain (CsLeg), and growth factor binding protein 2 (CsGrb2). Treatment of CCA cells (HuCCT1) with the ESPs or bacterial recombinant C. sinensis proteins differentially promoted the secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) as well as anti-inflammatory cytokines (IL-10, TGF-β1, and TGF-β2) in a time-dependent manner. In particular, recombinant C. sinensis protein treatment resulted in increase (at maximum) of ~7-fold in TGF-β1, ~30-fold in TGF-β2, and ~3-fold in TNF-α compared with the increase produced by ESPs, indicating that CsTrip1, CsLeg, and CsGrb2 function as strong inducers for secretion of these cytokines in host cells. These results suggest that C. sinensis ESPs contribute to the immunopathological response in host cells, leading to clonorchiasis-associated hepatobiliary abnormalities of greater severity.
Collapse
Affiliation(s)
- Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Bo Young Jeon
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea.,Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P.R. China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06987, Korea
| |
Collapse
|
25
|
Wang J, Li D, Cang H, Guo B. Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment. Cancer Med 2019; 8:4709-4721. [PMID: 31222971 PMCID: PMC6712467 DOI: 10.1002/cam4.2327] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment is a complex system that contains multiple cells and cytokines. Among the multiple immune cells, macrophage is particularly abundant and plays an important role throughout the tumor progression process, namely, tumor‐associated macrophage (TAM) in this special tumor microenvironment. Many kinds of cytokines from TAMs and other immune cells in tumor niche are involved in the linkage of inflammation, immunity and tumorigenesis. Inflammatory responses induced by TAMs are crucial to tumor development of different stages. This review highlights the critical role of TAMs in the linkage of inflammation, immunity, and cancer. It outlines the molecules of inflammatory cytokines, chemokines, and growth factors mainly from TAMs in tumor microenvironment and their functions in tumor development during the major issues of angiogenesis, chronic inflammation, and immune suppression. Additionally, the signaling pathways involved in tumor progression and the crosstalk between them are also summarized.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Danyang Li
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Huaixing Cang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Thymoquinone Enhances the Effect of Gamma Knife in B16-F10 Melanoma Through Inhibition of Phosphorylated STAT3. World Neurosurg 2019; 128:e570-e581. [PMID: 31054338 DOI: 10.1016/j.wneu.2019.04.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Patients with brain metastasis from melanoma have a dismal prognosis with poor survival time. Gamma Knife (GK) is an effective treatment to control brain metastasis from melanoma. Thymoquinone (TQ) has emerged as a potential therapeutic option due to its antiproliferative effects on various cancers. The purpose of the study was to assess the effect of GK on B16-F10 melanoma cells in vitro and intracerebral melanoma in vivo, and its synergistic effect in combination with TQ. METHODS The effects of GK and combination treatment of GK and TQ were studied on B16-F10 melanoma cells by evaluating cytotoxicity with an adenosine triphosphate assay, apoptosis by acridine orange staining, and genotoxicity by comet assay. Western blot analysis was performed to investigate the expression of STAT3, p-STAT3 (Tyr705), JAK2, p-JAK2, caspase-3, Bax, Bcl-2, survivin, and β-actin. Expression of inflammatory cytokines was assessed by enzyme-linked immunosorbent assay. GK alone and in combination with TQ was assessed in an established intracerebral melanoma tumor in mice. RESULTS The effects of GK on cytotoxicity, genotoxicity, and apoptosis were enhanced by TQ in B16-F10 melanoma cells. GK induced apoptosis through inhibition of p-STAT3 expression, which in turn regulated pro- and antiapoptotic proteins such as caspase-3, Bax, Bcl-2, and survivin. Adding TQ to GK irradiation further enhanced this apoptotic effect of GK irradiation. GK was shown to reduce the levels of tumor-related inflammatory cytokines in B16-F10 melanoma cells. This effect was more pronounced when TQ was added to GK irradiation. GK with 15 Gy increased the survival of mice with intracerebral melanoma compared with untreated mice. However, despite the additive effect of TQ in addition to GK irradiation on B16-F10 melanoma cells in vitro, TQ did not add any significant survival benefit to GK treatment in mice with intracerebral melanoma. CONCLUSIONS Our findings suggest that TQ would be a potential therapeutic agent in addition to GK to enhance the antitumor effect of irradiation. Further studies are required to support our findings.
Collapse
|
27
|
Calcitriol Inhibits the Proliferation of Triple-Negative Breast Cancer Cells through a Mechanism Involving the Proinflammatory Cytokines IL-1 β and TNF- α. J Immunol Res 2019; 2019:6384278. [PMID: 31093512 PMCID: PMC6481021 DOI: 10.1155/2019/6384278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive tumors, with poor prognosis and high metastatic capacity. The aggressive behavior may involve inflammatory processes characterized by deregulation of molecules related to the immunological responses in which interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) are involved. It is known that calcitriol, the active vitamin D metabolite, modulates the synthesis of immunological mediators; however, its role in the regulation of IL-1β and TNF-α in TNBC has been scarcely studied. In the present study, we showed that TNBC cell lines SUM-229PE and HCC1806 expressed vitamin D, IL-1β, and TNF-α receptors. Moreover, calcitriol, its analogue EB1089, IL-1β, and TNF-α inhibited cell proliferation. In addition, we showed that synthesis of both IL-1β and TNF-α was stimulated by calcitriol and its analogue. Interestingly, the antiproliferative activity of calcitriol was significantly abrogated when the cells were treated with anti-IL-1β receptor 1 (IL-1R1) and anti-TNF-α receptor type 1 (TNFR1) antibodies. Furthermore, the combination of calcitriol with TNF-α resulted in a greater antiproliferative effect than either agent alone, in the two TNBC cell lines and an estrogen receptor-positive cell line. In summary, this study demonstrated that calcitriol exerted its antiproliferative effects in part by inducing the synthesis of IL-1β and TNF-α through IL-1R1 and TNFR1, respectively, in TNBC cells, highlighting immunomodulatory and antiproliferative functions of calcitriol in TNBC tumors.
