1
|
Iguchi R, Nakayama S, Sasakura Y, Sekiguchi T, Ogasawara M. Repetitive and zonal expression profiles of absorption-related genes in the gastrointestinal tract of ascidian Ciona intestinalis type A. Cell Tissue Res 2023; 394:343-360. [PMID: 37670165 DOI: 10.1007/s00441-023-03828-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Intestinal absorption is essential for heterotrophic bilaterians with a tubular gut. Although the fundamental features of the digestive system were shared among chordates with evolution, the gut morphologies of vertebrates diverged and adapted to different food habitats. The ascidian Ciona intestinalis type A, a genome-wide research model of basal chordates, is used to examine the functional morphology of the intestines because of its transparent juvenile body. In the present study, the characteristic gene expression patterns (GEP) of Ciona absorptive proteins, e.g., brush border membrane enzymes for terminal digestion (lactase, maltase, APA, and APN) and transporters (SGLT1, GLUT5, PEPT1, and B0AT1), were investigated in juveniles and young adults, with a special reference to the absorption of other nutrients by pinocytosis- and phagocytosis-related proteins (megalin, cubilin, amnionless, Dab2, Rab7, LAMP, cathepsins, and MRC1). Whole-mount in situ hybridization revealed that these GEP showed multi-regional and repetitive features along the Ciona gastrointestinal tract, mainly in the stomach and several regions of the intestines. In young adults, many absorption-related genes, including pinocytosis-/phagocytosis-related genes, were also expressed between the stomach and mid-intestine. In the gastrointestinal epithelium, absorption-related genes showed zonal GEP along the epithelial structure. Comparisons of GEP, including other intestinal functions, such as nutrient digestion and intestinal protection, indicated the repetitive assignment of a well-coordinated set of intestinal GEP in the Ciona gastrointestinal tract.
Collapse
Affiliation(s)
- Rin Iguchi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Satoshi Nakayama
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Toshio Sekiguchi
- The Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Housu-Gun, Ishikawa, 927-0553, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan.
| |
Collapse
|
2
|
Kostyuchenko RP, Amosov AV. Spatial Colinear but Broken Temporal Expression of Duplicated ParaHox Genes in Asexually Reproducing Annelids, Nais communis and Pristina longiseta. Genes (Basel) 2023; 14:1501. [PMID: 37510405 PMCID: PMC10379933 DOI: 10.3390/genes14071501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
ParaHox genes are key developmental regulators involved in the patterning of the digestive tract along the anteroposterior axis and the development of the nervous system. Most studies have focused on the function of these genes in embryogenesis, while their expression patterns in postembryonic development often remain unknown. In this study, we identified for the first time all ParaHox orthologs in two naidid oligochaetes, N. communis and P. longiseta, and described their expression patterns during normal growth and fission in these animals. We showed that Gsx and Cdx are presented by two paralogs, while Xlox is a single copy gene in both species. Using whole-mount in situ hybridization, we also found that orthologs, except for the Xlox gene, have similar activity patterns with minor differences in details, while the expression patterns of paralogs can differ significantly. However, all these genes are involved in axial patterning and/or in tissue remodeling during growth and asexual reproduction in naidids. Moreover, during paratomic fission, these genes are expressed with spatial colinearity but temporal colinearity is broken. The results of this study may be evidence of the functional diversification of duplicated genes and suggest involvement of the ParaHox genes in whole-body patterning during growth and asexual reproduction in annelids.
Collapse
Affiliation(s)
- Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Artem V Amosov
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Mulhair PO, Crowley L, Boyes DH, Harper A, Lewis OT, Holland PWH. Diversity, duplication, and genomic organization of homeobox genes in Lepidoptera. Genome Res 2023; 33:32-44. [PMID: 36617663 PMCID: PMC9977156 DOI: 10.1101/gr.277118.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Homeobox genes encode transcription factors with essential roles in patterning and cell fate in developing animal embryos. Many homeobox genes, including Hox and NK genes, are arranged in gene clusters, a feature likely related to transcriptional control. Sparse taxon sampling and fragmentary genome assemblies mean that little is known about the dynamics of homeobox gene evolution across Lepidoptera or about how changes in homeobox gene number and organization relate to diversity in this large order of insects. Here we analyze an extensive data set of high-quality genomes to characterize the number and organization of all homeobox genes in 123 species of Lepidoptera from 23 taxonomic families. We find most Lepidoptera have around 100 homeobox loci, including an unusual Hox gene cluster in which the lab gene is repositioned and the ro gene is next to pb A topologically associating domain spans much of the gene cluster, suggesting deep regulatory conservation of the Hox cluster arrangement in this insect order. Most Lepidoptera have four Shx genes, divergent zen-derived loci, but these loci underwent dramatic duplication in several lineages, with some moths having over 165 homeobox loci in the Hox gene cluster; this expansion is associated with local LINE element density. In contrast, the NK gene cluster content is more stable, although there are differences in organization compared with other insects, as well as major rearrangements within butterflies. Our analysis represents the first description of homeobox gene content across the order Lepidoptera, exemplifying the potential of newly generated genome assemblies for understanding genome and gene family evolution.
Collapse
Affiliation(s)
- Peter O Mulhair
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Liam Crowley
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Douglas H Boyes
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Amber Harper
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Peter W H Holland
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| |
Collapse
|
4
|
Gaunt SJ. Seeking Sense in the Hox Gene Cluster. J Dev Biol 2022; 10:48. [PMID: 36412642 PMCID: PMC9680502 DOI: 10.3390/jdb10040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hox gene cluster, responsible for patterning of the head-tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head-tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head-tail axis?
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
5
|
Wei M, Qin Z, Kong D, Liu D, Zheng Q, Bai S, Zhang Z, Ma Y. Echiuran Hox genes provide new insights into the correspondence between Hox subcluster organization and collinearity pattern. Proc Biol Sci 2022; 289:20220705. [PMID: 36264643 PMCID: PMC9449475 DOI: 10.1098/rspb.2022.0705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/29/2022] [Indexed: 09/16/2023] Open
Abstract
In many bilaterians, Hox genes are generally clustered along the chromosomes and expressed in spatial and temporal order. In vertebrates, the expression of Hox genes follows a whole-cluster spatio-temporal collinearity (WSTC) pattern, whereas in some invertebrates the expression of Hox genes exhibits a subcluster-level spatio-temporal collinearity pattern. In bilaterians, the diversity of collinearity patterns and the cause of collinearity differences in Hox gene expression remain poorly understood. Here, we investigate genomic organization and expression pattern of Hox genes in the echiuran worm Urechis unicinctus (Annelida, Echiura). Urechis unicinctus has a split cluster with four subclusters divided by non-Hox genes: first subcluster (Hox1 and Hox2), second subcluster (Hox3), third subcluster (Hox4, Hox5, Lox5, Antp and Lox4), fourth subcluster (Lox2 and Post2). The expression of U. unicinctus Hox genes shows a subcluster-based whole-cluster spatio-temporal collinearity (S-WSTC) pattern: the anterior-most genes in each subcluster are activated in a spatially and temporally colinear manner (reminiscent of WSTC), with the subsequent genes in each subcluster then being very similar to their respective anterior-most subcluster gene. Combining genomic organization and expression profiles of Hox genes in different invertebrate lineages, we propose that the spatio-temporal collinearity of invertebrate Hox is subcluster-based.
