1
|
Spectral properties of physiological mirror activity: an investigation of frequency features and common input between homologous muscles. Sci Rep 2022; 12:15965. [PMID: 36153347 PMCID: PMC9509371 DOI: 10.1038/s41598-022-20413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
During unilateral contractions, muscular activation can be detected in both active and resting limbs. In healthy populations, the latter is referred to as physiological mirror activity (pMA). The study of pMA holds implications for clinical applications as well as the understanding of bilateral motor control. However, the underlying mechanisms of pMA remain to be fully resolved. A commonality of prevailing explanatory approaches is the concept of shared neural input. With this study, we, therefore, aimed to investigate neural input in the form of multiple analyses of surface electromyography (sEMG) recordings in the frequency domain. For this purpose, 14 healthy, right-handed males aged 18–35 years were recruited. All participants performed a pinch-force task with the dominant hand in a blockwise manner. In total, 9 blocks of 5 contractions each were completed at 80% of maximum force output. Muscle activity was recorded via sEMG of the first dorsal interosseous muscle of the active and resting hand. We analyzed (1) spectral features as well as (2) intermuscular coherence (IMC). Our results demonstrate a blockwise increase in median frequency, mean frequency, and peak frequency in both hands. Frequency ratio analyses revealed a higher low-frequency component in the resting hand. Although we were able to demonstrate IMC on an individual level, results varied greatly and grand-averaged IMC failed to reach significance. Taken together, our findings imply an overlap of spectral properties between active and passive hands during repeated unilateral contractions. Combined with evidence from previous studies, this suggests a common neural origin between active and resting hands during unilateral contractions possibly resulting from a reduction in interhemispheric inhibition due to high force demands. Nevertheless, the exploratory nature of this study necessitates the classification of our results through follow-up studies.
Collapse
|
2
|
Nasser Alasim H, Nimbarte AD. Variability of Electromyographic Spectral Measures in Non-fatigued Shoulder Muscles and Implications for Assessing Muscle Fatigue. IISE Trans Occup Ergon Hum Factors 2019. [DOI: 10.1080/24725838.2019.1636898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Hamad Nasser Alasim
- Industrial and Management Systems Engineering, West Virginia University, Morgantown, WV, USA
- Mechanical and Industrial Engineering Department, College of Engineering, Majmaah University, Majmaah, Saudi Arabia
| | - Ashish D. Nimbarte
- Industrial and Management Systems Engineering, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
3
|
Gaudet S, Tremblay J, Dal Maso F. Evolution of muscular fatigue in periscapular and rotator cuff muscles during isokinetic shoulder rotations. J Sports Sci 2018; 36:2121-2128. [PMID: 29447092 DOI: 10.1080/02640414.2018.1440513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To this day, how shoulder muscles react to a strong fatigue stimulus during dynamic shoulder rotations remains unknown. The aims of this study were to assess the effect of repeated maximal internal-external isokinetic shoulder rotations on shoulder strength and muscle activity. Twenty-four individuals completed a 50-repetition fatiguing isokinetic protocol while electromyography was recorded on eleven muscles of the shoulder girdle. Time-frequency transformation and an ANOVA model using statistical parametric mapping methods were used to analyze shifts in instantaneous median frequency (MDF) between each 10-repetition Blocks. Peak torques decreased in both internal and external rotation (P < 0.01) by 24.8% on average which indicated the presence of fatigue. Significant decrease in MDF (P < 0.01) was observed for pectoralis, middle deltoid, upper, middle and lower trapezius, infraspinatus and subscapularis muscles. The observed fatigue to the periscapular and rotator cuff muscles suggests that shoulder stability could be compromised during repeated shoulder rotations, which could underlie the increased risk of scapular dyskinesis and shoulder impingement during fatiguing tasks. The present study provides a deeper understanding on the manifestations of fatigue within muscles of the shoulder girdle and the results could be applied toward improvements in athlete shoulder injury prevention and rehabilitation programs.