Collapse
|
28
|
Ahechu P, Zozaya G, Martí P, Hernández-Lizoáin JL, Baixauli J, Unamuno X, Frühbeck G, Catalán V. NLRP3 Inflammasome: A Possible Link Between Obesity-Associated Low-Grade Chronic Inflammation and Colorectal Cancer Development. Front Immunol 2018; 9:2918. [PMID: 30619282 PMCID: PMC6297839 DOI: 10.3389/fimmu.2018.02918] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence reveals that adipose tissue-associated inflammation is a main mechanism whereby obesity promotes colorectal cancer risk and progression. Increased inflammasome activity in adipose tissue has been proposed as an important mediator of obesity-induced inflammation and insulin resistance development. Chronic inflammation in tumor microenvironments has a great impact on tumor development and immunity, representing a key factor in the response to therapy. In this context, the inflammasomes, main components of the innate immune system, play an important role in cancer development showing tumor promoting or tumor suppressive actions depending on the type of tumor, the specific inflammasome involved, and the downstream effector molecules. The inflammasomes are large multiprotein complexes with the capacity to regulate the activation of caspase-1. In turn, caspase-1 enhances the proteolytic cleavage and the secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18, leading to infiltration of more immune cells and resulting in the generation and maintenance of an inflammatory microenvironment surrounding cancer cells. The inflammasomes also regulate pyroptosis, a rapid and inflammation-associated form of cell death. Recent studies indicate that the inflammasomes can be activated by fatty acids and high glucose levels linking metabolic danger signals to the activation of inflammation and cancer development. These data suggest that activation of the inflammasomes may represent a crucial step in the obesity-associated cancer development. This review will also focus on the potential of inflammasome-activated pathways to develop new therapeutic strategies for the prevention and treatment of obesity-associated colorectal cancer development.
Collapse
Affiliation(s)
- Patricia Ahechu
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Zozaya
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Martí
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
29
|
Interleukin-1α as an intracellular alarmin in cancer biology. Semin Immunol 2018; 38:3-14. [PMID: 30554608 DOI: 10.1016/j.smim.2018.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
|
30
|
Noriega-Guerra H, Freitas VM. Extracellular Matrix Influencing HGF/c-MET Signaling Pathway: Impact on Cancer Progression. Int J Mol Sci 2018; 19:ijms19113300. [PMID: 30352967 PMCID: PMC6274944 DOI: 10.3390/ijms19113300] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix (ECM) is a crucial component of the tumor microenvironment involved in numerous cellular processes that contribute to cancer progression. It is acknowledged that tumor–stromal cell communication is driven by a complex and dynamic network of cytokines, growth factors and proteases. Thus, the ECM works as a reservoir for bioactive molecules that modulate tumor cell behavior. The hepatocyte growth factor (HGF) produced by tumor and stromal cells acts as a multifunctional cytokine and activates the c-MET receptor, which is expressed in different tumor cell types. The HGF/c-MET signaling pathway is associated with several cellular processes, such as proliferation, survival, motility, angiogenesis, invasion and metastasis. Moreover, c-MET activation can be promoted by several ECM components, including proteoglycans and glycoproteins that act as bridging molecules and/or signal co-receptors. In contrast, c-MET activation can be inhibited by proteoglycans, matricellular proteins and/or proteases that bind and sequester HGF away from the cell surface. Therefore, understanding the effects of ECM components on HGF and c-MET may provide opportunities for novel therapeutic strategies. Here, we give a short overview of how certain ECM components regulate the distribution and activation of HGF and c-MET.
Collapse
Affiliation(s)
- Heydi Noriega-Guerra
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| | - Vanessa Morais Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Gelfo V, Mazzeschi M, Grilli G, Lindzen M, Santi S, D'Uva G, Győrffy B, Ardizzoni A, Yarden Y, Lauriola M. A Novel Role for the Interleukin-1 Receptor Axis in Resistance to Anti-EGFR Therapy. Cancers (Basel) 2018; 10:E355. [PMID: 30261609 PMCID: PMC6210663 DOI: 10.3390/cancers10100355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022] Open
Abstract
Cetuximab (CTX) is a monoclonal antibody targeting the epidermal growth factor receptor (EGFR), commonly used to treat patients with metastatic colorectal cancer (mCRC). Unfortunately, objective remissions occur only in a minority of patients and are of short duration, with a population of cells surviving the treatment and eventually enabling CTX resistance. Our previous study on CRC xenopatients associated poor response to CTX with increased abundance of a set of pro-inflammatory cytokines, including the interleukins IL-1A, IL-1B and IL-8. Stemming from these observations, our current work aimed to assess the role of IL-1 pathway activity in CTX resistance. We employed a recombinant decoy TRAP IL-1, a soluble protein combining the human immunoglobulin Fc portion linked to the extracellular region of the IL-1-receptor (IL-1R1), able to sequester IL-1 directly from the medium. We generated stable clones expressing and secreting a functional TRAP IL-1 into the culture medium. Our results show that IL-1R1 inhibition leads to a decreased cell proliferation and a dampened MAPK and AKT axes. Moreover, CRC patients not responding to CTX blockage displayed higher levels of IL-1R1 than responsive subjects, and abundant IL-1R1 is predictive of survival in patient datasets specifically for the consensus molecular subtype 1 (CMS1). We conclude that IL-1R1 abundance may represent a therapeutic marker for patients who become refractory to monoclonal antibody therapy, while inhibition of IL-1R1 by TRAP IL-1 may offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Valerio Gelfo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy.
