1
|
Turrioni AP, Oliveira Neto NFD, Xu Y, Morse L, Costa CADS, Battaglino R, Hebling J. Proliferation rate and expression of stem cells markers during expansion in primary culture of pulp cells. Braz Oral Res 2021; 35:e128. [PMID: 34878083 DOI: 10.1590/1807-3107bor-2021.vol35.0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to evaluate the proliferation rate and the expression of stem cells markers during expansion in primary culture of dental pulp stem cells (DPSCs), comparing different techniques (explant and enzymatic digestion), subject ages (up to 40 and over 40) and cell passages (#2, #5 and #8). DPSCs were isolated using either the enzymatic digestion (ED) or explant (EX) technique. The number of days needed for the cells to reach confluence was determined. Immunophenotyping was performed by immunofluorescence and flow cytometry analysis using antibodies specific for nestin, vimentin, CD44, CD146, Oct3/4 and CD34. Data were subjected to three-way analysis of variance (n = 6/group). The ANOVA tests were complemented by Tukey's or t-tests (p < 0.05). The variables "donor age" and "technique" were analyzed to define the optimal desirability value using a response optimization. DPSCs presented a high proliferation rate from passages 2 to 5 while cells from passage 8 proliferated at a slower rate. For all markers, no significant difference was observed among passages, irrespective of the technique used or the donor's age. The mean fraction of specific antibodies was 73.7% (± 11.5), 49.0% (± 18.7), 80.1% (± 8.0), 45.2% (± 13.7), 64.7% (± 5.3) and 2.0% (± 1.5) for CD44, OCT, vimentin, nestin, CD146 and CD34, respectively. The highest optimal desirability value was obtained using the ED technique and cells from younger patients (d = 0.92). However, it was concluded that neither the isolation technique nor the donor age or cell passage significantly interfered with the stem cell phenotype and proliferation rate during cell expansion.
Collapse
Affiliation(s)
- Ana Paula Turrioni
- Universidade Federal de Uberlândia - UFU, School of Dentistry, Department of Pediatric Dentistry, Uberlandia, MG, Brazil
| | | | - Yan Xu
- The Forsyth Institute, Department of Mineralized Tissue Biology, Cambridge MA, USA
| | - Leslie Morse
- University of Minnesota, School of Medicine, Department of Rehabilitation Medicine, Minneapolis, MI, USA
| | - Carlos Alberto de Souza Costa
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | - Ricardo Battaglino
- University of Minnesota, School of Medicine, Department of Rehabilitation Medicine, Minneapolis, MI, USA
| | - Josimeri Hebling
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| |
Collapse
|
2
|
Lavasani M, Lu A, Thompson SD, Robbins PD, Huard J, Niedernhofer LJ. Isolation of muscle-derived stem/progenitor cells based on adhesion characteristics to collagen-coated surfaces. Methods Mol Biol 2013; 976:53-65. [PMID: 23400434 DOI: 10.1007/978-1-62703-317-6_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our lab developed and optimized a method, known as the modified pre-plate technique, to isolate stem/progenitor cells from skeletal muscle. This method separates different populations of myogenic cells based on their propensity to adhere to a collagen I-coated surface. Based on their surface markers and stem-like properties, including self-renewal, multi-lineage differentiation, and ability to promote tissue regeneration, the last cell fraction or slowest to adhere to the collagen-coated surface (pre-plate 6; pp6) appears to be early, quiescent progenitor cells termed muscle-derived stem/progenitor cells (MDSPCs). The cell fractions preceding pp6 (pp1-5) are likely populations of more committed (differentiated) cells, including fibroblast- and myoblast-like cells. This technique may be used to isolate MDSPCs from skeletal muscle of humans or mice regardless of age, sex or disease state, although the yield of MDSPCs varies with age and health. MDSPCs can be used for regeneration of a variety of tissues including bone, articular cartilage, skeletal and cardiac muscle, and nerve. MDSPCs are currently being tested in clinical trials for treatment of urinary incontinence and myocardial infarction. MDSPCs from young mice have also been demonstrated to extend life span and healthspan in mouse models of accelerated aging through an apparent paracrine/endocrine mechanism. Here we detail methods for isolation and characterization of MDSPCs.