Collapse
Affiliation(s)
- Sylvain Gaudet
- a Département de Kinésiologie , Université de Montréal , Montréal , Canada
| | - Jonathan Tremblay
- a Département de Kinésiologie , Université de Montréal , Montréal , Canada
| | - Fabien Dal Maso
- a Département de Kinésiologie , Université de Montréal , Montréal , Canada
| |
Collapse
|
4
|
Roman-Liu D, Bartuzi P. Influence of type of MVC test on electromyography measures of biceps brachii and triceps brachii. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2017; 24:200-206. [DOI: 10.1080/10803548.2017.1353321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Danuta Roman-Liu
- Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Poland
| | - Paweł Bartuzi
- Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Poland
| |
Collapse
|
5
|
Chan CK, Timothy GF, Yeow CH. Comparison of mean frequency and median frequency in evaluating muscle fiber type selection in varying gait speed across healthy young adult individuals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:1725-1728. [PMID: 28268659 DOI: 10.1109/embc.2016.7591049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The preferential slow and fast twitches fiber involvement in varying gait speed has not been thoroughly investigated. Attempt to classify fiber type in changing speed should be closely investigated and scrutinized as the histochemical-related experiments are cumbersome and time consuming. In addressing this issue, electromyography (EMG) is utilized to extract the muscle fiber type features by altering the muscle fatigue indices, namely mean frequency (MNF) and median frequency (MDF). Recently, there are no universal indices to determine the muscle type. In this paper, the MNF and MDF are employed in discovering the muscle type variation as the speed changes. Besides drawing the potential of MNF and MDF in unveiling the muscle type, both the parameters are applied to investigate the muscles that are recruited and which muscle type are involved as the gait velocity changes. In this study, six healthy and young participants are recruited, whereby the EMG sensors are placed on twelve lower extremity muscles. The EMG signals are then processed via Matlab software to deduce MNF and MDF. The MNF and MDF are determined from every of the phase gait, namely stance and swing. From the results obtained, it reveals that the superiority of the MNF over the MDF in determining and interpreting the muscle recruitment in both gait phases as the speed increases. The MNF, moreover, is able to show an apparent difference in muscle type selection compared to MDF. Interestingly, it is discovered that as the speed increases from slow to fast, the MNF decreases, which indicates that more muscle fiber type I is recruited. Contrarily, the MNF increases as the speed intensity decreases, which indicates that the distribution of muscle type II is prominent.
Collapse
|
6
|
Lacourpaille L, Nordez A, Hug F. The nervous system does not compensate for an acute change in the balance of passive force between synergist muscles. ACTA ACUST UNITED AC 2017; 220:3455-3463. [PMID: 28751493 DOI: 10.1242/jeb.163303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/20/2017] [Indexed: 11/20/2022]
Abstract
It is unclear how muscle activation strategies adapt to differential acute changes in the biomechanical characteristics between synergist muscles. This issue is fundamental to understanding the control of almost every joint in the body. The aim of this human experiment was to determine whether the relative activation of the heads of the triceps surae [gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus (SOL)] compensates for differential changes in passive force between these muscles. Twenty-four participants performed isometric ankle plantarflexion at 20 N m and 20% of the active torque measured during a maximal contraction, at three ankle angles (30 deg of plantarflexion, 0 and 25 deg of dorsiflexion; knee fully extended). Myoelectric activity (electromyography, EMG) provided an index of neural drive. Muscle shear modulus (elastography) provided an index of muscle force. Passive dorsiflexion induced a much larger increase in passive shear modulus for GM (+657.6±257.7%) than for GL (+488.7±257.9%) and SOL (+106.6±93.0%). However, the neural drive during submaximal tasks did not compensate for this change in the balance of the passive force. Instead, when considering the contraction at 20% MVC, GL root mean square (RMS) EMG was reduced at both 0 deg (-39.4±34.5%) and 25 deg dorsiflexion (-20.6±58.6%) compared with 30 deg plantarflexion, while GM and SOL RMS EMG did not change. As a result, the GM/GL ratio of shear modulus was higher at 0 deg and 25 deg dorsiflexion than at 30 deg plantarflexion, indicating that the greater the dorsiflexion angle, the stronger the bias of force to GM compared with GL. The magnitude of this change in force balance varied greatly between participants.