Collapse
Affiliation(s)
- Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qiaojun Zheng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, People's Republic of China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Essay the (unusual) heuristic value of Hox gene clusters; a matter of time? Dev Biol 2022; 484:75-87. [PMID: 35182536 DOI: 10.1016/j.ydbio.2022.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Ever since their first report in 1984, Antennapedia-type homeobox (Hox) genes have been involved in such a series of interesting observations, in particular due to their conserved clustered organization between vertebrates and arthropods, that one may legitimately wonder about the origin of this heuristic value. In this essay, I first consider different examples where Hox gene clusters have been instrumental in providing conceptual advances, taken from various fields of research and mostly involving vertebrate embryos. These examples touch upon our understanding of genomic evolution, the revisiting of 19th century views on the relationships between development and evolution and the building of a new framework to understand long-range and pleiotropic gene regulation during development. I then discuss whether the high value of the Hox gene family, when considered as an epistemic object, is related to its clustered structure (and the absence thereof in some animal species) and, if so, what is it in such particular genetic oddities that made them so generous in providing the scientific community with interesting information.
Collapse
|
7
|
Gomes-Dos-Santos A, Lopes-Lima M, Machado AM, Marcos Ramos A, Usié A, Bolotov IN, Vikhrev IV, Breton S, Castro LFC, da Fonseca RR, Geist J, Österling ME, Prié V, Teixeira A, Gan HM, Simakov O, Froufe E. The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). DNA Res 2021; 28:6182681. [PMID: 33755103 PMCID: PMC8088596 DOI: 10.1093/dnares/dsab002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species’ unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel Lopes-Lima
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal.,IUCN SSC Mollusc Specialist Group, c/o IUCN, Cambridge, England
| | - André M Machado
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.,MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL-Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908 Beja, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.,MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL-Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908 Beja, Portugal
| | - Ivan N Bolotov
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia
| | - Ilya V Vikhrev
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - L Filipe C Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Juergen Geist
- Aquatic Systems Biology Unit, Technical University of Munich, TUM School of Life Sciences, D-85354 Freising, Germany
| | - Martin E Österling
- Department of Environmental and Life Sciences-Biology, Karlstad University, 651 88 Karlstad, Sweden
| | - Vincent Prié
- Research Associate, Institute of Systematics, Evolution, Biodiversity (ISYEB), National Museum of Natural History (MNHN), CNRS, SU, EPHE, 75005 Paris, France
| | - Amílcar Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Han Ming Gan
- GeneSEQ Sdn Bhd, Bandar Bukit Beruntung, Rawang 48300, Selangor, Malaysia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1010 Vienna, Austria
| | - Elsa Froufe
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal
| |
Collapse
|
8
|
Cui Z, Liu Y, Yuan J, Zhang X, Ventura T, Ma KY, Sun S, Song C, Zhan D, Yang Y, Liu H, Fan G, Cai Q, Du J, Qin J, Shi C, Hao S, Fitzgibbon QP, Smith GG, Xiang J, Chan TY, Hui M, Bao C, Li F, Chu KH. The Chinese mitten crab genome provides insights into adaptive plasticity and developmental regulation. Nat Commun 2021; 12:2395. [PMID: 33888695 PMCID: PMC8062507 DOI: 10.1038/s41467-021-22604-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
The infraorder Brachyura (true or short-tailed crabs) represents a successful group of marine invertebrates yet with limited genomic resources. Here we report a chromosome-anchored reference genome and transcriptomes of the Chinese mitten crab Eriocheir sinensis, a catadromous crab and invasive species with wide environmental tolerance, strong osmoregulatory capacity and high fertility. We show the expansion of specific gene families in the crab, including F-ATPase, which enhances our knowledge on the adaptive plasticity of this successful invasive species. Our analysis of spatio-temporal transcriptomes and the genome of E. sinensis and other decapods shows that brachyurization development is associated with down-regulation of Hox genes at the megalopa stage when tail shortening occurs. A better understanding of the molecular mechanism regulating sexual development is achieved by integrated analysis of multiple omics. These genomic resources significantly expand the gene repertoire of Brachyura, and provide insights into the biology of this group, and Crustacea in general.
Collapse
Affiliation(s)
- Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China.
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tomer Ventura
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Ka Yan Ma
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shuai Sun
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Chengwen Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Hourong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | - Jing Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jing Qin
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | | | - Shijie Hao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Tin-Yam Chan
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Min Hui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
9
|
On the origin of vertebrate body plan: Insights from the endoderm using the hourglass model. Gene Expr Patterns 2020; 37:119125. [PMID: 32599288 DOI: 10.1016/j.gep.2020.119125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2020] [Accepted: 06/21/2020] [Indexed: 11/23/2022]
Abstract
The vertebrate body plan is thought to be derived during the early Cambrian from a worm-like chordate ancestor. While all three germ layers were clearly involved in this innovation, the role of the endoderm remains elusive. According to the hourglass model, the optimal window for investigating the evolution of vertebrate endoderm-derived structures during cephalochordate development is from the Spemann's organizer stage to the opening of the mouth (Stages 1-7, described herein). Regulatory gene expression, examined during these stages, illustrate that the cephalochordate endoderm is patterned into 12 organ primordia. Early vertebrates inherited at least a portion of 6 of these primordia, while the remainder were lost. Of those that were preserved, we demonstrate that the vertebrate symmetric mouth was built on a vestige of the anterior pre-oral pit, that the pre-existing pharyngeal pouch in this chordate ancestor laid the foundation for the new neural crest cell (NCC)-derived vertebrate-type pharyngeal arches, that the thyroid evolved from the posterior endostyle primordim, that the pancreas was derived from the Pdx1-expressing diverticulum primordium, and the small and large intestines originated with the Cdx1-expressing hindgut rudiments. This investigation uncovers the evolutionary foundations of vertebrate endoderm-derived structures, and demonstrates that the number of organ primordia were reduced during evolution.
Collapse
|
10
|
DeBiasse MB, Colgan WN, Harris L, Davidson B, Ryan JF. Inferring Tunicate Relationships and the Evolution of the Tunicate Hox Cluster with the Genome of Corella inflata. Genome Biol Evol 2020; 12:948-964. [PMID: 32211845 PMCID: PMC7337526 DOI: 10.1093/gbe/evaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
Tunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Toward this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, "inflated" atrial chamber. Combining the new genome sequence for Co. inflata with publicly available tunicate data, we estimated a tunicate species phylogeny, reconstructed the ancestral Hox gene cluster at important nodes in the tunicate tree, and compared patterns of gene loss between Co. inflata and Ciona robusta, the prevailing tunicate model species. Our maximum-likelihood and Bayesian trees estimated from a concatenated 210-gene matrix were largely concordant and showed that Aplousobranchia was nested within a paraphyletic Phlebobranchia. We demonstrated that this relationship is not an artifact due to compositional heterogeneity, as had been suggested by previous studies. In addition, within Thaliacea, we recovered Doliolida as sister to the clade containing Salpida and Pyrosomatida. The Co. inflata genome provides increased resolution of the ancestral Hox clusters of key tunicate nodes, therefore expanding our understanding of the evolution of this cluster and its potential impact on tunicate morphological diversity. Our analyses of other gene families revealed that several cardiovascular associated genes (e.g., BMP10, SCL2A12, and PDE2a) absent from Ci. robusta, are present in Co. inflata. Taken together, our results help clarify tunicate relationships and the genomic content of key ancestral nodes within this phylogeny, providing critical insights into tunicate evolution.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida
- Department of Biology, University of Florida, Gainesville
| | - William N Colgan
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Lincoln Harris
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida
- Department of Biology, University of Florida, Gainesville
| |
Collapse
|
11
|
Dai Y, Holland PWH. The Interaction of Natural Selection and GC Skew May Drive the Fast Evolution of a Sand Rat Homeobox Gene. Mol Biol Evol 2019; 36:1473-1480. [PMID: 30968125 PMCID: PMC6573468 DOI: 10.1093/molbev/msz080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Several processes can lead to strong GC skew in localized genomic regions. In most cases, GC skew should not affect conserved amino acids because natural selection will purge deleterious alleles. However, in the gerbil subfamily of rodents, several conserved genes have undergone radical alteration in association with strong GC skew. An extreme example concerns the highly conserved homeobox gene Pdx1, which is uniquely divergent and GC rich in the sand rat Psammomys obesus and close relatives. Here, we investigate the antagonistic interplay between very rare amino acid changes driven by GC skew and the force of natural selection. Using ectopic protein expression in cell culture, pulse-chase labeling, in vitro mutagenesis, and drug treatment, we compare properties of mouse and sand rat Pdx1 proteins. We find that amino acid change driven by GC skew resulted in altered protein stability, with a significantly longer protein half-life for sand rat Pdx1. Using a reversible inhibitor of the 26S proteasome, MG132, we find that sand rat and mouse Pdx1 are both degraded through the ubiquitin proteasome pathway. However, in vitro mutagenesis reveals this pathway operates through different amino acid residues. We propose that GC skew caused loss of a key ubiquitination site, conserved through vertebrate evolution, and that sand rat Pdx1 evolved or fixed a new ubiquitination site to compensate. Our results give molecular insight into the power of natural selection in the face of maladaptive changes driven by strong GC skew.
