1
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
2
|
Abstract
Monophosphoryl lipid A (MPL®) is a potent vaccine adjuvant derived from Salmonella minnesota that was recently licensed in Europe as a component of an improved vaccine for hepatitis B (Fendrix®). MPL, like lipopolysaccharide from which it is derived, signals via the TLR4/MD-2 complex. We have produced a series of synthetic Toll-like receptor 4 (TLR4) agonists that are based upon the structure of the major hexa-acylated congener contained within MPL. These TLR4 agonists, termed the aminoalkyl glucosaminide phosphates (AGPs), stimulate the production of various cytokines by human peripheral blood mononuclear cells in vitro and up-regulate cell surface markers on monocytes, NK cells and B cells. In addition, AGPs provide non-specific resistance to challenge with viral and bacterial pathogens when administered to the upper airways of mice. Structure—activity relationship studies have shown that the activation of innate immune effectors by AGPs depends primarily on the length of the secondary acyl chains and the nature of the functional group attached to the aglycon component. Moreover, AGPs can act as potent adjuvants for mucosal administration of vaccine antigens, enhancing both antigen-specific antibody and cell-mediated immune responses. Thus, by combining the adjuvant and non-specific resistance induction properties of AGPs it may be possible to generate mucosal vaccines that provide innate protection immediately following administration together with long-term acquired immunity.
Collapse
Affiliation(s)
- Mark R. Alderson
- GlaxoSmithKline Biologicals North America, Seattle, Washington, USA
| | - Patrick McGowan
- GlaxoSmithKline Biologicals North America, Seattle, Washington, USA
| | - Jory R. Baldridge
- GlaxoSmithKline Biologicals North America, Hamilton, Montana, USA, jory.r.baldridge@ gskbio.com
| | - Peter Probst
- GlaxoSmithKline Biologicals North America, Seattle, Washington, USA
| |
Collapse
|
3
|
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN NEUROLOGY 2012; 2012:701950. [PMID: 23097717 PMCID: PMC3477747 DOI: 10.5402/2012/701950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023]
Abstract
The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.
Collapse
Affiliation(s)
- Carina Mallard
- Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530 Gothenburg, Sweden
| |
Collapse
|
4
|
Abstract
One of the most fundamental questions in immunology pertains to the recognition of non-self, which for the most part means microbes. How do we initially realize that we have been inoculated with microbes, and how is the immune response ignited? Genetic studies have made important inroads into this question during the past decade, and we now know that in mammals, a relatively small number of receptors operate to detect signature molecules that herald infection. One or more of these signature molecules are displayed by almost all microbes. These receptors and the signals they initiate have been studied in depth by random germline mutagenesis and positional cloning (forward genetics). Herein is a concise description of what has been learned about the Toll-like receptors, which play an essential part in the perception of microbes and shape the complex host responses that occur during infection.
Collapse
|
5
|
Wang X, Garrick MD, Yang F, Dailey LA, Piantadosi CA, Ghio AJ. TNF, IFN-γ, and endotoxin increase expression of DMT1 in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 289:L24-33. [PMID: 15749739 DOI: 10.1152/ajplung.00428.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of the metal transport protein divalent metal transporter-1 (DMT1) may contribute to the uptake and detoxification of iron by cells resident in the respiratory tract. Inflammation has been associated with an increased availability of this metal resulting in an oxidative stress. Because proinflammatory cytokines and LPS have been demonstrated to affect an elevated expression of DMT1 in a macrophage cell line, we tested the hypothesis that tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and LPS increase DMT1 expression in airway epithelial cells. We used RT-PCR to detect mRNA for both −IRE DMT1 and +IRE DMT1 in BEAS-2B cells. Treatment with TNF-α, IFN-γ, or LPS increased both forms. Western blot analysis also demonstrated an increase in the expression of both isoforms of DMT1 after these treatments. Twenty-four hours after exposure of an animal model to TNF-α, IFN-γ, or LPS, a significant increase in pulmonary expression of −IRE DMT1 was seen by immunohistochemistry; the level of +IRE DMT1 was too low in the lung to be visualized using this methodology. Finally, iron transport into BEAS-2B cells was increased after inclusion of TNF-α, IFN-γ, or LPS in the media. We conclude that proinflammatory cytokines and LPS increase mRNA and protein expression of DMT1 in airway cells in vitro and in vivo. Furthermore, both −IRE and +IRE isoforms are elevated after exposures. Increased expression of this protein appears to be included in a coordinated response of the cell and tissue where the function might be to diminish availability of metal.