| | - Martina Mazzeschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy.
| | - Giada Grilli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy.
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Spartaco Santi
- Institute of Molecular Genetics, National Research Council of Italy, 40136 Bologna, Italy.
- IRCCS-Istitute Orthopaedic Rizzoli, 40136 Bologna, Italy.
| | - Gabriele D'Uva
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
- Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7⁻9, 1094 Budapest, Hungary.
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy.
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy.
| |
Collapse
|
32
|
Hashemi M, Tabasi F, Bahari G, Taheri M, Ansari H. An updated meta-analysis on the association between 4-bp insertion/deletion (rs3783553) polymorphism within the 3`UTR of IL1A and the risk of cancer. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Brown S, Boules M, Hamza N, Wang X, Whalen M. Synthesis of interleukin 1 beta and interleukin 6 in human lymphocytes is stimulated by tributyltin. Arch Toxicol 2018; 92:2573-2586. [PMID: 29951691 PMCID: PMC6082394 DOI: 10.1007/s00204-018-2248-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Tributyltin (TBT) is a widespread environmental contaminant that is present in human blood and other tissues. It has been shown to disrupt the immune function of human natural killer (NK) cells and to alter the secretion of a number of pro-inflammatory cytokines from immune cells. Secretion of both interleukin 1β (IL-1β) and interleukin 6 (IL-6) from human lymphocytes can be increased dependent upon the level of TBT exposure. This study shows that the TBT-induced increases in secretion of both cytokines are due to TBT-induced increases in the synthesis of these proteins and not simply because of the release of pre-existing cytokine. Furthermore, the data indicate that these TBT-induced increases in IL-1β and IL-6 synthesis require MAP kinase signaling pathways. Additionally, elevated synthesis of IL-1β and IL-6 seen at the highest exposures to TBT (200, 200, 50 nM) were accompanied by increases in the mRNA for these cytokines. TBT-induced increases in IL-1β and IL-6 mRNAs were also shown to be dependent on MAP kinase signaling. The study suggests that TBT has the capacity to increase immune cell production of these 2 important pro-inflammatory cytokines and that this increase is in part explained by increased mRNA for the cytokines.
Collapse
Affiliation(s)
- Shyretha Brown
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Mariam Boules
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Nafisa Hamza
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Margaret Whalen
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA.
| |
Collapse
|
34
|
Yang B, Xiao C. PM2.5 exposure significantly improves the exacerbation of A549 tumor-bearing CB17-SCID mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:169-175. [PMID: 29730225 DOI: 10.1016/j.etap.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Here we investigate the effects and potential mechanisms of PM2.5 on tumor development in a lung cancer mouse model. Tumor-bearing mice (n = 32) were established and randomized into two groups: the PM2.5 or NS exposure group. Compared with the NS exposure group, mice in the PM2.5 exposure group showed an increased number of tumor nodules, increased BAL fluid protein levels, and elevated expressions of MMP1, IL1β and VEGF. Measurement of angiogenesis from blood serum using an angiogenesis antibody array revealed increased levels of 12 angiogenesis factors in mice after PM2.5 exposure. We also isolated bacteria from the upper respiratory tract of the mice and found that the microecosystem of the upper respiratory tract of tumor-bearing mice was perturbed by PM2.5 exposure. Our findings further establish a key link between PM2.5 and lung cancer and further elucidation of these mechanisms may reveal potential treatment strategies for lung cancer.
Collapse
Affiliation(s)
- Biao Yang
- Key Lab. of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, People's Republic of China
| | - Chunling Xiao
- Key Lab. of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, People's Republic of China.
| |
Collapse
|
35
|
Gunawardene A, Dennett E, Larsen P. Prognostic value of multiple cytokine analysis in colorectal cancer: a systematic review. J Gastrointest Oncol 2018; 10:134-143. [PMID: 30788169 DOI: 10.21037/jgo.2018.07.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The link between inflammation and outcome has been established in colorectal cancer through experimental evidence demonstrating an influential role of pro-inflammatory cytokines on tumour growth and progression. Furthermore, prognostic scores based on overall markers of systemic inflammation such as C-reactive protein and neutrophil count have been validated. Over recent years, an increasing number of inflammatory cytokines have been identified as prognostic predictors in colorectal cancer and the aim of this review was to evaluate the literature on the prognostic value of multiple cytokine measurement. The English language literature published since the year 2000 was searched using terms including, 'colorectal cancer', 'cytokines' and 'prognosis' through Medline, Embase and Scopus databases. Reports were screened by two independent reviewers and studies evaluating fewer than three cytokines were excluded. Quality assessments were performed in six domains before data extraction was undertaken in duplicate. Seven studies were found to evaluate multiple cytokines after 570 records were screened. The quality of these studies ranged from poor to moderate and were heterogeneous in terms of the patient population and the number and selection of cytokines tested. Four studies combined multiple cytokine levels into a single score and found them to be predictive of prognosis whereas the association between individual cytokines and outcome was not demonstrated consistently. The combination of multiple cytokine markers into a single prognostic score shows promise in colorectal cancer and further research is required to establish and validate such a score.