Collapse
Affiliation(s)
- Mitra Lavasani
- Department of Orthopaedic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Naderi H, Matin MM, Bahrami AR. Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. J Biomater Appl 2011; 26:383-417. [DOI: 10.1177/0885328211408946] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.
Collapse
Affiliation(s)
- Hojjat Naderi
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
- Cell and Molecular Biology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Ferdowsi University of Mashhad, Mashhad, Iran
- Cell and Molecular Biology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Gharaibeh B, Lavasani M, Cummins JH, Huard J. Terminal differentiation is not a major determinant for the success of stem cell therapy - cross-talk between muscle-derived stem cells and host cells. Stem Cell Res Ther 2011; 2:31. [PMID: 21745421 PMCID: PMC3219062 DOI: 10.1186/scrt72] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have found that when muscle-derived stem cells (MDSCs) are implanted into a variety of tissues only a small fraction of the donor cells can be found within the regenerated tissues and the vast majority of cells are host derived. This observation has also been documented by other investigators using a variety of different stem cell types. It is speculated that the transplanted stem cells release factors that modulate repair indirectly by mobilizing the host's cells and attracting them to the injury site in a paracrine manner. This process is loosely called a 'paracrine mechanism', but its effects are not necessarily restricted to the injury site. In support of this speculation, it has been reported that increasing angiogenesis leads to an improvement of cardiac function, while inhibiting angiogenesis reduces the regeneration capacity of the stem cells in the injured vascularized tissues. This observation supports the finding that most of the cells that contribute to the repair process are indeed chemo-attracted to the injury site, potentially through host neo-angiogenesis. Since it has recently been observed that cells residing within the walls of blood vessels (endothelial cells and pericytes) appear to represent an origin for post-natal stem cells, it is tempting to hypothesize that the promotion of tissue repair, via neo-angiogenesis, involves these blood vessel-derived stem cells. For non-vascularized tissues, such as articular cartilage, the regenerative property of the injected stem cells still promotes a paracrine, or bystander, effect, which involves the resident cells found within the injured microenvironment, albeit not through the promotion of angiogenesis. In this paper, we review the current knowledge of post-natal stem cell therapy and demonstrate the influence that implanted stem cells have on the tissue regeneration and repair process. We argue that the terminal differentiation capacity of implanted stem cells is not the major determinant of the cells regenerative potential and that the paracrine effect imparted by the transplanted cells plays a greater role in the regeneration process.