Collapse
Affiliation(s)
- Xinchao Wang
- Center for Environmental Medicine and Lung Biology, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | |
Collapse
|
6
|
Cluff CW, Baldridge JR, Stöver AG, Evans JT, Johnson DA, Lacy MJ, Clawson VG, Yorgensen VM, Johnson CL, Livesay MT, Hershberg RM, Persing DH. Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect Immun 2005; 73:3044-52. [PMID: 15845512 PMCID: PMC1087352 DOI: 10.1128/iai.73.5.3044-3052.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A compound family of synthetic lipid A mimetics (termed the aminoalkyl glucosaminide phosphates [AGPs]) was evaluated in murine infectious disease models of protection against challenge with Listeria monocytogenes and influenza virus. For the Listeria model, intravenous administration of AGPs was followed by intravenous bacterial challenge 24 h later. Spleens were harvested 2 days postchallenge for the enumeration of CFU. For the influenza virus model, mice were challenged with virus via the intranasal/intrapulmonary route 48 h after intranasal/intrapulmonary administration of AGPs. The severity of disease was assessed daily for 3 weeks following challenge. Several types of AGPs provided strong protection against influenza virus or Listeria challenge in wild-type mice, but they were inactive in the C3H/HeJ mouse, demonstrating the dependence of the AGPs on toll-like receptor 4 (TLR4) signaling for the protective effect. Structure-activity relationship studies showed that the activation of innate immune effectors by AGPs depends primarily on the lengths of the secondary acyl chains within the three acyl-oxy-acyl residues and also on the nature of the functional group attached to the aglycon component. We conclude that the administration of synthetic TLR4 agonists provides rapid pharmacologic induction of innate resistance to infectious challenge by two different pathogen classes, that this effect is mediated via TLR4, and that structural differences between AGPs can have dramatic effects on agonist activity in vivo.
Collapse
|
7
|
Baldridge JR, McGowan P, Evans JT, Cluff C, Mossman S, Johnson D, Persing D. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther 2005; 4:1129-38. [PMID: 15268679 DOI: 10.1517/14712598.4.7.1129] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Toll-like receptor (TLR) agonists are being developed for use as vaccine adjuvants and as stand-alone immunomodulators because of their ability to stimulate innate and adaptive immune responses. Among the most thoroughly studied TLR agonists are the lipid A molecules that target the TLR4 complex. One promising candidate, monophosphoryl lipid A, which is a derivative of lipid A from Salmonella minnesota, has proven to be safe and effective as a vaccine adjuvant in > 120,000 human doses. A new class of synthetic lipid A mimetics, the aminoalkyl glucosaminide 4-phosphates (AGPs), have been engineered specifically to target human TLR4 and are showing promise as vaccine adjuvants and as monotherapeutic agents capable of eliciting nonspecific protection against a wide range of infectious pathogens. In this review, the authors provide an update of the preclinical and clinical experiences with the TLR4 agonists, MPL (Corixa Corporation) adjuvant and the AGPs.
Collapse
Affiliation(s)
- Jory R Baldridge
- Corixa Corporation, 553 Old Corvallis Road, Hamilton, MT 59840, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
How does the host sense pathogens? Our present concepts grew directly from longstanding efforts to understand infectious disease: how microbes harm the host, what molecules are sensed and, ultimately, the nature of the receptors that the host uses. The discovery of the host sensors--the Toll-like receptors--was rooted in chemical, biological and genetic analyses that centred on a bacterial poison, termed endotoxin.
Collapse
Affiliation(s)
- Bruce Beutler
- The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
9
|
Quakyi EK, Hochstein HD, Tsai CM. Modulation of the biological activities of meningococcal endotoxins by association with outer membrane proteins is not inevitably linked to toxicity. Infect Immun 1997; 65:1972-9. [PMID: 9125592 PMCID: PMC175256 DOI: 10.1128/iai.65.5.1972-1979.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Meningococcal sepsis results partly from overproduction of host cytokines after macrophages interact with endotoxin. To obtain less toxic and highly immunomodulatory meningococcal endotoxins for prophylactic purposes, we investigated the relationship between endotoxicity and immunomodulatory activity of several endotoxin preparations from Neisseria meningitidis group B. Using the D-galactosamine-sensitized mouse model to determine endotoxin lethality, we found that the toxicity of purified lipooligosaccharide (LOS) from M986, a group B disease strain, was three to four times higher than those of purified LOSs from the noncapsulated strains M986-NCV-1 and OP-, the truncated-LOS mutant. The LOSs of outer membrane vesicles (OMVs) and detergent-treated OMVs (D-OMVs) from the three strains were 2 to 3 and over 300 times less toxic than the purified LOSs, respectively. Intraperitoneal administration of these preparations induced production of tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in serum 2 h after injections. However, repeated doses of low- and high-toxicity preparations induced lower amounts of TNF-alpha and IL-6, i.e., LOS tolerance. Injection of mice with low doses of LOS was as effective as injection with high doses in inducing tolerance. Peritoneal macrophages from tolerant mice pretreated with either high- or low-toxicity LOS preparations produced only a fraction of the amounts of TNF-alpha and IL-6 produced by control groups in response to LOS ex vivo. Despite tolerance to LOS induced by pretreatment with reduced-toxicity preparations, killing of N. meningitidis M986 by macrophages from these animals was enhanced. Protection was achieved when mice treated with LOS, and especially that of D-OMVs, were challenged with live N. meningitidis. The least toxic LOS, that in D-OMVs, was most effective in inducing hyporesponsiveness to endotoxin in mice but protected them against challenge with N. meningitidis. No inevitable link between toxicity and host immune modulation and responses was shown. Our results show that LOS is responsible for both toxicity and immunomodulation. When LOS is tightly associated with outer membrane proteins in D-OMV, it reduces toxicity but enhances beneficial effects compared to results with its purified form. Thus, systematic and critical evaluation of D-OMVs as adjuvants or as portions of group B meningococcal vaccines may help improve survival and outcome in meningococcal sepsis.