Collapse
Affiliation(s)
- Lilian Lacourpaille
- University of Nantes, Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, 44000 Nantes, France
| | - Antoine Nordez
- University of Nantes, Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, 44000 Nantes, France.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0627, New Zealand
| | - François Hug
- University of Nantes, Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, 44000 Nantes, France .,The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, QLD 4072, Australia.,Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
7
|
Roman-Liu D. The influence of confounding factors on the relationship between muscle contraction level and MF and MPF values of EMG signal: a review. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2016; 22:77-91. [PMID: 26654476 PMCID: PMC4784495 DOI: 10.1080/10803548.2015.1116817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this article is to gather results of studies on the relationship between median frequency (MF) and mean power frequency (MPF) and the level of muscle contraction, and to use those results to discuss the differences in the trends according to factors related to measurement technique and subject. Twenty-one studies with 63 cases for upper limb muscles and nine studies with 31 cases for lower limb muscles were analysed. Most results showed an increase in parameters with an increased level of muscle contraction, only some studies showed a decrease. The influence on parameters of the level of muscle contraction and factors such as subjects, type of contraction, muscle length and electrodes was analysed for each muscle. It was concluded that when analysing the influence of different factors on MF and MPF, because those factors interact they should be considered together, not separately.
Collapse
Affiliation(s)
- Danuta Roman-Liu
- Central Institute for Labour Protection – National Research Institute (CIOP-PIB), Poland
| |
Collapse
|
8
|
Roman-Liu D, Bartuzi P. The influence of wrist posture on the time and frequency EMG signal measures of forearm muscles. Gait Posture 2013; 37:340-4. [PMID: 22939408 DOI: 10.1016/j.gaitpost.2012.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 02/02/2023]
Abstract
This study investigates how altering wrist posture influences the relationship between the time and frequency measures of the electromyography (EMG) signal of extensor digitorum communis (EDC) and flexor carpi ulnaris (FCU). Thirteen participants exerted handgrip force related to maximum voluntary contraction (MVC) in four tests: 20%MVC and 50%MVC in neutral wrist posture and 20%MVC in full wrist flexion and extension. EMG measurements from EDC and FCU were used to calculate normalized values of amplitude (nRMS) and mean and median frequency of the power spectrum (nMPF, nMF). During muscle shortening (wrist flexion for FCU and wrist extension for EDC) nRMS was approximately twofold higher than in neutral posture for FCU and fourfold for EDC. All measures obtained at 20%MVC in neutral posture were significantly different from 20%MVC in wrist flexion for FCU and 20%MVC in wrist extension for EDC (p<0.05). Differences between 50%MVC and 20%MVC at neutral posture (nRMS) were significant for both muscles, although in nMPF and nMF for EDC only. Muscle shortening changed the pattern of statistical significance when the time and frequency domain measures were compared, whereas muscle lengthening did not. It can be concluded that muscle shortening caused by altering wrist posture influences the relationship between the time and frequency measures in both muscles. This suggests that in studies using EMG in different wrist postures, changes in the relationship between the time and the frequency measures should be considered.
Collapse
Affiliation(s)
- Danuta Roman-Liu
- Laboratory of Biomechanics, Department of Ergonomics, Central Institute for Labour Protection - National Research Institute (CIOP-PIB), ul. Czerniakowska 16, 00-701 Warsaw, Poland.