Collapse
Affiliation(s)
- Burhan Gharaibeh
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
5
|
Balmayor ER, Azevedo HS, Reis RL. Controlled delivery systems: from pharmaceuticals to cells and genes. Pharm Res 2011; 28:1241-58. [PMID: 21424163 DOI: 10.1007/s11095-011-0392-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/03/2011] [Indexed: 11/26/2022]
Abstract
During the last few decades, a fair amount of scientific investigation has focused on developing novel and efficient drug delivery systems. According to different clinical needs, specific biopharmaceutical carriers have been proposed. Micro- and nanoparticulated systems, membranes and films, gels and even microelectronic chips have been successfully applied in order to deliver biopharmaceuticals via different anatomical routes. The ultimate goal is to deliver the potential drugs to target tissues, where regeneration or therapies (chemotherapy, antibiotics, and analgesics) are needed. Thereby, the bioactive molecule should be protected against environmental degradation. Delivery should be achieved in a dose- and time-correct manner. Drug delivery systems (DDS) have been conceived to provide improvements in drug administration such as ability to enhance the stability, absorption and therapeutic concentration of the molecules in combination with a long-term and controlled release of the drug. Moreover, the adverse effects related with some drugs can be reduced, and patient compliance could be improved. Recent advances in biotechnology, pharmaceutical sciences, molecular biology, polymer chemistry and nanotechnology are now opening up exciting possibilities in the field of DDS. However, it is also recognized that there are several key obstacles to overcome in bringing such approaches into routine clinical use. This review describes the present state-of-the-art DDS, with examples of current clinical applications, and the promises and challenges for the future in this innovative field.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, University of Minho, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | | | |
Collapse
|
6
|
Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res 2010; 340:549-67. [DOI: 10.1007/s00441-010-0978-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 04/06/2010] [Indexed: 01/06/2023]
|
7
|
Dennis RG, Smith B, Philp A, Donnelly K, Baar K. Bioreactors for guiding muscle tissue growth and development. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 112:39-79. [PMID: 19290497 DOI: 10.1007/978-3-540-69357-4_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Muscle tissue bioreactors are devices which are employed to guide and monitor the development of engineered muscle tissue. These devices have a modern history that can be traced back more than a century, because the key elements of muscle tissue bioreactors have been studied for a very long time. These include barrier isolation and culture of cells, tissues and organs after isolation from a host organism; the provision of various stimuli intended to promote growth and maintain the muscle, such as electrical and mechanical stimulation; and the provision of a perfusate such as culture media or blood derived substances. An accurate appraisal of our current progress in the development of muscle bioreactors can only be made in the context of the history of this endeavor. Modern efforts tend to focus more upon the use of computer control and the application of mechanical strain as a stimulus, as well as substrate surface modifications to induce cellular organization at the early stages of culture of isolated muscle cells.
Collapse
Affiliation(s)
- R G Dennis
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | | | | | | |
Collapse
|
8
|
Dennis RG, Smith B, Philp A, Donnelly K, Baar K. Bioreactors for Guiding Muscle Tissue Growth and Development. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [DOI: 10.1007/10_2008_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kim YT, Kim DK, Jankowski RJ, Pruchnic R, Usiene I, de Miguel F, Chancellor MB. Human muscle-derived cell injection in a rat model of stress urinary incontinence. Muscle Nerve 2007; 36:391-3. [PMID: 17617803 DOI: 10.1002/mus.20827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the use of human muscle-derived cells (hMDCs) for the treatment of stress urinary incontinence (SUI) in a nude rat model. hMDCs were isolated from adult skeletal muscle. Three groups of six animals consisting of controls, animals undergoing sciatic nerve transection (SNT) with periurethral sham-injection, and SNT with hMDCs (1 x 10(6) cells/20 microl saline) were utilized. Leak point pressure (LPP) was measured 4 weeks following injection. Bilateral SNT resulted in a significantly lower LPP that was significantly higher following hMDCs than sham injection. The results demonstrate the efficacy of human muscle cell therapy alone in improving physiologic outcomes in an animal model of SUI.
Collapse
Affiliation(s)
- Yong Tae Kim
- Department of Urology, University of Pittsburgh, Suite 700, 3471 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G. Tissue engineering and developmental biology: going biomimetic. ACTA ACUST UNITED AC 2007; 12:3265-83. [PMID: 17518669 DOI: 10.1089/ten.2006.12.3265] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article contains the collective views expressed at the first session of the workshop "Tissue Engineering--The Next Generation," which was devoted to the interactions between developmental biology and tissue engineering. Donald Ingber discussed the chasms between developmental biology and tissue engineering from the perspective of a cell biologist who has had interest in tissue engineering since its early days. Van C. Mow shared a historical perspective on the development of tissue engineering as one of the first engineers involved in the field. David Butler offered an assessment of functional tissue engineering, a new area he helped establish and promote. Laura Niklason discussed how to be more effective in developing cellular therapies for large numbers of patients. Johnny Huard described his approach to tissue engineering, based on the use of muscle-derived cells. Jeremy Mao focused on cell homing and cell density in the context of native development and relevance to tissue engineering. Ioannis Yannas proposed a set of "rules" in organ regeneration. Collectively, the faculty expressed a remarkable level of enthusiasm for bridging the gaps between developmental biology and tissue engineering and offered new ideas on how to facilitate the interaction between the two fields.