Collapse
Affiliation(s)
- Yichen Dai
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
12
|
He C, Han T, Liao X, Zhou Y, Wang X, Guan R, Tian T, Li Y, Bi C, Lu N, He Z, Hu B, Zhou Q, Hu Y, Lu Z, Chen JY. Phagocytic intracellular digestion in amphioxus ( Branchiostoma). Proc Biol Sci 2019; 285:rspb.2018.0438. [PMID: 29875301 PMCID: PMC6015868 DOI: 10.1098/rspb.2018.0438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/11/2018] [Indexed: 01/10/2023] Open
Abstract
The digestive methods employed by amphioxus (Branchiostoma)—both intracellular phagocytic digestion and extracellular digestion—have been discussed since 1937. Recent studies also show that epithelial cells lining the Branchiostoma digestive tract can express many immune genes. Here, in Branchiostoma belcheri, using a special tissue fixation method, we show that some epithelial cells, especially those lining the large diverticulum protruding from the gut tube, phagocytize food particles directly, and Branchiostoma can rely on this kind of phagocytic intracellular digestion to obtain energy throughout all stages of its life. Gene expression profiles suggest that diverticulum epithelial cells have functional features of both digestive cells and phagocytes. In starved Branchiostoma, these cells accumulate endogenous digestive and hydrolytic enzymes, whereas, when sated, they express many kinds of immune genes in response to stimulation by phagocytized food particles. We also found that the distal hindgut epithelium can phagocytize food particles, but not as many. These results illustrate phagocytic intercellular digestion in Branchiostoma, explain why Branchiostoma digestive tract epithelial cells express typical immune genes and suggest that the main physiological function of the Branchiostoma diverticulum is different from that of the vertebrate liver.
Collapse
Affiliation(s)
- Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Xin Liao
- Nanjing Institute of Paleontology and Geology, Nanjing, People's Republic of China.,Guangxi Mangrove Research Center, Beihai, Guangxi, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Xiuqiang Wang
- Beihai Marine Science and Economy Park, Beihai, Guangxi, People's Republic of China
| | - Rui Guan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yixin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Changwei Bi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Ziyi He
- Electron Microscopy Research Center, School of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bing Hu
- Electron Microscopy Research Center, School of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiang Zhou
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yue Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | | | | |
Collapse
|
13
|
Transcriptional regulation of the Ciona Gsx gene in the neural plate. Dev Biol 2018; 448:88-100. [PMID: 30583796 DOI: 10.1016/j.ydbio.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
The ascidian neural plate consists of a defined number of identifiable cells organized in a grid of rows and columns, representing a useful model to investigate the molecular mechanisms controlling neural patterning in chordates. Distinct anterior brain lineages are specified via unique combinatorial inputs of signalling pathways with Nodal and Delta-Notch signals patterning along the medial-lateral axis and FGF/MEK/ERK signals patterning along the anterior-posterior axis of the neural plate. The Ciona Gsx gene is specifically expressed in the a9.33 cells in the row III/column 2 position of anterior brain lineages, characterised by a combinatorial input of Nodal-OFF, Notch-ON and FGF-ON. Here, we identify the minimal cis-regulatory element (CRE) of 376 bp, which can recapitulate the early activation of Gsx. We show that this minimal CRE responds in the same way as the endogenous Gsx gene to manipulation of FGF- and Notch-signalling pathways and to overexpression of Snail, a mediator of Nodal signals, and Six3/6, which is required to demarcate the anterior boundary of Gsx expression at the late neurula stage. We reveal that sequences proximal to the transcription start site include a temporal regulatory element required for the precise transcriptional onset of gene expression. We conclude that sufficient spatial and temporal information for Gsx expression is integrated in 376 bp of non-coding cis-regulatory sequences.
Collapse
|
14
|
Treffkorn S, Kahnke L, Hering L, Mayer G. Expression of NK cluster genes in the onychophoran Euperipatoides rowelli: implications for the evolution of NK family genes in nephrozoans. EvoDevo 2018; 9:17. [PMID: 30026904 PMCID: PMC6050708 DOI: 10.1186/s13227-018-0105-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Background Understanding the evolution and development of morphological traits of the last common bilaterian ancestor is a major goal of the evo-devo discipline. The reconstruction of this "urbilaterian" is mainly based on comparative studies of common molecular patterning mechanisms in recent model organisms. The NK homeobox genes are key players in many of these molecular pathways, including processes regulating mesoderm, heart and neural development. Shared features seen in the expression patterns of NK genes have been used to determine the ancestral bilaterian characters. However, the commonly used model organisms provide only a limited view on the evolution of these molecular pathways. To further investigate the ancestral roles of NK cluster genes, we analyzed their expression patterns in the onychophoran Euperipatoides rowelli. Results We identified nine transcripts of NK cluster genes in E. rowelli, including single copies of NK1, NK3, NK4, NK5, Msx, Lbx and Tlx, and two copies of NK6. All of these genes except for NK6.1 and NK6.2 are expressed in different mesodermal organs and tissues in embryos of E. rowelli, including the anlagen of somatic musculature and the heart. Furthermore, we found distinct expression patterns of NK3, NK5, NK6, Lbx and Msx in the developing nervous system. The same holds true for the NKL gene NK2.2, which does not belong to the NK cluster but is a related gene playing a role in neural patterning. Surprisingly, NK1, Msx and Lbx are additionally expressed in a segment polarity-like pattern early in development-a feature that has been otherwise reported only from annelids. Conclusion Our results indicate that the NK cluster genes were involved in mesoderm and neural development in the last common ancestor of bilaterians or at least nephrozoans (i.e., bilaterians to the exclusion of xenacoelomorphs). By comparing our data from an onychophoran to those from other bilaterians, we critically review the hypothesis of a complex "urbilaterian" with a segmented body, a pulsatile organ or heart, and a condensed mediolaterally patterned nerve cord.
Collapse
Affiliation(s)
- Sandra Treffkorn
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Laura Kahnke
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
15
|
Pantzartzi CN, Pergner J, Kozmik Z. The role of transposable elements in functional evolution of amphioxus genome: the case of opsin gene family. Sci Rep 2018; 8:2506. [PMID: 29410521 PMCID: PMC5802833 DOI: 10.1038/s41598-018-20683-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are able to jump to new locations (transposition) in the genome, usually after replication. They constitute the so-called selfish or junk DNA and take over large proportions of some genomes. Due to their ability to move around they can change the DNA landscape of genomes and are therefore a rich source of innovation in genes and gene regulation. Surge of sequence data in the past years has significantly facilitated large scale comparative studies. Cephalochordates have been regarded as a useful proxy to ancestral chordate condition partially due to the comparatively slow evolutionary rate at morphological and genomic level. In this study, we used opsin gene family from three Branchiostoma species as a window into cephalochordate genome evolution. We compared opsin complements in terms of family size, gene structure and sequence allowing us to identify gene duplication and gene loss events. Furthermore, analysis of the opsin containing genomic loci showed that they are populated by TEs. In summary, we provide evidence of the way transposable elements may have contributed to the evolution of opsin gene family and to the shaping of cephalochordate genomes in general.