| | | |
Collapse
|
9
|
Qi L, Wakeling JM, Ferguson-Pell M. Spectral properties of electromyographic and mechanomyographic signals during dynamic concentric and eccentric contractions of the human biceps brachii muscle. J Electromyogr Kinesiol 2011; 21:1056-63. [PMID: 22000481 DOI: 10.1016/j.jelekin.2011.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 11/27/2022] Open
Abstract
The purpose of this study was to describe and examine the variations in recruitment patterns of motor units (MUs) in biceps brachii (BB) through a range of joint motion during dynamic eccentric and concentric contractions. Twelve healthy participants (6 females, 6 males, age=30±8.5 years) performed concentric and eccentric contractions with constant external loading at different levels. Surface electromyography (EMG) and mechanomyography (MMG) were recorded from BB. The EMGs and MMGs were decomposed into their intensities in time-frequency space using a wavelet technique. The EMG and MMG spectra were then compared using principal component analysis. Variations in total intensity, first principal component (PCI), and the angle θ formed by first component (PCI) and second component (PCII) loading scores were explained in terms of MU recruitment patterns and elbow angles. Elbow angle had a significant effect on dynamic concentric and eccentric contractions. The EMG total intensity was greater for concentric than for eccentric contractions in the present study. MMG total intensity, however, was lower during concentric than during eccentric contractions. In addition, there was no significant difference in θ between concentric and eccentric contractions for both EMG and MMG. Selective recruitment of fast MUs from BB muscle during eccentric muscle contractions was not found in the present study.
Collapse
Affiliation(s)
- Liping Qi
- ASPIRE Centre for Disability Sciences, Institute of Orthopedics and Musculoskeletal Science, University College London, Brockley Hill, Stanmore, London HA7 4LP, UK
| | | | | |
Collapse
|
10
|
Chimera NJ, Benoit DL, Manal K. Influence of electrode type on neuromuscular activation patterns during walking in healthy subjects. J Electromyogr Kinesiol 2009; 19:e494-9. [DOI: 10.1016/j.jelekin.2009.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/09/2008] [Accepted: 01/05/2009] [Indexed: 11/30/2022] Open
|
11
|
Doheny EP, Lowery MM, Fitzpatrick DP, O'Malley MJ. Effect of elbow joint angle on force–EMG relationships in human elbow flexor and extensor muscles. J Electromyogr Kinesiol 2008; 18:760-70. [PMID: 17499516 DOI: 10.1016/j.jelekin.2007.03.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/09/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022] Open
Abstract
The purpose of this study was to examine the effect of joint angle on the relationship between force and electromyogram (EMG) amplitude and median frequency, in the biceps, brachioradialis and triceps muscles. Surface EMG were measured at eight elbow angles, during isometric flexion and extension at force levels from 10% to 100% of maximum voluntary contraction (MVC). Joint angle had a significant effect on MVC force, but not on MVC EMG amplitude in all of the muscles examined. The median frequency of the biceps and triceps EMG decreased with increasing muscle length, possibly due to relative changes in electrode position or a decrease in muscle fibre diameter. The relationship between EMG amplitude and force, normalised with respect to its maximum force at each angle, did not vary with joint angle in the biceps or brachioradialis muscles over all angles, or in the triceps between 45 degrees and 120 degrees of flexion. These results suggest that the neural excitation level to each muscle is determined by the required percentage of available force rather than the absolute force required. It is, therefore, recommended that when using surface EMG to estimate muscle excitation, force should be normalised with respect to its maximum value at each angle.
Collapse
Affiliation(s)
- Emer P Doheny
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Ireland.
| | | | | | | |
Collapse
|
12
|
Dimitrov GV, Arabadzhiev TI, Mileva KN, Bowtell JL, Crichton N, Dimitrova NA. Muscle fatigue during dynamic contractions assessed by new spectral indices. Med Sci Sports Exerc 2007; 38:1971-9. [PMID: 17095932 DOI: 10.1249/01.mss.0000233794.31659.6d] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of the present study was to test the applicability and sensitivity of new electromyography (EMG) spectral indices in assessing peripheral muscle fatigue during dynamic knee-extension exercise. METHODS Seven subjects completed 10 sets of 15 repetitions of right knee-extension exercise lifting 50% of their one-repetition maximum. Torque (T), knee-joint angle, and the interference EMG of rectus femoris muscle were recorded simultaneously. Maximal voluntary isometric contraction (MVC) was tested before and after exercise. Median spectral frequency (Fmed) and new spectral indices of muscle fatigue (FInsmk) were calculated for each repetition. RESULTS The rate and range of FInsmk- and Fmed-relative changes against the first repetition of the corresponding set increased gradually across successive repetitions within the set, reflecting accumulation of peripheral muscle fatigue. The maximal change of FInsmk observed in the present experiment was approximately eightfold, whereas that of Fmed was only 32%. Significant between-subject variability in the range of FInsmk changes (P < 0.0001) was found, so a hierarchical cluster analysis of muscle fatigue indices was conducted. Three distinct subgroups of subjects were identified: high (N = 1, FInsmk change > 400%), medium (N = 4, 200% < FInsmk change < 400%), and low (N = 2, FInsmk change < 200%) muscle fatigability. The changes in muscle performance during (last vs first repetition peak T, P = 0.03) and after (post- vs preexercise MVC, P = 0.012) exercise were significantly different between clusters (one-way ANOVA). The rate of fatigue development was also significantly different between clusters (linear regression analysis of Fmed and FInsmk changes). CONCLUSIONS The new spectral indices are a valid and reliable tool for assessment of muscle fatigability irrespective of EMG signal variability caused by dynamic muscle contractions, and these indices are more sensitive than those traditionally used.