Collapse
Affiliation(s)
- Donald E Ingber
- Vascular Biology Program, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Payne TR, Oshima H, Sakai T, Ling Y, Gharaibeh B, Cummins J, Huard J. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther 2006; 12:1264-74. [PMID: 15843810 DOI: 10.1038/sj.gt.3302521] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell transplantation holds promise as a potential treatment for cardiac dysfunction. Our group has isolated populations of murine skeletal muscle-derived stem cells (MDSCs) that exhibit stem cell-like properties. Here, we investigated the fate of MDSCs after transplantation into the hearts of dystrophin-deficient mdx mice, which model Duchenne muscular dystrophy (DMD). Transplanted MDSCs generated large grafts consisting primarily of numerous dystrophin-positive myocytes and, to a lesser degree, dystrophin-negative non-myocytes that expressed an endothelial phenotype. Most of the dystrophin-positive myocytes expressed a skeletal muscle phenotype and did not express a cardiac phenotype. However, some donor myocytes, located at the graft-host myocardium border, were observed to express cardiac-specific markers. More than half of these donor cells that exhibited a cardiac phenotype still maintained a skeletal muscle phenotype, demonstrating a hybrid state. Sex-mismatched donors and hosts revealed that many donor-derived cells that acquired a cardiac phenotype did so through fusion with host cardiomyocytes. Connexin43 gap junctions were not expressed by donor-derived myocytes in the graft. Scar tissue formation in the border region may inhibit the fusion and gap junction connections between donor and host cells. This study demonstrates that MDSC transplantation warrants further investigation as a potential therapy for cardiac dysfunction in DMD.
Collapse
Affiliation(s)
- T R Payne
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Oshima H, Payne TR, Urish KL, Sakai T, Ling Y, Gharaibeh B, Tobita K, Keller BB, Cummins JH, Huard J. Differential Myocardial Infarct Repair with Muscle Stem Cells Compared to Myoblasts. Mol Ther 2005; 12:1130-41. [PMID: 16125468 DOI: 10.1016/j.ymthe.2005.07.686] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 07/06/2005] [Accepted: 07/19/2005] [Indexed: 12/30/2022] Open
Abstract
Myoblast transplantation for cardiac repair has generated beneficial results in both animals and humans; however, poor viability and poor engraftment of myoblasts after implantation in vivo limit their regeneration capacity. We and others have identified and isolated a subpopulation of skeletal muscle-derived stem cells (MDSCs) that regenerate skeletal muscle more effectively than myoblasts. Here we report that in comparison with a myoblast population, MDSCs implanted into infarcted hearts displayed greater and more persistent engraftment, induced more neoangiogenesis through graft expression of vascular endothelial growth factor, prevented cardiac remodeling, and elicited significant improvements in cardiac function. MDSCs also exhibited a greater ability to resist oxidative stress-induced apoptosis compared to myoblasts, which may partially explain the improved engraftment of MDSCs. These findings indicate that MDSCs constitute an alternative to other myogenic cells for use in cardiac repair applications.
Collapse
Affiliation(s)
- Hideki Oshima
- Department of Orthopaedic Surgery, University of Pittsburgh, PA 15213-2582, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Tissue engineering and cell therapy approaches aim to take advantage of the repopulating ability and plasticity of multipotent stem cells to regenerate lost or diseased tissue. Researchers continue to investigate stem cells in mature tissues and demonstrate the potential ability of organ-specific cells to differentiate into multiple lineages. One stem cell that displays such promise is the muscle-derived stem cell (MDSC). Data supporting the existence of MDSCs have emerged as part of investigations to improve myoblast cell transplantation for the treatment of muscular dystrophies. As these efforts continue, the potential for MDSC-based therapy for other musculoskeletal injuries, as well as for cardiac and smooth muscle injuries, is currently being explored.