Collapse
Affiliation(s)
- Chrysoula N Pantzartzi
- Laboratory of Eye Biology, Institute of Molecular Genetics of the ASCR, v.v.i., Division BIOCEV, Prumyslová 595, 252 50, Vestec, Czech Republic
| | - Jiri Pergner
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 14220, Prague 4, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Eye Biology, Institute of Molecular Genetics of the ASCR, v.v.i., Division BIOCEV, Prumyslová 595, 252 50, Vestec, Czech Republic. .,Department of Transcriptional Regulation, Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
16
|
Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties. Proc Natl Acad Sci U S A 2017; 114:E1913-E1922. [PMID: 28228521 DOI: 10.1073/pnas.1614501114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temporal collinearity is often considered the main force preserving Hox gene clusters in animal genomes. Studies that combine genomic and gene expression data are scarce, however, particularly in invertebrates like the Lophotrochozoa. As a result, the temporal collinearity hypothesis is currently built on poorly supported foundations. Here we characterize the complement, cluster, and expression of Hox genes in two brachiopod species, Terebratalia transversa and Novocrania anomalaT. transversa has a split cluster with 10 genes (lab, pb, Hox3, Dfd, Scr, Lox5, Antp, Lox4, Post2, and Post1), whereas N. anomala has 9 genes (apparently missing Post1). Our in situ hybridization, real-time quantitative PCR, and stage-specific transcriptomic analyses show that brachiopod Hox genes are neither strictly temporally nor spatially collinear; only pb (in T. transversa), Hox3 (in both brachiopods), and Dfd (in both brachiopods) show staggered mesodermal expression. Thus, our findings support the idea that temporal collinearity might contribute to keeping Hox genes clustered. Remarkably, expression of the Hox genes in both brachiopod species demonstrates cooption of Hox genes in the chaetae and shell fields, two major lophotrochozoan morphological novelties. The shared and specific expression of Hox genes, together with Arx, Zic, and Notch pathway components in chaetae and shell fields in brachiopods, mollusks, and annelids provide molecular evidence supporting the conservation of the molecular basis for these lophotrochozoan hallmarks.
Collapse
|
17
|
Possible rules for the ancestral origin of Hox gene collinearity. J Theor Biol 2016; 410:1-8. [DOI: 10.1016/j.jtbi.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
|
18
|
Papageorgiou S. Hox Gene Collinearity: From A-P Patterning to Radially Symmetric Animals. Curr Genomics 2016; 17:444-449. [PMID: 28217001 PMCID: PMC5267470 DOI: 10.2174/1389202917666160616082436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/14/2016] [Accepted: 06/10/2016] [Indexed: 11/22/2022] Open
Abstract
Hox gene collinearity relates the gene order of the Hox cluster in the chromosome (telomeric to centromeric end) with the serial activation of these genes in the ontogenetic units along the Anterior-Posterior embryonic axis. Although this collinearity property is well respected in bilaterians (e.g. vertebrates), it is violated in other animals. The A-P axis is established in the early embryo of the sea urchin. Subsequently, rotational symmetry is superimposed when the vestibula larva is formed. In analogy to the linear A-P case, it is here hypothesized that the circular topology of the ontogenetic modules is associated to the architectural restructuring of the Hox loci where the two discrete ends of the Hox cluster approach each other so that an almost circular DNA contour is created. In the evolutionary process the circular mode undergoes double strand breaks and the generated cluster ends are attached to the open ends of the flanking chromosome. This event may lead to a novel gene ordering associated with an evolutionary innovation. For example, the loss of Hox4 is followed by the formation of a shorter gene circular arrangement. The opening of this contour at the missing Hox4 location and its connection to the chromosomal flanking ends leads to a new diversification namely the creation of the unusual gene order of the sea urchin Hox cluster.
Collapse
|
19
|
Ferrier DEK. Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
20
|
Barucca M, Canapa A, Biscotti MA. An Overview of Hox Genes in Lophotrochozoa: Evolution and Functionality. J Dev Biol 2016; 4:jdb4010012. [PMID: 29615580 PMCID: PMC5831810 DOI: 10.3390/jdb4010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/02/2016] [Accepted: 03/12/2016] [Indexed: 11/29/2022] Open
Abstract
Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several phyla which show a wide morphological diversity. Despite that the works summarized in this review emphasize the fragmentary nature of the data available regarding the presence and expression of Hox genes, they also offer interesting insight into the evolution of the Hox cluster and the role played by Hox genes in several phyla. However, the number of genes involved in the cluster of the lophotrochozoan ancestor is still a question of debate. The data presented here suggest that at least nine genes were present while two other genes, Lox4 and Post-2, may either have been present in the ancestor or may have arisen as a result of duplication in the Brachiopoda-Mollusca-Annelida lineage. Spatial and temporal collinearity is a feature of Hox gene expression which was probably present in the ancestor of deuterostomes and protostomes. However, in Lophotrochozoa, it has been detected in only a few species belonging to Annelida and Mollusca.
Collapse
Affiliation(s)
- Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
21
|
Ordered expression pattern of Hox and ParaHox genes along the alimentary canal in the ascidian juvenile. Cell Tissue Res 2016; 365:65-75. [DOI: 10.1007/s00441-016-2360-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/07/2016] [Indexed: 01/03/2023]
|
22
|
Byrne M, Martinez P, Morris V. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited. Evol Dev 2016; 18:137-43. [DOI: 10.1111/ede.12172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological SciencesThe University of SydneySydneyNSW2006Australia
| | - Pedro Martinez
- Departament de GenèticaUniversitat de BarcelonaAv. Diagonal, 643Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys, 23Barcelona08010Spain
| | - Valerie Morris
- School of Biological SciencesThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
23
|
Ferrier DEK. The origin of the Hox/ParaHox genes, the Ghost Locus hypothesis and the complexity of the first animal. Brief Funct Genomics 2015; 15:333-41. [PMID: 26637506 DOI: 10.1093/bfgp/elv056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A key aim in evolutionary biology is to deduce ancestral states to better understand the evolutionary origins of clades of interest and the diversification process(es) that has/have elaborated them. These ancestral deductions can hit difficulties when undetected loss events are misinterpreted as ancestral absences. With the ever-increasing amounts of animal genomic sequence data, we are gaining a much clearer view of the preponderance of differential gene losses across animal lineages. This has become particularly clear with recent progress in our understanding of the origins of the Hox/ParaHox developmental control genes relative to the earliest branching lineages of the animal kingdom: the sponges (Porifera), comb jellies (Ctenophora) and placozoans (Placozoa). These reassessments of the diversity and complexity of developmental control genes in the earliest animal ancestors need to go hand-in-hand with complementary advances in comparative morphology, phylogenetics and palaeontology to clarify our understanding of the complexity of the last common ancestor of all animals. The field is currently undergoing a shift from the traditional consensus of a sponge-like animal ancestor from which morphological and molecular elaboration subsequently evolved, to a scenario of a more complex animal ancestor, with subsequent losses and simplifications in various lineages.