Collapse
Affiliation(s)
- Ashok Gunawardene
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Elizabeth Dennett
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Capital & Coast District Health Board, Wellington, New Zealand
| | - Peter Larsen
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
36
|
Interleukin-1 receptor antagonist inhibits angiogenesis in gastric cancer. Int J Clin Oncol 2018; 23:659-670. [PMID: 29344744 PMCID: PMC6097079 DOI: 10.1007/s10147-018-1242-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/06/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Interleukin-1 alpha (IL-1α) plays an important role in tumorigenesis and angiogenesis of gastric cancer. The interleukin-1 receptor antagonist (IL-1RA) inhibits IL-1 selectively and specifically through IL-1R type I (IL-1RI). However, the underlying mechanism by which IL-1RA modulates the interactions of tumor cells and their micro-environment is poorly understood. We have evaluated the role of IL-1RA in the metastatic process as well as the mutual or reciprocal actions between gastric cancer cells and stromal cells. MATERIALS AND METHODS The expressions of IL-1α, vascular endothelial growth factor (VEGF), and IL-1RI mRNA were determined by reverse transcriptase-PCR. The regulatory effect of IL-1RA on the secretion of VEGF in human gastric cancer cells and human umbilical vein endothelial cells (HUVECs) was detected by enzyme-linked immunosorbent assay. The effect of IL-1RA on metastatic potential was evaluated using proliferation, invasion, and angiogenesis assays, respectively, including in vitro co-culture system models consisting of tumor cells and stromal cells that were used to detect invasion and angiogenesis. RESULTS Interleukin-1α mRNA was detected in the higher liver metastatic gastric cell line MKN45. IL-1α protein was expressed in MKN45 cells and in HUVECs. VEGF mRNA and protein were detected in the three gastric cancer cell lines (MKN4, NUGC-4, and AGS). Levels of VEGF secreted by gastric cancer cells and HUVECs appeared to be reduced through the action of IL-1RA via IL-1RI in a dose-dependent manner (P < 0.01). IL-1RA significantly inhibited the proliferation and migration of HUVECs (P < 0.01) and tube formation by HUVECs (P < 0.01), both in a dose-dependent manner. Compared with HUVECs grown without cancer cells (control) or with NUGC-4 cells, tube formation by HUVECs was significantly enhanced by co-culture with MKN45 cells (P < 0.01). The enhanced tube formation in the presence of MKN45 cells was inhibited by the addition of IL-1RA (P < 0.01). CONCLUSIONS The IL-1RA downregulated the metastatic potential of gastric cancer through blockage of the IL-1α/VEGF signaling pathways. IL-1RA has the potential to play a role in the treatment of gastric cancer.
Collapse
|
37
|
Gupta AK, Ghosh K, Palit S, Barua J, Das PK, Ukil A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2. FASEB J 2017; 31:5087-5101. [PMID: 28765172 DOI: 10.1096/fj.201700407r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
In visceral leishmaniasis, we found that the antileishmanial drug Amp B produces a higher level of IL-1β over the infected control. Moreover, administering anti-IL-1β antibody to infected Amp B-treated mice showed significantly less parasite clearance. Investigation revealed that Leishmania inhibits stimuli-induced expression of a multiprotein signaling platform, NLRP3 inflammasome, which in turn inhibits caspase-1 activation mediated maturation of IL-1β from its pro form. Attenuation of NLRP3 and pro-IL-1β in infection was found to result from decreased NF-κB activity. Transfecting infected cells with constitutively active NF-κB plasmid increased NLRP3 and pro-IL-1β expression but did not increase mature IL-1β, suggesting that IL-1β maturation requires a second signal, which was found to be reactive oxygen species (ROS). Decreased NF-κB was attributed to increased expression of A20, a negative regulator of NF-κB signaling. Silencing A20 in infected cells restored NLRP3 and pro-IL-1β expression, but also increased matured IL-1β, implying an NF-κB-independent A20-modulated IL-1β maturation. Macrophage ROS is primarily regulated by mitochondrial uncoupling protein 2 (UCP2), and UCP2-silenced infected cells showed an increased IL-1β level. Short hairpin RNA-mediated knockdown of A20 and UCP2 in infected mice independently documented decreased liver and spleen parasite burden and increased IL-1β production. These results suggest that Leishmania exploits A20 and UCP2 to impair inflammasome activation for disease propagation.-Gupta, A. K., Ghosh, K., Palit, S., Barua, J., Das, P. K., Ukil, A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Kuntal Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Shreyasi Palit
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Jayita Barua
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; and
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India
| |
Collapse
|
38
|
Hovhannisyan L, Stepanyan A, Arakelyan A. Genetic variability of interleukin-1 beta as prospective factor from developing post-traumatic stress disorder. Immunogenetics 2017; 69:703-708. [PMID: 28681202 DOI: 10.1007/s00251-017-1016-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/14/2017] [Indexed: 02/03/2023]
Abstract
Individual susceptibility to post-traumatic stress disorder (PTSD) is conditioned by genetic factors, and association between this disorder and polymorphisms of several genes have been shown. The aim of this study was to explore a potential association between single nucleotide polymorphisms (SNP) of the IL-1β gene (IL1B) and PTSD. In genomic DNA samples of PTSD-affected and healthy subjects, the rs16944, rs1143634, rs2853550, rs1143643, and rs1143633 SNPs of IL1B gene have been genotyped. The results obtained demonstrated that IL1B rs1143633*C and rs16944*A minor allele frequency were significantly lower in patients than in controls. Our results confirm that IL1B rs1143633 and rs16944 SNPs are negatively associated with PTSD which allows us to consider them as protective variants for PTSD. IL1B rs1143633*C and rs16944*A minor allele frequencies and carriage rates are significantly lower in the PTSD patients as compared to the controls. These results may provide a base to conclude that above-mentioned alleles can be protective against PTSD, and IL1B gene can be involved in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Hasratyan 7 street, 0014, Yerevan, Armenia.