Collapse
Affiliation(s)
- George V Dimitrov
- Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
13
|
Dimitrov GV, Arabadzhiev TI, Hogrel JY, Dimitrova NA. Simulation analysis of interference EMG during fatiguing voluntary contractions. Part II--changes in amplitude and spectral characteristics. J Electromyogr Kinesiol 2006; 18:35-43. [PMID: 16963280 DOI: 10.1016/j.jelekin.2006.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capabilities of amplitude and spectral methods for information extraction from interference EMG signals were assessed through simulation and preliminary experiment. Muscle was composed of 4 types of motor units (MUs). Different hypotheses on changes in firing frequency of individual MUs, intracellular action potential (IAP) and muscle fibre propagation velocity (MFPV) during fatigue were analyzed. It was found that changes in amplitude characteristics of interference signals (root mean square, RMS, or integrated rectified value, IEMG) detected by intramuscular and surface electrodes differed. RMS and IEMG of surface detected interference signals could increase even under MU firing rate reduction and without MU synchronisation. IAP profile lengthening can affect amplitude characteristics more significantly than MU firing frequency. Thus, an increase of interference EMG amplitude is unreliable to reflect changes in the neural drive. The ratio between EMG amplitude and contraction response can hardly characterise the so-called 'neuromuscular efficiency'. The recently proposed spectral fatigue indices can be used for quantification of interference EMG signals. The indices are practically insensitive to MU firing frequency. IAP profile lengthening and decrease in MFPV enhanced the index value, while recruitment of fast fatigable MUs reduced it. Sensitivity of the indices was higher than that of indices traditionally used.
Collapse
Affiliation(s)
- G V Dimitrov
- Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G.Bonchev Street, Bl 105, Sofia 1113, Bulgaria.
| | | | | | | |
Collapse
|
14
|
MacIsaac DT, Parker PA, Englehart KB, Rogers DR. Fatigue estimation with a multivariable myoelectric mapping function. IEEE Trans Biomed Eng 2006; 53:694-700. [PMID: 16602576 DOI: 10.1109/tbme.2006.870220] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel approach to muscle fatigue assessment is proposed. A function is used to map multiple myoelectric parameters representing segments of myoelectric data to a fatigue estimate for that segment. An artificial neural network is used to tune the mapping function and time-domain features are used as inputs. Two fatigue tests were conducted on five participants in each of static, cyclic and random conditions. The function was tuned with one data set and tested on the other. Performance was evaluated based on a signal to noise metric which compared variability due to fatigue factors with variability due to nonfatiguing factors. Signal to noise ratios for the mapping function ranged from 7.89 under random conditions to 9.69 under static conditions compared to 3.34-6.74 for mean frequency and 2.12-2.63 for instantaneous mean frequency indicating that the mapping function tracks the myoelectric manifestations of fatigue better than either mean frequency or instantaneous mean frequency under all three contraction conditions.