Collapse
|
24
|
Lettieri A, Esposito R, Ianora A, Spagnuolo A. Ciona intestinalis as a marine model system to study some key developmental genes targeted by the diatom-derived aldehyde decadienal. Mar Drugs 2015; 13:1451-65. [PMID: 25789602 PMCID: PMC4377993 DOI: 10.3390/md13031451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/09/2023] Open
Abstract
The anti-proliferative effects of diatoms, described for the first time in copepods, have also been demonstrated in benthic invertebrates such as polychaetes, sea urchins and tunicates. In these organisms PUAs (polyunsaturated aldehydes) induce the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness and competence. These inhibitory effects are due to the PUAs, produced by diatoms in response to physical damage as occurs during copepod grazing. The cell targets of these compounds remain largely unknown. Here we identify some of the genes targeted by the diatom PUA 2-trans-4-trans-decadienal (DD) using the tunicate Ciona intestinalis. The tools, techniques and genomic resources available for Ciona, as well as the suitability of Ciona embryos for medium-to high-throughput strategies, are key to their employment as model organisms in different fields, including the investigation of toxic agents that could interfere with developmental processes. We demonstrate that DD can induce developmental aberrations in Ciona larvae in a dose-dependent manner. Moreover, through a preliminary analysis, DD is shown to affect the expression level of genes involved in stress response and developmental processes.
Collapse
Affiliation(s)
- Anna Lettieri
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 NAPOLI, Italy.
| | - Rosaria Esposito
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 NAPOLI, Italy.
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 NAPOLI, Italy.
| | | |
Collapse
|
25
|
Biscotti MA, Canapa A, Forconi M, Barucca M. HoxandParaHoxgenes: A review on molluscs. Genesis 2014; 52:935-45. [DOI: 10.1002/dvg.22839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente; Università Politecnica delle Marche; Ancona Italy
| |
Collapse
|
26
|
Morris VB, Byrne M. Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. Dev Genes Evol 2013; 224:1-11. [PMID: 24129745 DOI: 10.1007/s00427-013-0457-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/19/2013] [Indexed: 01/29/2023]
Abstract
Hox genes are noted for their roles in specifying axial identity in bilateral forms. In the radial echinoderms, the axis whose identity Hox genes might specify remains unclear. From the expression of Hox genes in the development of the sea urchin Holopneustes purpurescens reported here and that reported previously, we clarify the axis that might be specified by Hox genes in echinoderms. The expression of HpHox11/13 here is described at three developmental stages. The expression is around the rim of the blastopore in gastrulae, in the archenteron wall and adjacent mesoderm in early vestibula larvae, and in a patch of mesoderm close to the archenteron wall in later vestibula larvae. The retained expression of HpHox11/13 in the patch of mesoderm in the later vestibula larvae is, we suggest, indicative of a posterior or an aboral growth zone. The expression of HpHox3 at the echinoid-rudiment stage, in contrast, is in oral mesoderm beneath the epineural folds, concentrated in sites where the first three adult spines form. With the expression of HpHox5 and HpHox11/13 reported previously, the expressions here support the role of Hox genes in specifying oral-aboral identity in echinoderms. How such specification and a posterior growth zone add support to a concept of the structural homology between echinoderms and chordates is discussed.
Collapse
Affiliation(s)
- Valerie B Morris
- School of Biological Sciences A12, University of Sydney, NSW, 2006, Australia,
| | | |
Collapse
|
27
|
Irvine SQ. Study of Cis-regulatory Elements in the Ascidian Ciona intestinalis. Curr Genomics 2013; 14:56-67. [PMID: 23997651 PMCID: PMC3580780 DOI: 10.2174/138920213804999192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/30/2012] [Accepted: 01/01/2013] [Indexed: 01/31/2023] Open
Abstract
The ascidian (sea squirt) C. intestinalis has become an important model organism for the study of cis-regulation. This is largely due to the technology that has been developed for assessing cis-regulatory activity through the use of transient reporter transgenes introduced into fertilized eggs. This technique allows the rapid and inexpensive testing of endogenous or altered DNA for regulatory activity in vivo. This review examines evidence that C. intestinaliscis-regulatory elements are located more closely to coding regions than in other model organisms. I go on to compare the organization of cis-regulatory elements and conserved non-coding sequences in Ciona, mammals, and other deuterostomes for three representative C.intestinalis genes, Pax6, FoxAa, and the DlxA-B cluster, along with homologs in the other species. These comparisons point out some of the similarities and differences between cis-regulatory elements and their study in the various model organisms. Finally, I provide illustrations of how C. intestinalis lends itself to detailed study of the structure of cis-regulatory elements, which have led, and promise to continue to lead, to important insights into the fundamentals of transcriptional regulation.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
28
|
Annunziata R, Martinez P, Arnone MI. Intact cluster and chordate-like expression of ParaHox genes in a sea star. BMC Biol 2013; 11:68. [PMID: 23803323 PMCID: PMC3710244 DOI: 10.1186/1741-7007-11-68] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Background The ParaHox genes are thought to be major players in patterning the gut of several bilaterian taxa. Though this is a fundamental role that these transcription factors play, their activities are not limited to the endoderm and extend to both ectodermal and mesodermal tissues. Three genes compose the ParaHox group: Gsx, Xlox and Cdx. In some taxa (mostly chordates but to some degree also in protostomes) the three genes are arranged into a genomic cluster, in a similar fashion to what has been shown for the better-known Hox genes. Sea urchins possess the full complement of ParaHox genes but they are all dispersed throughout the genome, an arrangement that, perhaps, represented the primitive condition for all echinoderms. In order to understand the evolutionary history of this group of genes we cloned and characterized all ParaHox genes, studied their expression patterns and identified their genomic loci in a member of an earlier branching group of echinoderms, the asteroid Patiria miniata. Results We identified the three ParaHox orthologs in the genome of P. miniata. While one of them, PmGsx is provided as maternal message, with no zygotic activation afterwards, the other two, PmLox and PmCdx are expressed during embryogenesis, within restricted domains of both endoderm and ectoderm. Screening of a Patiria bacterial artificial chromosome (BAC) library led to the identification of a clone containing the three genes. The transcriptional directions of PmGsx and PmLox are opposed to that of the PmCdx gene within the cluster. Conclusions The identification of P. miniata ParaHox genes has revealed the fact that these genes are clustered in the genome, in contrast to what has been reported for echinoids. Since the presence of an intact cluster, or at least a partial cluster, has been reported in chordates and polychaetes respectively, it becomes clear that within echinoderms, sea urchins have modified the original bilaterian arrangement. Moreover, the sea star ParaHox domains of expression show chordate-like features not found in the sea urchin, confirming that the dynamics of gene expression for the respective genes and their putative regulatory interactions have clearly changed over evolutionary time within the echinoid lineage.
Collapse
Affiliation(s)
- Rossella Annunziata
- Stazione Zoologica Anton Dohrn di Napoli, Cellular and Developmental Biology, Villa Comunale, 80121 Napoli, Italy
| | | | | |
Collapse
|
29
|
Ikuta T, Chen YC, Annunziata R, Ting HC, Tung CH, Koyanagi R, Tagawa K, Humphreys T, Fujiyama A, Saiga H, Satoh N, Yu JK, Arnone MI, Su YH. Identification of an intact ParaHox cluster with temporal colinearity but altered spatial colinearity in the hemichordate Ptychodera flava. BMC Evol Biol 2013; 13:129. [PMID: 23802544 PMCID: PMC3698058 DOI: 10.1186/1471-2148-13-129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ParaHox and Hox genes are thought to have evolved from a common ancestral ProtoHox cluster or from tandem duplication prior to the divergence of cnidarians and bilaterians. Similar to Hox clusters, chordate ParaHox genes including Gsx, Xlox, and Cdx, are clustered and their expression exhibits temporal and spatial colinearity. In non-chordate animals, however, studies on the genomic organization of ParaHox genes are limited to only a few animal taxa. Hemichordates, such as the Enteropneust acorn worms, have been used to gain insights into the origins of chordate characters. In this study, we investigated the genomic organization and expression of ParaHox genes in the indirect developing hemichordate acorn worm Ptychodera flava. RESULTS We found that P. flava contains an intact ParaHox cluster with a similar arrangement to that of chordates. The temporal expression order of the P. flava ParaHox genes is the same as that of the chordate ParaHox genes. During embryogenesis, the spatial expression pattern of PfCdx in the posterior endoderm represents a conserved feature similar to the expression of its orthologs in other animals. On the other hand, PfXlox and PfGsx show a novel expression pattern in the blastopore. Nevertheless, during metamorphosis, PfXlox and PfCdx are expressed in the endoderm in a spatially staggered pattern similar to the situation in chordates. CONCLUSIONS Our study shows that P. flava ParaHox genes, despite forming an intact cluster, exhibit temporal colinearity but lose spatial colinearity during embryogenesis. During metamorphosis, partial spatial colinearity is retained in the transforming larva. These results strongly suggest that intact ParaHox gene clustering was retained in the deuterostome ancestor and is correlated with temporal colinearity.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sanges R, Hadzhiev Y, Gueroult-Bellone M, Roure A, Ferg M, Meola N, Amore G, Basu S, Brown ER, De Simone M, Petrera F, Licastro D, Strähle U, Banfi S, Lemaire P, Birney E, Müller F, Stupka E. Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development. Nucleic Acids Res 2013; 41:3600-18. [PMID: 23393190 PMCID: PMC3616699 DOI: 10.1093/nar/gkt030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 01/17/2023] Open
Abstract
Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'.
