1
|
A novel method for the chaperone aided and efficient production of human proinsulin in the prokaryotic system. J Biotechnol 2022; 346:35-46. [DOI: 10.1016/j.jbiotec.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
2
|
Siew YY, Zhang W. Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies. BIORESOUR BIOPROCESS 2021; 8:65. [PMID: 34336550 PMCID: PMC8313369 DOI: 10.1186/s40643-021-00419-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
The Global Diabetes Compact was launched by the World Health Organization in April 2021 with one of its important goals to increase the accessibility and affordability of life-saving medicine-insulin. The rising prevalence of diabetes worldwide is bound to escalate the demand for recombinant insulin therapeutics, and currently, the majority of recombinant insulin therapeutics are produced from E. coli inclusion bodies. Here, a comprehensive review of downstream processing of recombinant human insulin/analogue production from E. coli inclusion bodies is presented. All the critical aspects of downstream processing, starting from proinsulin recovery from inclusion bodies, inclusion body washing, inclusion body solubilization and oxidative sulfitolysis, cyanogen bromide cleavage, buffer exchange, purification by chromatography, pH precipitation and zinc crystallization methods, proinsulin refolding, enzymatic cleavage, and formulation, are explained in this review. Pertinent examples are summarized and the practical aspects of integrating every procedure into a multimodal purification scheme are critically discussed. In the face of increasing global demand for insulin product, there is a pressing need to develop a more efficient and economical production process. The information presented would be insightful to all the manufacturers and stakeholders for the production of human insulins, insulin analogues or biosimilars, as they strive to make further progresses in therapeutic recombinant insulin development and production.
Collapse
Affiliation(s)
- Yin Yin Siew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
3
|
Moroder L, Musiol HJ. Insulin - von seiner Entdeckung bis zur industriellen Synthese moderner Insulin-Analoga. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luis Moroder
- Bioorganische Chemie; Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Hans-Jürgen Musiol
- Bioorganische Chemie; Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| |
Collapse
|
4
|
Moroder L, Musiol HJ. Insulin-From its Discovery to the Industrial Synthesis of Modern Insulin Analogues. Angew Chem Int Ed Engl 2017; 56:10656-10669. [DOI: 10.1002/anie.201702493] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Luis Moroder
- Bioorganic Chemistry; Max-Planck Institute of Biochemistry; Am Klopferspitz 18 82152 Martinsried Germany
| | - Hans-Jürgen Musiol
- Bioorganic Chemistry; Max-Planck Institute of Biochemistry; Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
5
|
Mackin RB. Alternative preparation of inclusion bodies excludes interfering non-protein contaminants and improves the yield of recombinant proinsulin. MethodsX 2014; 1:108-17. [PMID: 26150942 PMCID: PMC4472945 DOI: 10.1016/j.mex.2014.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix.
Collapse
Affiliation(s)
- Robert B. Mackin
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178-0405, USA
| |
Collapse
|
6
|
Avital-Shmilovici M, Whittaker J, Weiss MA, Kent SBH. Deciphering a molecular mechanism of neonatal diabetes mellitus by the chemical synthesis of a protein diastereomer, [D-AlaB8]human proinsulin. J Biol Chem 2014; 289:23683-92. [PMID: 25002580 DOI: 10.1074/jbc.m114.572040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misfolding of proinsulin variants in the pancreatic β-cell, a monogenic cause of permanent neonatal-onset diabetes mellitus, provides a model for a disease of protein toxicity. A hot spot for such clinical mutations is found at position B8, conserved as glycine within the vertebrate insulin superfamily. We set out to investigate the molecular basis of the aberrant properties of a proinsulin clinical mutant in which residue Gly(B8) is replaced by Ser(B8). Modular total chemical synthesis was used to prepare the wild-type [Gly(B8)]proinsulin molecule and three analogs: [D-Ala(B8)]proinsulin, [L-Ala(B8)]proinsulin, and the clinical mutant [L-Ser(B8)]proinsulin. The protein diastereomer [D-Ala(B8)]proinsulin produced higher folding yields at all pH values compared with the wild-type proinsulin and the other two analogs, but showed only very weak binding to the insulin receptor. The clinical mutant [L-Ser(B8)]proinsulin impaired folding at pH 7.5 even in the presence of protein-disulfide isomerase. Surprisingly, although [L-Ser(B8)]proinsulin did not fold well under the physiological conditions investigated, once folded the [L-Ser(B8)]proinsulin protein molecule bound to the insulin receptor more effectively than wild-type proinsulin. Such paradoxical gain of function (not pertinent in vivo due to impaired secretion of the mutant insulin) presumably reflects induced fit in the native mechanism of hormone-receptor engagement. This work provides insight into the molecular mechanism of a clinical mutation in the insulin gene associated with diabetes mellitus. These results dramatically illustrate the power of total protein synthesis, as enabled by modern chemical ligation methods, for the investigation of protein folding and misfolding.