| | - Ani Stepanyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Hasratyan 7 street, 0014, Yerevan, Armenia
| | - Arsen Arakelyan
- Institute of Molecular Biology, Armenian National Academy of Sciences, Hasratyan 7 street, 0014, Yerevan, Armenia
| |
Collapse
|
39
|
Li X, Guo X, Liu H, Gao G, Xu G, Fei X, Fang X, Qiao W, Deng GM. Skin inflammation induced by lupus serum was inhibited in IL-1R deficient mice. Clin Immunol 2017; 180:63-68. [DOI: 10.1016/j.clim.2017.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/22/2017] [Indexed: 12/16/2022]
|
40
|
Wang S, Li Z, Hu G. Prognostic role of intratumoral IL-17A expression by immunohistochemistry in solid tumors: a meta-analysis. Oncotarget 2017; 8:66382-66391. [PMID: 29029520 PMCID: PMC5630420 DOI: 10.18632/oncotarget.18807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/20/2017] [Indexed: 01/11/2023] Open
Abstract
IL-17A is an important proinflammatory cytokine which is frequently elevated in tumor microenvironment. However, the role of intratumoral IL-17A in solid tumors remains controversial. Herein, we conducted a meta-analysis to assess the prognostic impact of intratumoral IL-17A in patients with solid tumor. PubMed and EBSCO were searched to identify the studies evaluating the associations between intratumoral IL-17A measured by immunohistochemistry (IHC) and overall survival (OS) and disease-free survival (DFS) in solid tumors. A total of 2972 patients with solid tumor from 21 published studies were incorporated into this meta-analysis. We found that high level of intratumoral IL-17A was significantly associated with worse 3-year, 5-year OS and 1-year, 3-year DFS, but not with 1-year OS or 5-year DFS in solid tumors. In addition, in stratified analyses by cancer types, IL-17A overexpression was significantly associated with worse OS in hepatic carcinoma, but with improved OS in esophageal squamous cell carcinoma (ESCC). Furthermore, high IL-17A expression positively correlated with advanced TNM stage. In conclusion, High expression of intratumoral IL-17A leads to an unfavorable clinical outcome in majority of solid tumors, implicating IL-17A is a valuable biomarker for prognostic prediction of human solid malignances and targeting it may have a potential for effective treatment.
Collapse
Affiliation(s)
- Shimin Wang
- Department of Nephrology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, 312000, Zhejiang, China
| | - Zhi'an Li
- Department of Surgical Oncology, Shaoxing Second Hospital, 312000, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery, Breast and Thyroid Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, 312000, Zhejiang, China
| |
Collapse
|
41
|
Yigit M, Değirmencioğlu S, Ugurlu E, Yaren A. Effect of serum interleukin-1 receptor antagonist level on survival of patients with non-small cell lung cancer. Mol Clin Oncol 2017; 6:708-712. [PMID: 28515924 DOI: 10.3892/mco.2017.1195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Due to poor prognosis in advanced non-small cell lung cancer (NSCLC), new effective markers are required in the monitoring of the disease. The present study aimed to investigate the association between the serum IL-1 receptor antagonist (IL-1Ra) level, overall survival (OS), and treatment response in NSCLC, and to evaluate the usefulness of the serum IL-1Ra level as a prognostic marker for NSCLC. Eighty patients (72 men and 8 women) and 40 healthy volunteers (13 men and 27 women) were included in the present study. The median progression-free survival was 16 weeks for patients with high serum IL-1Ra levels, and 35 weeks for patients with low serum IL-1Ra levels (P=0.027). The median OS was 38 weeks in patients with a high serum IL-1Ra level, and 62 weeks in patients with a low serum IL-1Ra level (P=0.065). The results of the present study have demonstrated that there was a significant correlation between IL-1Ra levels and NSCLC progression and survival, although the correlation between IL-1Ra levels and the response to treatment was not statistically significant. Therefore, the pre-treatment IL-1Ra level has been identified as a putative prognostic factor for NSCLC.