Collapse
Affiliation(s)
- Remo Sanges
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Yavor Hadzhiev
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marion Gueroult-Bellone
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Agnes Roure
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marco Ferg
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Nicola Meola
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Gabriele Amore
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Swaraj Basu
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Euan R. Brown
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marco De Simone
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Francesca Petrera
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Danilo Licastro
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Uwe Strähle
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Sandro Banfi
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Patrick Lemaire
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ewan Birney
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ferenc Müller
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Elia Stupka
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
31
|
The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012; 490:49-54. [DOI: 10.1038/nature11413] [Citation(s) in RCA: 1571] [Impact Index Per Article: 130.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/11/2012] [Indexed: 01/18/2023]
|
32
|
Kondo M, Akasaka K. Current Status of Echinoderm Genome Analysis - What do we Know? Curr Genomics 2012; 13:134-43. [PMID: 23024605 PMCID: PMC3308324 DOI: 10.2174/138920212799860643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 09/20/2011] [Accepted: 09/30/2011] [Indexed: 11/22/2022] Open
Abstract
Echinoderms have long served as model organisms for a variety of biological research, especially in the field of developmental biology. Although the genome of the purple sea urchin Strongylocentrotus purpuratus has been sequenced, it is the only echinoderm whose whole genome sequence has been reported. Nevertheless, data is rapidly accumulating on the chromosomes and genomic sequences of all five classes of echinoderms, including the mitochondrial genomes and Hox genes. This blossoming new data will be essential for estimating the phylogenetic relationships among echinoderms, and also to examine the underlying mechanisms by which the diverse morphologies of echinoderms have arisen.
Collapse
Affiliation(s)
- Mariko Kondo
- Misaki Marine Biological Station, Graduate School of Science, and Center for Marine Biology, The University of Tokyo, Japan
| | | |
Collapse
|
33
|
Abstract
The recent explosion of genome sequences from all major phylogenetic groups has unveiled an unexpected wealth of cases of recurrent evolution of strikingly similar genomic features in different lineages. Here, we review the diverse known types of recurrent evolution in eukaryotic genomes, with a special focus on metazoans, ranging from reductive genome evolution to origins of splice-leader trans-splicing, from tandem exon duplications to gene family expansions. We first propose a general classification scheme for evolutionary recurrence at the genomic level, based on the type of driving force-mutation or selection-and the environmental and genomic circumstances underlying these forces. We then discuss various cases of recurrent genomic evolution under this scheme. Finally, we provide a broader context for repeated genomic evolution, including the unique relationship of genomic recurrence with the genotype-phenotype map, and the ways in which the study of recurrent genomic evolution can be used to understand fundamental evolutionary processes.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, United Kingdom
| | - Scott William Roy
- Department of Biology, Stanford University
- Department of Biology, San Francisco State University
| | - Manuel Irimia
- Department of Biology, Stanford University
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Canada
| |
Collapse
|
34
|
Altenburger A, Martinez P, Wanninger A. Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification. Gene Expr Patterns 2011; 11:427-36. [PMID: 21782038 DOI: 10.1016/j.gep.2011.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until completion of larval development, which is marked by a three-lobed body with larval setae. Expression starts at gastrulation in two areas lateral to the blastopore and subsequently extends over the animal pole of the gastrula. With elongation of the gastrula, expression at the animal pole narrows to a small band, whereas the areas lateral to the blastopore shift slightly towards the future anterior region of the larva. Upon formation of the three larval body lobes, TtrNot expressing cells are present only in the posterior part of the apical lobe. Expression ceases entirely at the onset of larval setae formation. TtrNot expression is absent in unfertilized eggs, in embryos prior to gastrulation, and in settled individuals during and after metamorphosis. Comparison with the expression patterns of Not genes in other metazoan phyla suggests an ancestral role for this gene in gastrulation and germ layer (ectoderm) specification with co-opted functions in notochord formation in chordates and left/right determination in ambulacrarians and vertebrates. The caudal ortholog, TtrCdx, is first expressed in the ectoderm of the gastrulating embryo in the posterior region of the blastopore. Its expression stays stable in that domain until the blastopore is closed. Thereafter, the expression is confined to the ventral portion of the mantle lobe in the fully developed larva. No TtrCdx expression is detectable in the juvenile after metamorphosis. This expression of TtrCdx is congruent with findings in other metazoans, where genes belonging to the Cdx/caudal family are predominantly localized in posterior domains during gastrulation. Later in development this gene will play a fundamental role in the formation of posterior tissues.
Collapse
Affiliation(s)
- Andreas Altenburger
- University of Copenhagen, Natural History Museum of Denmark, Zoological Museum, Universitetsparken, Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
35
|
Ikuta T. Evolution of invertebrate deuterostomes and Hox/ParaHox genes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2011; 9:77-96. [PMID: 21802045 PMCID: PMC5054439 DOI: 10.1016/s1672-0229(11)60011-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Transcription factors encoded by Antennapedia-class homeobox genes play crucial roles in controlling development of animals, and are often found clustered in animal genomes. The Hox and ParaHox gene clusters have been regarded as evolutionary sisters and evolved from a putative common ancestral gene complex, the ProtoHox cluster, prior to the divergence of the Cnidaria and Bilateria (bilaterally symmetrical animals). The Deuterostomia is a monophyletic group of animals that belongs to the Bilateria, and a sister group to the Protostomia. The deuterostomes include the vertebrates (to which we belong), invertebrate chordates, hemichordates, echinoderms and possibly xenoturbellids, as well as acoelomorphs. The studies of Hox and ParaHox genes provide insights into the origin and subsequent evolution of the bilaterian animals. Recently, it becomes apparent that among the Hox and ParaHox genes, there are significant variations in organization on the chromosome, expression pattern, and function. In this review, focusing on invertebrate deuterostomes, I first summarize recent findings about Hox and ParaHox genes. Next, citing unsolved issues, I try to provide clues that might allow us to reconstruct the common ancestor of deuterostomes, as well as understand the roles of Hox and ParaHox genes in the development and evolution of deuterostomes.
Collapse
Affiliation(s)
- Tetsuro Ikuta
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Uruma, Japan.
| |
Collapse
|
36
|
Abstract
UNLABELLED A large number of genomes have been sequenced, allowing a range of comparative studies. Here, we present the eukaryotic Gene Order Browser with information on the order of protein and non-coding RNA (ncRNA) genes of 74 different eukaryotic species. The browser is able to display a gene of interest together with its genomic context in all species where that gene is present. Thereby, questions related to the evolution of gene organization and non-random gene order may be examined. The browser also provides access to data collected on pairs of adjacent genes that are evolutionarily conserved. AVAILABILITY eGOB as well as underlying data are freely available at http://egob.biomedicine.gu.se SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online. CONTACT tore.samuelsson@medkem.gu.se.