Collapse
Affiliation(s)
- E K Quakyi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
10
|
Kato N, Kato O, Nakashima I. Effect of capsular polysaccharide of Klebsiella pneumoniae on host resistance to bacterial infections. I. Induction of increased susceptibility to infections in mice. JAPANESE JOURNAL OF MICROBIOLOGY 1976; 20:163-72. [PMID: 9528 DOI: 10.1111/j.1348-0421.1976.tb00971.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When Klebsiella pneumoniae capsular polysaccharide (CPS-K) from type 1, Kasuya strain, was injected intraperitoneally (i.p.) immediately before i.p. bacterial challenge, the survival time of mice infected with Salmonella enteritidis NUB 1 (virulent strain) was shortened and the mortality rate for mice infected with S. enteritidis NUB 31 (avirulent strain) was enhanced. The promotion of infection with S. enteritidis NUB 1 by CPS-K depended upon its dose, the effect of CPS-K being demonstrable up to as little as 0.2 mug per mouse. In the case of S. enteritidis NUB 31, the effect of CPS-K was detectable only when more than 20 mug per mouse was injected. As a result of enumeration of bacterial populations in the peritoneal washing, blood, liver and spleen, it was revealed that CPS-K promoted in vivo growth of S. enteritidis NUB 1 and NUB 31. In addition, CPS-K enhanced the mortality rate in mice infected with Streptococcus pyogenes or Streptococcus pneumoniae. The peak CPS-K effect on infection with S. enteritidis NUB 1 was seen when given immediately before bacterial challenge. The active substance responsible for the infection-promoting effect of CPS-K was neutral CPS-K, which is distinct from the O antigen and from acidic CPS-K (the type-specific capsular antigen). Preparations of neutral CPS-K isolated from the other three strains of K. pneumoniae exhibited a marked infection-promoting effect comparable with that of preparations from the Kasuya strain. Neutral CPS-K, with identical antigenicity to that from the Kasuya strain, has already been found to exert a strong adjuvant effect on antibody responses to various antigens in mice. No parallelism exists between infection-promoting activity and adjuvant activity of neutral CPS-K.
Collapse
|
11
|
The effect of endotoxin on thin lipid bilayer membranes. J Membr Biol 1970; 3:67-72. [DOI: 10.1007/bf01868007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1970] [Indexed: 10/25/2022]
|
12
|
Rosselet JP, Murphy SG, Adamski RJ, Fletcher MJ, Ludwig BJ. Endotoxin-free biologically active component of Escherichia coli. J Bacteriol 1969; 98:434-6. [PMID: 4891255 PMCID: PMC284834 DOI: 10.1128/jb.98.2.434-436.1969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The proteinaceous component of gram-negative bacteria, which has been termed "protodyne," enhances nonspecific host resistance while eliciting a slight pyrogenic response equivalent to 0.2% that of a typical endotoxin. Since this material still contains small amounts of carbohydrate and lipid, it was imperative to establish that its biological activities are not the result of endotoxin contamination. Evidence that the protective activity of protodyne does not result from endotoxin contamination has now been obtained by an evaluation of the Pronase digestion products of this substance. These digestion products were found to be nonpyrogenic and to contain no measurable amount of 2-keto-3-deoxyoctonate, an essential component of bacterial lipopolysaccharides.
Collapse
|
13
|
Fukui GM, Goldenbaum E, Berger FM. Effect of plasma on non-specific resistance to infection induced by endotoxin or protodyne. Nature 1968; 218:362-3. [PMID: 4870184 DOI: 10.1038/218362a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|