Collapse
Affiliation(s)
- Michal Avital-Shmilovici
- From the Departments of Chemistry, and Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 and
| | | | - Michael A Weiss
- the Departments of Biochemistry and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Stephen B H Kent
- From the Departments of Chemistry, and Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
7
|
Vogel EP, Weliky DP. Quantitation of recombinant protein in whole cells and cell extracts via solid-state NMR spectroscopy. Biochemistry 2013; 52:4285-7. [PMID: 23742073 DOI: 10.1021/bi4007034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recombinant proteins (RPs) are commonly expressed in bacteria followed by solubilization and chromatography. Purified RP yield can be diminished by losses at any step with very different changes in methods that can improve the yield. Time and labor can therefore be saved by first identifying the specific reason for the low yield. This study describes a new solid-state nuclear magnetic resonance approach to RP quantitation in whole cells or cell extracts without solubilization or purification. The method is straightforward and inexpensive and requires only ∼50 mL culture and a low-field spectrometer.
Collapse
Affiliation(s)
- Erica P Vogel
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | |
Collapse
|
8
|
Avital-Shmilovici M, Mandal K, Gates ZP, Phillips NB, Weiss MA, Kent SBH. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography. J Am Chem Soc 2013; 135:3173-85. [PMID: 23343390 DOI: 10.1021/ja311408y] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.
Collapse
|
9
|
Increased expression, folding and enzyme reaction rate of recombinant human insulin by selecting appropriate leader peptide. J Biotechnol 2011; 151:350-6. [PMID: 21219941 DOI: 10.1016/j.jbiotec.2010.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 11/20/2022]
Abstract
Five new expression vectors for recombinant human insulin production (pPT-B5Kpi, pPT-T10Rpi, pPT-T13Rpi, pPT-H27Rpi, pPT-B5Rpi), which have different sizes and leader peptide structure, were constructed and compared based on their expression level, yields of S-sulfonated preproinsulin (SSPPI) and folded proinsulin and enzymatic conversion rate. The ranking of expression level of the five fused proinsulins was H27R≫T10R > B5K >T13R≈B5R. In particular, the expression level of H27R was more than double (60-70%) the level of the other fused proinsulins, and this high expression level led to large amounts of SSPPI, folded proinsulin and insulin. Changes to the leader peptide structure affected not only protein expression level, but also refolding yield because the leader peptide affects protein conformation and hydrophobicity. The refolding yield of H27R was 85% at 500L pilot scale. This high refolding yield was caused by the hydrophilic character of H27R. However, the β-mercaptoethanol concentration needed for refolding and the pH required to precipitate impurities after refolding had to be changed for high refolding yield. To avoid using CNBr, which is used to cleave fusion proteins, we used lysine and arginine linkers to connect the fusion protein and proinsulin. This fusion protein could be simultaneously cleaved by trypsin during enzymatic conversion to eliminate the C-peptide. The length and kind of leader peptide did not affect the enzyme reaction rate. Only the leader peptide linker connecting the B-chain influenced enzyme reaction rate. By testing several leader peptides, we constructed a new strain with 30% increased productivity based on expression level, refolding yield and enzyme reaction.