Collapse
Affiliation(s)
- Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | |
Collapse
|
37
|
Samadi L, Steiner G. Conservation of ParaHox genes' function in patterning of the digestive tract of the marine gastropod Gibbula varia. BMC DEVELOPMENTAL BIOLOGY 2010; 10:74. [PMID: 20624311 PMCID: PMC2913954 DOI: 10.1186/1471-213x-10-74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 07/12/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Presence of all three ParaHox genes has been described in deuterostomes and lophotrochozoans, but to date one of these three genes, Xlox has not been reported from any ecdysozoan taxa and both Xlox and Gsx are absent in nematodes. There is evidence that the ParaHox genes were ancestrally a single chromosomal cluster. Colinear expression of the ParaHox genes in anterior, middle, and posterior tissues of several species studied so far suggest that these genes may be responsible for axial patterning of the digestive tract. So far, there are no data on expression of these genes in molluscs. RESULTS We isolated the complete coding sequences of the three Gibbula varia ParaHox genes, and then tested their expression in larval and postlarval development. In Gibbula varia, the ParaHox genes participate in patterning of the digestive tract and are expressed in some cells of the neuroectoderm. The expression of these genes coincides with the gradual formation of the gut in the larva. Gva-Gsx patterns potential neural precursors of cerebral ganglia as well as of the apical sensory organ. During larval development this gene is involved in the formation of the mouth and during postlarval development it is expressed in the precursor cells involved in secretion of the radula, the odontoblasts. Gva-Xolx and Gva-Cdx are involved in gut patterning in the middle and posterior parts of digestive tract, respectively. Both genes are expressed in some ventral neuroectodermal cells; however the expression of Gva-Cdx fades in later larval stages while the expression of Gva-Xolx in these cells persists. CONCLUSIONS In Gibbula varia the ParaHox genes are expressed during anterior-posterior patterning of the digestive system. This colinearity is not easy to spot during early larval stages because the differentiated endothelial cells within the yolk permanently migrate to their destinations in the gut. After torsion, Gsx patterns the mouth and foregut, Xlox the midgut gland or digestive gland, and Cdx the hindgut. ParaHox genes of Gibbula are also expressed during specification of cerebral and ventral neuroectodermal cells. Our results provide additional support for the ancestral complexity of Gsx expression and its ancestral role in mouth patterning in protostomes, which was secondarily lost or simplified in some species.
Collapse
Affiliation(s)
- Leyli Samadi
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
38
|
Badets M, Mitta G, Galinier R, Verneau O. Expression patterns of Abd-A/Lox4 in a monogenean parasite with alternative developmental paths. Mol Biochem Parasitol 2010; 173:154-7. [PMID: 20546802 DOI: 10.1016/j.molbiopara.2010.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 05/14/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
Abstract
A key issue in Evolutionary Developmental Biology is to assess the roles of homeotic genes in order to uncover the origins of animal diversity. Within parasitic platyhelminths which show a large diversity of developmental strategies, only one study related to the expression of Hox genes has so far been conducted involving a digenean species with a complex life cycle. In the present study, we considered the expression levels of the Pg-Lox4 gene within Polystoma gallieni of the Monogenea which displays alternative phenotypes throughout its direct life cycle, depending on the physiological stage of its amphibian host Hyla meridionalis upon which free swimming larvae attach. Dissimilar expression patterns were found along the two morphogenetic routes revealing a putative role of Pg-Lox4 in the process of developmental plasticity. Pg-Lox4 was also shown to be upregulated in both reproducing parasite phenotypes indicating its apparent involvement in tissue differentiation of the reproductive organs.
Collapse
Affiliation(s)
- Mathieu Badets
- UMR 5244 CNRS-UPVD, Biologie et Ecologie Tropicale et Méditerranéenne, Parasitologie Fonctionnelle et Evolutive, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | | | | | | |
Collapse
|
39
|
Hejnol A, Martindale MQ. Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol 2009; 7:65. [PMID: 19796382 PMCID: PMC2761877 DOI: 10.1186/1741-7007-7-65] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/01/2009] [Indexed: 11/16/2022] Open
Abstract
Background Hox genes are critical for patterning the bilaterian anterior-posterior axis. The evolution of their clustered genomic arrangement and ancestral function has been debated since their discovery. As acoels appear to represent the sister group to the remaining Bilateria (Nephrozoa), investigating Hox gene expression will provide an insight into the ancestral features of the Hox genes in metazoan evolution. Results We describe the expression of anterior, central and posterior class Hox genes and the ParaHox ortholog Cdx in the acoel Convolutriloba longifissura. Expression of all three Hox genes begins contemporaneously after gastrulation and then resolves into staggered domains along the anterior-posterior axis, suggesting that the spatial coordination of Hox gene expression was present in the bilaterian ancestor. After early surface ectodermal expression, the anterior and central class genes are expressed in small domains of putative neural precursor cells co-expressing ClSoxB1, suggesting an evolutionary early function of Hox genes in patterning parts of the nervous system. In contrast, the expression of the posterior Hox gene is found in all three germ layers in a much broader posterior region of the embryo. Conclusion Our results suggest that the ancestral set of Hox genes was involved in the anterior-posterior patterning of the nervous system of the last common bilaterian ancestor and were later co-opted for patterning in diverse tissues in the bilaterian radiation. The lack of temporal colinearity of Hox expression in acoels may be due to a loss of genomic clustering in this clade or, alternatively, temporal colinearity may have arisen in conjunction with the expansion of the Hox cluster in the Nephrozoa.
Collapse
Affiliation(s)
- Andreas Hejnol
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
40
|
Hui JHL, Raible F, Korchagina N, Dray N, Samain S, Magdelenat G, Jubin C, Segurens B, Balavoine G, Arendt D, Ferrier DEK. Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. BMC Biol 2009; 7:43. [PMID: 19627570 PMCID: PMC2723086 DOI: 10.1186/1741-7007-7-43] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background The ParaHox gene cluster is the evolutionary sister to the Hox cluster. Whilst the role of the Hox cluster in patterning the anterior-posterior axis of bilaterian animals is well established, and the organisation of vertebrate Hox clusters is intimately linked to gene regulation, much less is known about the more recently discovered ParaHox cluster. ParaHox gene clustering, and its relationship to expression, has only been described in deuterostomes. Conventional protostome models (Drosophila melanogaster and Caenorhabditis elegans) are secondarily derived with respect to ParaHox genes, suffering gene loss and cluster break-up. Results We provide the first evidence for ParaHox gene clustering from a less-derived protostome animal, the annelid Platynereis dumerilii. Clustering of these genes is thus not a sole preserve of the deuterostome lineage within Bilateria. This protostome ParaHox cluster is not entirely intact however, with Pdu-Cdx being on the opposite end of the same chromosome arm from Pdu-Gsx and Pdu-Xlox. From the genomic sequence around the P. dumerilii ParaHox genes the neighbouring genes are identified, compared with other taxa, and the ancestral arrangement deduced. Conclusion We relate the organisation of the ParaHox genes to their expression, and from comparisons with other taxa hypothesise that a relatively complex pattern of ParaHox gene expression existed in the protostome-deuterostome ancestor, which was secondarily simplified along several invertebrate lineages. Detailed comparisons of the gene content around the ParaHox genes enables the reconstruction of the genome surrounding the ParaHox cluster of the protostome-deuterostome ancestor, which existed over 550 million years ago.