Collapse
Affiliation(s)
- Murat Yigit
- Department of Internal Medicine, Pamukkale University, Affiliated to Pamukkale University Hospital, Bagbasi, Denizli 20070, Turkey
| | - Serkan Değirmencioğlu
- Fahri Goksin Oncology Center, Pamukkale University, Affiliated to Pamukkale University Hospital, Bagbasi, Denizli 20070, Turkey
| | - Erhan Ugurlu
- Department of Thoracic Oncology, Pamukkale University, Affiliated to Pamukkale University Hospital, Bagbasi, Denizli 20070, Turkey
| | - Arzu Yaren
- Fahri Goksin Oncology Center, Pamukkale University, Affiliated to Pamukkale University Hospital, Bagbasi, Denizli 20070, Turkey
| |
Collapse
|
42
|
Chung STM, Geerts D, Roseman K, Renaud A, Connelly L. Osteoprotegerin mediates tumor-promoting effects of Interleukin-1beta in breast cancer cells. Mol Cancer 2017; 16:27. [PMID: 28143606 PMCID: PMC5286681 DOI: 10.1186/s12943-017-0606-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 01/25/2017] [Indexed: 12/26/2022] Open
Abstract
Background It is widely recognized that inflammation promotes breast cancer invasion and metastasis. Given the complex nature of the breast tumor inflammatory microenvironment, much remains to be understood of the molecular mechanisms that govern these effects. We have previously shown that osteoprotegerin knockdown in breast cancer cells resulted in reduced invasion and metastasis. Here we present novel insight into the role of osteoprotegerin in inflammation-driven tumor progression in breast cancer by investigating the link between osteoprotegerin, macrophages and the potent pro-inflammatory cytokine Interleukin-1beta. Methods We used human breast cancer cell lines to investigate the effects of Interleukin-1beta treatment on osteoprotegerin secretion as measured by ELISA. We analyzed public datasets containing human breast cancer genome-wide mRNA expression data to reveal a significant and positive correlation between osteoprotegerin mRNA expression and the mRNA expression of Interleukin-1beta and of monocyte chemoattractant protein CC-chemokine ligand 2. Osteoprotegerin, Interleukin-1beta and CC-chemokine ligand 2 mRNA levels were also examined by qPCR on cDNA from normal and cancerous human breast tissue. We determined the effect of Interleukin-1beta–producing macrophages on osteoprotegerin expression by co-culturing breast cancer cells and differentiated THP-1 macrophages. Immunohistochemistry was performed on human breast tumor tissue microarrays to assess macrophage infiltration and osteoprotegerin expression. To demonstrate that osteoprotegerin mediated functional effects of Interleukin-1beta we performed cell invasion studies with control and OPG siRNA knockdown on Interleukin-1beta-treated breast cancer cells. Results We report that Interleukin-1beta induces osteoprotegerin secretion, independent of breast cancer subtype and basal osteoprotegerin levels. Co-culture of breast cancer cells with Interleukin-1beta-secreting macrophages resulted in a similar increase in osteoprotegerin secretion in breast cancer cells as Interleukin-1beta treatment. Macrophage infiltration correlates with osteoprotegerin secretion in human breast tumor tissue samples. We show that osteoprotegerin secretion is regulated by Interleukin-1beta in a p38- and p42/44-dependent manner. We also demonstrate that osteoprotegerin knockdown represses Interleukin-1beta expression, Interleukin-1beta-mediated breast cancer cell invasion and MMP3 expression. Conclusions These data indicate a novel role for osteoprotegerin as a mediator of inflammation- promoted breast cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0606-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Tsang Mui Chung
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA
| | - Dirk Geerts
- Department of Pediatric Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kim Roseman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA
| | - Ashleigh Renaud
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA
| | - Linda Connelly
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, Hawaii, USA.
| |
Collapse
|
43
|
Kim TS, Pak JH, Kim JB, Bahk YY. Clonorchis sinensis, an oriental liver fluke, as a human biological agent of cholangiocarcinoma: a brief review. BMB Rep 2017; 49:590-597. [PMID: 27418285 PMCID: PMC5346318 DOI: 10.5483/bmbrep.2016.49.11.109] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 01/11/2023] Open
Abstract
Parasitic diseases remain an unarguable public health problem worldwide. Liver fluke Clonorchis sinensis is a high risk pathogenic parasitic helminth which is endemic predominantly in Asian countries, including Korea, China, Taiwan, Vietnam, and the far eastern parts of Russia, and is still actively transmitted. According to the earlier 8th National Survey on the Prevalence of Intestinal Parasitic Infections in 2012, C. sinensis was revealed as the parasite with highest prevalence of 1.86% in general population among all parasite species surveyed in Korea. This fluke is now classified under one of the definite Group 1 human biological agents (carcinogens) by International Agency of Research on Cancer (IARC) along with two other parasites, Opisthorchis viverrini and Schistosoma haematobium. C. sinensis infestation is mainly linked to liver and biliary disorders, especially cholangiocarcinoma (CCA). For the purposes of this mini-review, we will only focus on C. sinensis and review pathogenesis and carcinogenesis of clonorchiasis, disease condition by C. sinensis infestation, and association between C. sinensis infestation and CCA. In this presentation, we briefly consider the current scientific status for progression of CCA by heavy C. sinensis infestation from the food-borne trematode and development of CCA.