Collapse
|
10
|
Luisier S, Avital-Shmilovici M, Weiss MA, Kent SBH. Total chemical synthesis of human proinsulin. Chem Commun (Camb) 2010; 46:8177-9. [PMID: 20877850 DOI: 10.1039/c0cc03141k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convergent synthetic strategy based on modern chemical ligation methods was used to make human proinsulin. The synthetic protein was characterized by LCMS, CD spectroscopy, and by 1D- and 2D-NMR spectroscopy. Synthetic human proinsulin had full biochemical activity in a receptor-binding assay.
Collapse
Affiliation(s)
- Samuel Luisier
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
11
|
Yang Y, Petkova A, Huang K, Xu B, Hua QX, Ye IJ, Chu YC, Hu SQ, Phillips NB, Whittaker J, Ismail-Beigi F, Mackin RB, Katsoyannis PG, Tycko R, Weiss MA. An Achilles' heel in an amyloidogenic protein and its repair: insulin fibrillation and therapeutic design. J Biol Chem 2010; 285:10806-21. [PMID: 20106984 PMCID: PMC2856287 DOI: 10.1074/jbc.m109.067850] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/19/2010] [Indexed: 11/06/2022] Open
Abstract
Insulin fibrillation provides a model for a broad class of amyloidogenic diseases. Conformational distortion of the native monomer leads to aggregation-coupled misfolding. Whereas beta-cells are protected from proteotoxicity by hexamer assembly, fibrillation limits the storage and use of insulin at elevated temperatures. Here, we have investigated conformational distortions of an engineered insulin monomer in relation to the structure of an insulin fibril. Anomalous (13)C NMR chemical shifts and rapid (15)N-detected (1)H-(2)H amide-proton exchange were observed in one of the three classical alpha-helices (residues A1-A8) of the hormone, suggesting a conformational equilibrium between locally folded and unfolded A-chain segments. Whereas hexamer assembly resolves these anomalies in accordance with its protective role, solid-state (13)C NMR studies suggest that the A-chain segment participates in a fibril-specific beta-sheet. Accordingly, we investigated whether helicogenic substitutions in the A1-A8 segment might delay fibrillation. Simultaneous substitution of three beta-branched residues (Ile(A2) --> Leu, Val(A3) --> Leu, and Thr(A8) --> His) yielded an analog with reduced thermodynamic stability but marked resistance to fibrillation. Whereas amide-proton exchange in the A1-A8 segment remained rapid, (13)Calpha chemical shifts exhibited a more helical pattern. This analog is essentially without activity, however, as Ile(A2) and Val(A3) define conserved receptor contacts. To obtain active analogs, substitutions were restricted to A8. These analogs exhibit high receptor-binding affinity; representative potency in a rodent model of diabetes mellitus was similar to wild-type insulin. Although (13)Calpha chemical shifts remain anomalous, significant protection from fibrillation is retained. Together, our studies define an "Achilles' heel" in a globular protein whose repair may enhance the stability of pharmaceutical formulations and broaden their therapeutic deployment in the developing world.