Collapse
Affiliation(s)
- Bridget M Deasy
- Bioengineering Department, University of Pittsburgh School of Medicine, PA 15260, USA
| | | | | |
Collapse
|
14
|
Sales KM, Salacinski HJ, Alobaid N, Mikhail M, Balakrishnan V, Seifalian AM. Advancing vascular tissue engineering: the role of stem cell technology. Trends Biotechnol 2005; 23:461-7. [PMID: 15979750 DOI: 10.1016/j.tibtech.2005.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/28/2005] [Accepted: 06/10/2005] [Indexed: 01/19/2023]
Abstract
Atherosclerosis and heart disease are still the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts but the patency of such grafts is limited compared to natural materials. Tissue engineering, whereby living tissue replacements can be constructed, has emerged as a solution to some of these difficulties. This, in turn, is limited by the availability of suitable cells from which to construct the vessels. The development of prosthesis using progenitor cells and switching these into endothelial cells is an important and exciting advance in the field of tissue engineering. Here, we describe recent developments in the use of stem cells for the development of replacement vessels. These paradigm shifts in vascular engineering now offer a new route for effective clinical therapy.
Collapse
Affiliation(s)
- Kevin M Sales
- Biomaterials & Tissue Engineering Centre (BTEC), Academic Division of Surgical and Interventional Sciences, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
15
|
Hirano K, Shimono T, Imanaka-Yoshida K, Miyamoto K, Fujinaga K, Kajimoto M, Miyake Y, Nishikawa M, Yoshida T, Uchida A, Shimpo H, Yada I, Hirata H. Method of Cell Transplantation Promoting the Organization of Intraarterial Thrombus. Circulation 2005; 112:I111-6. [PMID: 16159801 DOI: 10.1161/01.circulationaha.104.525071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background—
Endovascular aortic repairs have been developed as less invasive treatments for aortic aneurysms. Some aneurismal cavities, however, remain without organization, causing a re-expansion of the aneurysms. We studied cell transplantation into the aneurismal sac to promote the organization of thrombus for the complete healing of aneurysms.
Methods and Results—
Skin fibroblasts and skeletal myoblasts were isolated from rats for cell transplantation. An intraarterial thrombus model was made by ligation of the carotid artery. Culture medium (medium group, n=11), collagen gel (gel group, n=11), fibroblasts with collagen gel (F group, n=15), myoblasts with collagen gel (M group, n=12), or mixture of fibroblasts and myoblasts with collagen gel (F+M group, n=14) were injected into the thrombus. After 28 days, histologically, the arterial lumens of the F and M groups were partly filled with fibrous tissues, whereas in the F+M group organization was almost completed and luminal sizes diminished. Immunohistochemical staining demonstrated that α-smooth muscle actin-positive cells were more abundantly contained in the organized area of the F+M group than in the other groups. We also analyzed cellular function in vitro with immunofluorescence; coculture of fibroblasts and myoblasts showed that the fraction of α-smooth muscle actin-positive fibroblasts increased. This phenomenon accounts for the rapid organization of thrombus in the F+M group in vivo.
Conclusions—
Cell transplantation accelerated thrombus organization. Especially, myoblasts enhanced differentiation of fibroblasts into myofibroblasts, contributing to rapid thrombus organization. Cell transplantation into unorganized spaces seems applicable to endovascular treatment of aneurysms.