Collapse
Affiliation(s)
- Tong-Soo Kim
- Department of Parasitology and Tropical Medicine, School of Medicine, Inha University, Incheon 22212, Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, College of Medicine, University of Ulsan, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Jong-Bo Kim
- Department of Biotechnology, Konkuk University, Chungju 27478, Korea
| | - Young Yil Bahk
- Department of Biotechnology, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
44
|
Kim BA, Jee HG, Yi JW, Kim SJ, Chai YJ, Choi JY, Lee KE. Expression Profiling of a Human Thyroid Cell Line Stably Expressing the BRAFV600E Mutation. Cancer Genomics Proteomics 2017; 14:53-67. [PMID: 28031237 DOI: 10.21873/cgp.20018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM The BRAFV600E mutation acts as an initiator of cancer development in papillary thyroid carcinoma (PTC). Gene expression changes caused by the BRAFV600E mutation may have an important role in thyroid cancer development. MATERIALS AND METHODS To study genomic alterations caused by the BRAFV600E mutation, we made human thyroid cell lines that harbor the wild-type BRAF gene (Nthy/WT) and the V600E mutant-type BRAF gene (Nthy/V600E). RESULTS Flow cytometry and western blotting showed stable transfection of the BRAF gene. In functional experiments, Nthy/V600E showed increased anchorage-independent growth and invasion through Matrigel, compared to Nthy/WT. Microarray analysis revealed that 2,441 genes were up-regulated in Nthy/V600E compared to Nthy/WT. Gene ontology analysis showed that the up-regulated genes were associated with cell adhesion, migration, and the ERK and MAPK cascade, and pathway analysis showed enrichment in cancer-related pathways. CONCLUSION Our Nthy/WT and Nthy/V600E cell line pair could be a suitable model to study the molecular characteristics of BRAFV600E PTC.
Collapse
Affiliation(s)
- Byoung-Ae Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon-Gun Jee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Wook Yi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Chai
- Department of Surgery, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - June Young Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyu Eun Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea .,Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
45
|
Bouchard G, Therriault H, Bujold R, Saucier C, Paquette B. Induction of interleukin-1β by mouse mammary tumor irradiation promotes triple negative breast cancer cells invasion and metastasis development. Int J Radiat Biol 2017; 93:507-516. [PMID: 27935337 DOI: 10.1080/09553002.2017.1270471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiotherapy increases the level of inflammatory cytokines, some of which are known to promote metastasis. In a mouse model of triple negative breast cancer (TNBC), we determined whether irradiation of the mammary tumor increases the level of key cytokines and favors the development of lung metastases. MATERIALS AND METHODS D2A1 TNBC cells were implanted in the mammary glands of a Balb/c mouse and then 7 days old tumors were irradiated (4 × 6 Gy). The cytokines IL-1β, IL-4, IL-6, IL-10, IL-17 and MIP-2 were quantified in plasma before, midway and after irradiation. The effect of tumor irradiation on the invasion of cancer cells, the number of circulating tumor cells (CTC) and lung metastases were also measured. RESULTS TNBC tumor irradiation significantly increased the plasma level of IL-1β, which was associated with a greater number of CTC (3.5-fold) and lung metastases (2.3-fold), compared to sham-irradiated animals. Enhancement of D2A1 cell invasion in mammary gland was associated with an increase of the matrix metalloproteinases-2 and -9 activity (MMP-2, -9). The ability of IL-1β to stimulate the invasiveness of irradiated D2A1 cells was confirmed by in vitro invasion chamber assays. CONCLUSION Irradiation targeting a D2A1 tumor and its microenvironment increased the level of the inflammatory cytokine IL-1β and was associated with the promotion of cancer cell invasion and lung metastasis development.
Collapse
Affiliation(s)
- Gina Bouchard
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Hélène Therriault
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Rachel Bujold
- b Service of Radiation Oncology , Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Caroline Saucier
- c Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Benoit Paquette
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| |
Collapse
|
46
|
Guo R, Qin Y, Shi P, Xie J, Chou M, Chen Y. IL-1β promotes proliferation and migration of gallbladder cancer cells via Twist activation. Oncol Lett 2016; 12:4749-4755. [PMID: 28105184 DOI: 10.3892/ol.2016.5254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/20/2016] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence has revealed a correlation between chronic inflammation and gallbladder cancer (GBC). However, the underlying molecular mechanisms remain to be elucidated. In the present study, secretion of interleukin (IL)-1β was examined in tissues of GBC, chronic cholecystitis and normal gallbladder, as well as in the supernatant of GBC-SD, SGC996 and HIBEpiC cells. The effect of IL-1β on the proliferation and migration of GBC cell lines was also evaluated. In addition, the role of Twist in IL-1β-induced proliferation of GBC cells was also studied. It was observed that the level of IL-1β protein in normal gallbladder tissue was low, while it was significantly increased in GBC and chronic cholecystitis tissues. The level of IL-1β protein and mRNA in GBC-SD and SGC996 cells was markedly higher than those in HIBEpiC cells. Exogenous IL-1β promoted the proliferation of GBC-SD and SGC996 cells in vitro and in vivo, and also promoted migration in vitro. The level of Twist protein was significantly increased following treatment with exogenous IL-1β. In addition, gene silencing of Twist blocked IL-1β-induced proliferation and migration of GBC-SD and SGC996 cells. Taken together, these results indicate that IL-1β promotes proliferation and migration of GBC cells via Twist activation.