Collapse
Affiliation(s)
- Yanwu Yang
- From the Departments of Biochemistry and
| | - Aneta Petkova
- the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Kun Huang
- From the Departments of Biochemistry and
| | - Bin Xu
- From the Departments of Biochemistry and
| | | | - I-Ju Ye
- From the Departments of Biochemistry and
| | - Ying-Chi Chu
- the Department of Pharmacology and Biological Chemistry, Mt. Sinai School of Medicine, New York University, New York, New York 10029, and
| | | | | | | | | | - Robert B. Mackin
- the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Panayotis G. Katsoyannis
- the Department of Pharmacology and Biological Chemistry, Mt. Sinai School of Medicine, New York University, New York, New York 10029, and
| | - Robert Tycko
- the Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0520
| | - Michael A. Weiss
- From the Departments of Biochemistry and
- Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
12
|
Yang Y, Hua QX, Liu J, Shimizu EH, Choquette MH, Mackin RB, Weiss MA. Solution structure of proinsulin: connecting domain flexibility and prohormone processing. J Biol Chem 2010; 285:7847-51. [PMID: 20106974 PMCID: PMC2832934 DOI: 10.1074/jbc.c109.084921] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/13/2010] [Indexed: 12/21/2022] Open
Abstract
The folding of proinsulin, the single-chain precursor of insulin, ensures native disulfide pairing in pancreatic beta-cells. Mutations that impair folding cause neonatal diabetes mellitus. Although the classical structure of insulin is well established, proinsulin is refractory to crystallization. Here, we employ heteronuclear NMR spectroscopy to characterize a monomeric analogue. Proinsulin contains a native-like insulin moiety (A- and B-domains); the tethered connecting (C) domain (as probed by {(1)H}-(15)N nuclear Overhauser enhancements) is progressively less ordered. Although the BC junction is flexible, residues near the CA junction exhibit alpha-helical-like features. Relative to canonical alpha-helices, however, segmental (13)C(alpha/beta) chemical shifts are attenuated, suggesting that this junction and contiguous A-chain residues are molten. We propose that flexibility at each C-domain junction facilitates prohormone processing. Studies of protease SPC3 (PC1/3) suggest that C-domain sequences contribute to cleavage site selection. The structure of proinsulin provides a foundation for studies of insulin biosynthesis and its impairment in monogenic forms of diabetes mellitus.
Collapse
Affiliation(s)
- Yanwu Yang
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Qing-xin Hua
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Jin Liu
- the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Eri H. Shimizu
- the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Meredith H. Choquette
- the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Robert B. Mackin
- the Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68178
| | - Michael A. Weiss
- From the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106 and
| |
Collapse
|
13
|
Liu M, Wan ZL, Chu YC, Aladdin H, Klaproth B, Choquette M, Hua QX, Mackin RB, Rao JS, De Meyts P, Katsoyannis PG, Arvan P, Weiss MA. Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity. J Biol Chem 2009; 284:35259-72. [PMID: 19850922 DOI: 10.1074/jbc.m109.046888] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein evolution is constrained by folding efficiency ("foldability") and the implicit threat of toxic misfolding. A model is provided by proinsulin, whose misfolding is associated with beta-cell dysfunction and diabetes mellitus. An insulin analogue containing a subtle core substitution (Leu(A16) --> Val) is biologically active, and its crystal structure recapitulates that of the wild-type protein. As a seeming paradox, however, Val(A16) blocks both insulin chain combination and the in vitro refolding of proinsulin. Disulfide pairing in mammalian cell culture is likewise inefficient, leading to misfolding, endoplasmic reticular stress, and proteosome-mediated degradation. Val(A16) destabilizes the native state and so presumably perturbs a partial fold that directs initial disulfide pairing. Substitutions elsewhere in the core similarly destabilize the native state but, unlike Val(A16), preserve folding efficiency. We propose that Leu(A16) stabilizes nonlocal interactions between nascent alpha-helices in the A- and B-domains to facilitate initial pairing of Cys(A20) and Cys(B19), thus surmounting their wide separation in sequence. Although Val(A16) is likely to destabilize this proto-core, its structural effects are mitigated once folding is achieved. Classical studies of insulin chain combination in vitro have illuminated the impact of off-pathway reactions on the efficiency of native disulfide pairing. The capability of a polypeptide sequence to fold within the endoplasmic reticulum may likewise be influenced by kinetic or thermodynamic partitioning among on- and off-pathway disulfide intermediates. The properties of [Val(A16)]insulin and [Val(A16)]proinsulin demonstrate that essential contributions of conserved residues to folding may be inapparent once the native state is achieved.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Study on preparation and unique properties of a novel insulin analogue with N-terminal Arg-4, Pro-3, Lys-2, Pro-1extension at insulin B-chain. ACTA ACUST UNITED AC 2009; 157:92-8. [DOI: 10.1016/j.regpep.2009.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/30/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022]
|
15
|
De Pauw PEM, Vermeulen I, Ubani OC, Truyen I, Vekens EMF, van Genderen FT, De Grijse JW, Pipeleers DG, Van Schravendijk C, Gorus FK. Simultaneous Measurement of Plasma Concentrations of Proinsulin and C-Peptide and Their Ratio with a Trefoil-Type Time-Resolved Fluorescence Immunoassay. Clin Chem 2008; 54:1990-8. [DOI: 10.1373/clinchem.2008.109710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: When the concentrations of 2 or more substances are measured separately, their molar ratios are subject to the additive imprecisions of the different assays. We hypothesized that the cumulative error for concentration ratios of peptides containing a common sequence might be minimized by measuring the peptides simultaneously with a “trefoil-type” immunoassay.