Collapse
Affiliation(s)
- Dawn T MacIsaac
- Electrical and Computer Engineering Department and the Faculty of Computer Science, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | | | | | | |
Collapse
|
15
|
Schulte E, Farina D, Merletti R, Rau G, Disselhorst-Klug C. Influence of muscle fibre shortening on estimates of conduction velocity and spectral frequencies from surface electromyographic signals. Med Biol Eng Comput 2004; 42:477-86. [PMID: 15320456 DOI: 10.1007/bf02350988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The study of surface electromyographic (EMG) signals under dynamic contractions is becoming increasingly important. However, knowledge of the methodological issues that may affect such analysis is still limited. The aim of the study was to analyse the effect of fibre shortening on estimates of conduction velocity (CV) and mean power spectral frequency (MNF) from surface EMG signals. Single fibre action potentials were simulated, as detected by commonly used spatial filters, for different fibre lengths. No physiological modifications were included with changes in fibre length, and thus only geometrical artifacts related to fibre shortening were investigated. The simulation results showed that the dependence of CV and MNF on fibre shortening is affected by the fibre location, electrode position and the spatial filter applied. With shortening of up to 50% for a fibre of 50 mm semi-length, the variations in CV and MNF estimates with shortening in bipolar recordings were 0.5% (CV) and 0.7% (MNF) for superficial fibres, and 3.6% and 5.1% for deeper fibres. Using the longitudinal double differential filter, under the same conditions, the percent variation was 0% and 0.2%, and 24.7% and 15.8%, respectively. The main conclusions were, first, muscle fibre shortening can significantly affect estimates of CV and MNF, especially for short fibre lengths. However, for long (semi-length >50 mm) and superficial fibres, this effect is limited for shortenings of up to 50% of the initial fibre length. Secondly, CV and MNF are almost equally affected by changes in muscle length; and, thirdly, sensitivity to fibre shortening depends on the spatial filter applied for signal detection.
Collapse
Affiliation(s)
- E Schulte
- Institute for Biomedical Technologies, Helmholtz Institute, Aachen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Karlsson JS, Ostlund N, Larsson B, Gerdle B. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions. J Electromyogr Kinesiol 2003; 13:461-8. [PMID: 12932420 DOI: 10.1016/s1050-6411(03)00063-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Frequency analysis of myoelectric (ME) signals, using the mean power spectral frequency (MNF), has been widely used to characterize peripheral muscle fatigue during isometric contractions assuming constant force. However, during repetitive isokinetic contractions performed with maximum effort, output (force or torque) will decrease markedly during the initial 40-60 contractions, followed by a phase with little or no change. MNF shows a similar pattern. In situations where there exist a significant relationship between MNF and output, part of the decrease in MNF may per se be related to the decrease in force during dynamic contractions. This study estimated force effects on the MNF shifts during repetitive dynamic knee extensions. Twenty healthy volunteers participated in the study and both surface ME signals (from the right vastus lateralis, vastus medialis, and rectus femoris muscles) and the biomechanical signals (force, position, and velocity) of an isokinetic dynamometer were measured. Two tests were performed: (i) 100 repetitive maximum isokinetic contractions of the right knee extensors, and (ii) five gradually increasing static knee extensions before and after (i). The corresponding ME signal time-frequency representations were calculated using the continuous wavelet transform. Compensation of the MNF variables of the repetitive contractions was performed with respect to the individual MNF-force relation based on an average of five gradually increasing contractions. Whether or not compensation was necessary was based on the shape of the MNF-force relationship. A significant compensation of the MNF was found for the repetitive isokinetic contractions. In conclusion, when investigating maximum dynamic contractions, decreases in MNF can be due to mechanisms similar to those found during sustained static contractions (force-independent component of fatigue) and in some subjects due to a direct effect of the change in force (force-dependent component of fatigue). In order to compare MNF shifts during sustained static and repetitive dynamic contractions it is necessary to estimate the force-dependent component of fatigue of dynamic contractions. Our results are preliminary and have to be confirmed in larger experiments using single dynamic contractions when determining the MNF-force relationship of the unfatigued situation.