Collapse
Affiliation(s)
- Runsheng Guo
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Yiyu Qin
- Clinical College, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224005, P.R. China
| | - Peidong Shi
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| | - Jinbi Xie
- Department of Gastroenterology, Jiading Central Hospital, Shanghai 201899, P.R. China
| | - Ming Chou
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 201705, P.R. China
| | - Yueyu Chen
- Department of General Surgery, Jiading Central Hospital, Shanghai 201800, P.R. China
| |
Collapse
|
47
|
Liu B, Yan S, Jia Y, Ma J, Wu S, Xu Y, Shang M, Mao A. TLR2 promotes human intrahepatic cholangiocarcinoma cell migration and invasion by modulating NF-κB pathway-mediated inflammatory responses. FEBS J 2016; 283:3839-3850. [PMID: 27616304 DOI: 10.1111/febs.13894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Bingyan Liu
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| | - Shuo Yan
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| | - Yiping Jia
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| | - Jun Ma
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| | - Shaoqiu Wu
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| | - Yuyao Xu
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| | - Mingyi Shang
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| | - Aiwu Mao
- Department of Interventional Radiology; Tongren Hospital; Shanghai Jiaotong University School of Medicine; China
| |
Collapse
|
48
|
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QXA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Med Res Rev 2016; 37:180-216. [PMID: 27604144 DOI: 10.1002/med.21406] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a major role in the induction and progression of several skin diseases. Overexpression of the major epidermal proinflammatory cytokines interleukin (IL) 1 alpha (IL-1α) and 1 beta (IL-1β) is positively correlated with symptom exacerbation and disease progression in psoriasis, atopic dermatitis, neutrophilic dermatoses, skin phototoxicity, and skin cancer. IL-1β and the interleukin-1 receptor I (IL-1RI) have been used as a therapeutic target for some autoinflammatory skin diseases; yet, their system-wide effects limit their clinical usage. Based on the local effects of extracellular IL-1α and its precursor, pro-IL-1α, we hypothesize that this isoform is a promising drug target for the treatment and prevention of many skin diseases. This review provides an overview on IL-1α and IL-β functions, and their contribution to inflammatory and malignant skin diseases. We also discuss the current treatment regimens, and ongoing clinical trials, demonstrating the potential of targeting IL-1α, and not IL-1β, as a more effective strategy to prevent or treat the onset and progression of various skin diseases.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Armand B Cognetta
- Dermatology Associates of Tallahassee and Division of Dermatology, Florida State University College of Medicine, Tallahassee, FL, 32308
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
49
|
Qi Q, Li R, Li HY, Cao YB, Bai M, Fan XJ, Wang SY, Zhang B, Li S. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach. Acta Pharmacol Sin 2016; 37:963-72. [PMID: 27180984 DOI: 10.1038/aps.2016.53] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
AIM Nuciferine is an aporphine alkaloid extracted from lotus leaves, which is a raw material in Chinese medicinal herb for weight loss. In this study we used a network pharmacology approach to identify the anti-tumor activity of nuciferine and the underlying mechanisms. METHODS The pharmacological activities and mechanisms of nuciferine were identified through target profile prediction, clustering analysis and functional enrichment analysis using our traditional Chinese medicine (TCM) network pharmacology platform. The anti-tumor activity of nuciferine was validated by in vitro and in vivo experiments. The anti-tumor mechanisms of nuciferine were predicted through network target analysis and verified by in vitro experiments. RESULTS The nuciferine target profile was enriched with signaling pathways and biological functions, including "regulation of lipase activity", "response to nicotine" and "regulation of cell proliferation". Target profile clustering results suggested that nuciferine to exert anti-tumor effect. In experimental validation, nuciferine (0.8 mg/mL) markedly inhibited the viability of human neuroblastoma SY5Y cells and mouse colorectal cancer CT26 cells in vitro, and nuciferine (0.05 mg/mL) significantly suppressed the invasion of 6 cancer cell lines in vitro. Intraperitoneal injection of nuciferine (9.5 mg/mL, ip, 3 times a week for 3 weeks) significantly decreased the weight of SY5Y and CT26 tumor xenografts in nude mice. Network target analysis and experimental validation in SY5Y and CT26 cells showed that the anti-tumor effect of nuciferine was mediated through inhibiting the PI3K-AKT signaling pathway and IL-1 levels in SY5Y and CT26 cells. CONCLUSION By using a TCM network pharmacology method, nuciferine is identified as an anti-tumor agent against human neuroblastoma and mouse colorectal cancer in vitro and in vivo, through inhibiting the PI3K-AKT signaling pathways and IL-1 levels.
Collapse
|
50
|
Lee D, Imm JY. AMP Kinase Activation and Inhibition of Nuclear Factor-Kappa B (NF-κB) Translocation Contribute to the Anti-Inflammatory Effect of Tricin. J Food Biochem 2016. [DOI: 10.1111/jfbc.12293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dabeen Lee
- Department of Foods and Nutrition; Kookmin University; 861-1, Jeongnung-dong Seongbuk-gu Seoul 136-702 Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition; Kookmin University; 861-1, Jeongnung-dong Seongbuk-gu Seoul 136-702 Korea
| |
Collapse
|