Methods: As a model of this approach, we developed a dual-label time-resolved fluorescence immunoassay (TRFIA) to simultaneously measure proinsulin, C-peptide, and the proinsulin–C-peptide ratio (PI/C). A monoclonal antibody captures all C-peptide–containing molecules, and 2 differently labeled antibodies distinguish between proinsulin-like molecules and true C-peptide.
Results: The trefoil-type TRFIA was capable of measuring plasma C-peptide and proinsulin simultaneously without mutual interference at limits of quantification of 48 and 8125 pmol/L, and 2.1 and 197 pmol/L, respectively. Within-laboratory imprecision values for the trefoil-type TRFIA ranged between 8.4% and 12% for the hormone concentrations. Unlike the hormone results obtained with separate assays, imprecision did not increase when PI/C was calculated from trefoil assay results (P < 0.05). Peptide concentrations were highly correlated with results obtained in individual comparison assays (r2 ≥ 0.965; P < 0.0001). The total error for PI/C obtained with the trefoil-type TRFIA remained ≤25% over a broader C-peptide range than with separate hormone assays (79–7200 pmol/L vs 590–4300 pmol/L C-peptide). Preliminary data indicate little or no interference by heterophile antibodies.
Conclusions: The developed trefoil-type TRFIA is a reliable method for simultaneous measurement of proinsulin, C-peptide, and PI/C and provides proof of principle for the development of other trefoil-type multiple-label immunoassays.
Collapse
Affiliation(s)
| | - Ilse Vermeulen
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Ogonnaya C Ubani
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Inge Truyen
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | | | | | - Joeri W De Grijse
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | | | | | - Frans K Gorus
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| |
Collapse
|
16
|
Total error profiling of a proinsulin time-resolved fluorescence immunoassay. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 877:2403-6. [PMID: 19041285 DOI: 10.1016/j.jchromb.2008.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/29/2008] [Accepted: 11/11/2008] [Indexed: 11/23/2022]
Abstract
We applied total error profiling to evaluate the conversion of a known proinsulin (PI) enzyme-linked immunosorbent assay (ELISA) into a time-resolved fluorescence immunoassay (TRFIA). The formula and acceptance criteria proposed by the Ligand Binding Assay Bioanalytical Focus Group (LBABFG) of the American Association of Pharmaceutical Scientists (AAPS) were applied. We found that the expected dynamic range enlargement with TRFIA compared to ELISA ([0.5-240] versus resp. [0.7-98] pmol/L) is limited by an interference of C-peptide when present in the sample at high concentrations (>7000 pmol/L).
Collapse
|
17
|
Hoenig M, Caffall ZF, McGraw RA, Ferguson DC. Cloning, expression and purification of feline proinsulin. Domest Anim Endocrinol 2006; 30:28-37. [PMID: 15985360 DOI: 10.1016/j.domaniend.2005.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/26/2022]
Abstract
Feline proinsulin was cloned and expressed using a bacterial expression system. It was then purified from inclusion bodies using size exclusion chromatography and further processed including reduction of the protein. Following refolding, proinsulin was purified by reversed-phase high-performance liquid chromatography (RP-HPLC). RP-HPLC and mass spectrometric analysis indicated that the proinsulin contained the correct disulfide bridging pattern. This proinsulin can be used for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- M Hoenig
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389, USA
| | | | | | | |
Collapse
|