Collapse
Affiliation(s)
- J S Karlsson
- Department of Biomedical Engineering and Informatics, University Hospital, Umeå, and Centre for Biomedical Engineering and Physics, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
17
|
Dimitrova NA, Dimitrov GV. Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies. J Electromyogr Kinesiol 2003; 13:13-36. [PMID: 12488084 DOI: 10.1016/s1050-6411(02)00083-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Failure to maintain the required or expected force, defined as muscle fatigue, is accompanied by changes in muscle electrical activity. Although studied for a long time, reasons for EMG changes in time and frequency domain have not been clear until now. Many authors considered that theory predicted linear relation between the characteristic frequencies and muscle fibre propagation velocity (MFPV), irrespective of the fact that spectral characteristics can drop even without any changes in MFPV, or in proportion exceeding the MFPV changes. The amplitude changes seem to be more complicated and contradictory since data on increased, almost unchanged, and decreased amplitude characteristics of the EMG, M-wave or motor unit potential (MUP) during fatigue can be found in literature. Moreover, simultaneous decrease and increase in amplitude of MUP and M-wave, detected with indwelling and surface electrodes, were referred to as paradoxical. In spite of this, EMG amplitude characteristics are predominantly used when causes for fatigue are analysed. We aimed to demonstrate theoretical grounds for pitfalls and fallacies in analysis of experimental results if changes in intracellular action potential (IAP), i.e. in peripheral factors of muscle fatigue, were not taken into consideration. We based on convolution model of potentials produced by a motor unit and detected by a point or rectangular plate electrode in a homogeneous anisotropic infinite volume conductor. Presentation of MUP in the convolution form gave us a chance to consider power spectrum (PS) of MUP as a product of two terms. The first one, PS of the input signal, represented PS of the first temporal derivative of intracellular action potential (IAP). The second term, PS of the impulse response, took into account MFPV, differences in instants of activation of each fibre, MU anatomy, and MU position in the volume conductor in respect to the detecting electrode. PS presentation through product means that not only changes in MFPV could be responsible for PS shift as is usually assumed. Changes in IAP duration and IAP after-potential magnitude, affecting the first term of the product, influence the product and thus MUP PS. Moreover, the interrelations between the two spectra and thus sensitivity of spectrum to different parameters change with MU-electrode distance because the second term depends on it. Thus, we have demonstrated that theory does not predict a linear relation between the characteristic frequencies (maximum, mean and median) and MFPV. IAP duration and after-potential magnitude are among parameters affecting MUP or M-wave PS and thus, EMG PS detected by monopolar and bipolar electrodes. Usage of single fibre action potential models instead of MUP ones can result in false dependencies of frequency characteristics. The MUP amplitude characteristics are determined not only by amplitude of IAP, but also by the length of the IAP profile and source-electrode distance. Due to the IAP profile lengthening and an increase in the negative after-potential, surface detected EMG amplitude characteristics can increase even when IAP amplitude decreases considerably during fatigue. Increase in surface detected MUP or M-wave amplitude should not be attributed to a weaker attenuation of the low-frequency components with distance. Simultaneous decrease and increase in amplitude of MUP and M-wave detected with indwelling and surface electrodes are regular, not paradoxical. Corner frequency of the high pass filter should be 0.5 or 1 Hz when muscle fatigue is analyzed. The area of MUP or M-wave normalized in respect of the amplitude of the terminal phase (that is produced during extinction of the depolarized zones at the ends of the fibres) could be useful as a fatigue index. Analysing literature data on IAP changes due to Ca(2+) increasing, we hypothesised that the ability of muscle fibres to uptake Ca(2+) back into the sarcoplasmic reticulum could be the limiting site for fatigue. If this hypothesis is valid, IAP changes are not a cause of fatigue; they are due to it.
Collapse
Affiliation(s)
- N A Dimitrova
- Centre of Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev. Str., Bl.105, 1113, Sofia, Bulgaria.
| | | |
Collapse
|
18
|
MacIsaac DT, Parker PA, Scott RN, Englehart KB, Duffley C. Influences of dynamic factors on myoelectric parameters. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2001; 20:82-9. [PMID: 11838262 DOI: 10.1109/51.982279] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- D T MacIsaac
- Institute of Biomedical Engineering, Department of Electrical Engineering, University of New Brunswick.
| | | | | | | | | |
Collapse
|