Collapse
Affiliation(s)
- Koji Hirano
- Department of Thoracic and Cardiovascular Surgery, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Heart failure is becoming a major issue for public health in western countries and the effect of currently available therapies is limited. Therefore cell transplantation was developed as an alternative strategy to improve cardiac structure and function. This review describes the multiple cell types and clinical trials considered for use in this indication. Most studies have been developed in models of post-ischemic heart failure. The transplantation of fetal or neonatal cardiomyocytes has proven to be functionally successful, but ethical as well as immunological and technical reasons make their clinical use limited. Recent reports, however, suggested that adult autologous cardiomyocytes could be prepared from stem cells present in various tissues (bone marrow, vessels, adult heart itself, adipose tissue). Alternatively, endothelial progenitors originating from bone marrow or peripheral blood could promote the neoangiogenesis within the scar tissue. Hematopietic stem cells prepared from bone marrow or peripheral blood have been proposed but their differentiation ability seems limited. Finally, the transplantation of skeletal muscle cells (myoblasts) in the infarcted area improved myocardial function, in correlation with the development of skeletal muscle tissue in various animal models. The latter results paved the way for the development of a first phase I clinical trial of myoblast transplantation in patients with severe post-ischemic heart failure. It required the scale-up of human cell production according to good manufacturing procedures, started in june 2000 in Paris and was terminated in november 2001, and was followed by several others. The results were encouraging and prompted the onset of a blinded, multicentric phase II clinical trial for skeletal muscle cells transplantation. Meanwhile, phase I clinical trials also evaluate the safeness and efficacy of various cell types originating from the bone marrow or the peripheral blood. However, potential side effects related to the biological properties of the cells or the delivery procedures are being reported. High quality clinical trials supported by strong pre-clinical data will help to evaluate the role of cell therapy as a potential treatment for heart failure.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Inserm U.582, Institut de Myologie, Groupe hospitalier Pitié-Salpêtrière, Bâtiment Babinski, 75651 Paris Cedex 13, France.
| | | |
Collapse
|
17
|
Haider HK, Tan ACK, Aziz S, Chachques JC, Sim EKW. Myoblast transplantation for cardiac repair: a clinical perspective. Mol Ther 2004; 9:14-23. [PMID: 14741773 DOI: 10.1016/j.ymthe.2003.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The incidence of heart failure is achieving epidemic proportions. Adult human myocytes cannot regenerate because these cells do not re-enter the cell cycle. In patients with heart failure, myoblast transplantation is emerging as a potential therapeutic option to augment the function of remaining myocytes. Both skeletal myoblasts and autologous bone marrow cell transplantation, after intensive preclinical experimental animal studies, have entered phase I safety studies in humans. Most of these clinical trials have involved small groups of patients and cell transplantation was carried out as an adjunct to coronary revascularization. Preliminary results show that the procedure is safe and leads to improved myocardial function. This paper reviews and summarizes the outcome of these phase I trials involving skeletal myoblast transplantation.
Collapse
Affiliation(s)
- Husnain Kh Haider
- National University Medical Institutes, National University of Singapore, 119074
| | | | | | | | | |
Collapse
|
18
|
McCarthy PM, Quader MA, Hoercher KJ. Evolving strategies for surgical management of patients with severe left ventricular dysfunction. Heart Lung Circ 2003; 12:31-8. [PMID: 16352104 DOI: 10.1046/j.1444-2892.2003.00188.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As a result of an increasing population with advanced congestive heart failure and the lack of growth in cardiac transplantation, surgical treatments for heart failure have been re-examined. These therapies represent the evolution of well-known operations such as coronary bypass surgery and valve surgeries, and the more novel left ventricular reconstruction and operations aimed at inhibiting left ventricular remodeling. When performed by surgeons with experience in this evolving speciality within cardiovascular surgery, surgery for advanced heart failure is a treatment of choice for many patients.
Collapse
Affiliation(s)
- Patrick M McCarthy
- Department of Thoracic and Cardiovascular Surgery, Kaufman Center for Heart Failure, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | |
Collapse
|