Collapse
Affiliation(s)
- Jerome H L Hui
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Abstract The ParaHox genes comprise three Hox-related homeobox gene families, found throughout the animals. They were first discovered in the invertebrate chordate amphioxus, where they are tightly clustered. In this paper we carry out a comparative review of ParaHox gene cluster organization among the deuterostomes, and discuss how the recently published hagfish ParaHox clusters fit into current theories about the evolution of this group of genes.
Collapse
Affiliation(s)
- Rebecca F Furlong
- Department of Zoology, Oxford University, South Parks Road, Oxford OX13PS, UK.
| | | |
Collapse
|
42
|
Quiquand M, Yanze N, Schmich J, Schmid V, Galliot B, Piraino S. More constraint on ParaHox than Hox gene families in early metazoan evolution. Dev Biol 2009; 328:173-87. [DOI: 10.1016/j.ydbio.2009.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 12/28/2022]
|
43
|
Tschopp P, Tarchini B, Spitz F, Zakany J, Duboule D. Uncoupling time and space in the collinear regulation of Hox genes. PLoS Genet 2009; 5:e1000398. [PMID: 19266017 PMCID: PMC2642670 DOI: 10.1371/journal.pgen.1000398] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/30/2009] [Indexed: 12/23/2022] Open
Abstract
During development of the vertebrate body axis, Hox genes are transcribed sequentially, in both time and space, following their relative positions within their genomic clusters. Analyses of animal genomes support the idea that Hox gene clustering is essential for coordinating the various times of gene activations. However, the eventual collinear ordering of the gene specific transcript domains in space does not always require genomic clustering. We analyzed these complex regulatory relationships by using mutant alleles at the mouse HoxD locus, including one that splits the cluster into two pieces. We show that both positive and negative regulatory influences, located on either side of the cluster, control an early phase of collinear expression in the trunk. Interestingly, this early phase does not systematically impact upon the subsequent expression patterns along the main body axis, indicating that the mechanism underlying temporal collinearity is distinct from those acting during the second phase. We discuss the potential functions and evolutionary origins of these mechanisms, as well as their relationship with similar processes at work during limb development. Hox genes encode proteins that control embryonic development along the head-to-tail axis. These genes are clustered in one site on the chromosome and their respective positions within the cluster determine their time and place of activation. Here, by using a large set of targeted mutations disturbing the integrity of the gene cluster, we show that the spatial organization of expression domains does not directly depend upon the timing of activation as was previously suggested. This uncoupling between space and time in the regulation of these Hox genes coincides with the existence of two major phases of regulation. The first is time-dependent and involves global regulatory influences, located outside the gene cluster, whereas the second relies upon more local regulatory elements, likely interspersed between the genes, inside the cluster. These results provide the bases for future analyses of collinear mechanisms and indicate that different types of collinearities are not necessarily related, neither in function, nor in their evolutionary histories.
Collapse
Affiliation(s)
- Patrick Tschopp
- National Research Centre “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Basile Tarchini
- National Research Centre “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - François Spitz
- National Research Centre “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Jozsef Zakany
- National Research Centre “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Denis Duboule
- National Research Centre “Frontiers in Genetics”, Department of Zoology and Animal Biology, University of Geneva, Sciences III, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Osborne PW, Benoit G, Laudet V, Schubert M, Ferrier DE. Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae). Dev Biol 2009; 327:252-62. [DOI: 10.1016/j.ydbio.2008.11.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/19/2008] [Accepted: 11/19/2008] [Indexed: 02/04/2023]
|
45
|
Di-Poï N, Montoya-Burgos JI, Duboule D. Atypical relaxation of structural constraints in Hox gene clusters of the green anole lizard. Genome Res 2009; 19:602-10. [PMID: 19228589 DOI: 10.1101/gr.087932.108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hox genes control many aspects of embryonic development in metazoans. Previous analyses of this gene family revealed a surprising diversity in terms of gene number and organization between various animal species. In vertebrates, Hox genes are grouped into tightly organized clusters, claimed to be devoid of repetitive sequences. Here, we report the genomic organization of the four Hox loci present in the green anole lizard and show that they have massively accumulated retrotransposons, leading to gene clusters larger in size when compared to other vertebrates. In addition, similar repeats are present in many other development-related gene-containing regions, also thought to be refractory to such repetitive elements. Transposable elements are major sources of genetic variations, including alterations of gene expression, and hence this situation, so far unique among vertebrates, may have been associated with the evolution of the spectacular realm of morphological variations in the body plans of Squamata. Finally, sequence alignments highlight some divergent evolution in highly conserved DNA regions between vertebrate Hox clusters, which may coincide with the emergence of mammalian-specific features.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- National Research Center "Frontiers in Genetics," Department of Zoology and Animal Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
46
|
Chiori R, Jager M, Denker E, Wincker P, Da Silva C, Le Guyader H, Manuel M, Quéinnec E. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 2009; 4:e4231. [PMID: 19156208 PMCID: PMC2626245 DOI: 10.1371/journal.pone.0004231] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.
Collapse
Affiliation(s)
- Roxane Chiori
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Muriel Jager
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | - Hervé Le Guyader
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Michaël Manuel
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Eric Quéinnec
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| |
Collapse
|
47
|
Vasanthi D, Mishra RK. Epigenetic regulation of genes during development: A conserved theme from flies to mammals. J Genet Genomics 2008; 35:413-29. [DOI: 10.1016/s1673-8527(08)60059-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/16/2023]
|
48
|
Butts T, Holland PW, Ferrier DE. The Urbilaterian Super-Hox cluster. Trends Genet 2008; 24:259-62. [DOI: 10.1016/j.tig.2007.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 09/17/2007] [Accepted: 09/17/2007] [Indexed: 11/25/2022]
|
49
|
Kulakova MA, Cook CE, Andreeva TF. ParaHox gene expression in larval and postlarval development of the polychaete Nereis virens (Annelida, Lophotrochozoa). BMC DEVELOPMENTAL BIOLOGY 2008; 8:61. [PMID: 18510732 PMCID: PMC2440741 DOI: 10.1186/1471-213x-8-61] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/29/2008] [Indexed: 11/21/2022]
Abstract
Background Transcription factors that encode ANTP-class homeobox genes play crucial roles in determining the body plan organization and specification of different organs and tissues in bilaterian animals. The three-gene ParaHox family descends from an ancestral gene cluster that existed before the evolution of the Bilateria. All three ParaHox genes are reported from deuterostomes and lophotrochozoans, but not to date from any ecdysozoan taxa, and there is evidence that the ParaHox genes, like the related Hox genes, were ancestrally a single chromosomal cluster. However, unlike the Hox genes, there is as yet no strong evidence that the ParaHox genes are expressed in spatial and temporal order during embryogenesis. Results We isolated fragments of the three Nereis virens ParaHox genes, then used these as probes for whole-mount in situ hybridization in larval and postlarval worms. In Nereis virens the ParaHox genes participate in antero-posterior patterning of ectodermal and endodermal regions of the digestive tract and are expressed in some cells in the segment ganglia. The expression of these genes occurs in larval development in accordance with the position of these cells along the main body axis and in postlarval development in accordance with the position of cells in ganglia along the antero-posterior axis of each segment. In none of these tissues does expression of the three ParaHox genes follow the rule of temporal collinearity. Conclusion In Nereis virens the ParaHox genes are expressed during antero-posterior patterning of the digestive system (ectodermal foregut and hindgut, and endodermal midgut) of Nereis virens. These genes are also expressed during axial specification of ventral neuroectodermal cell domains, where the expression domains of each gene are re-iterated in each neuromere except for the first parapodial segment. These expression domains are probably predetermined and may be directed on the antero-posterior axis by the Hox genes, whose expression starts much earlier during embryogenesis. Our results support the hypothesis that the ParaHox genes are involved in antero-posterior patterning of the developing embryo, but they do not support the notion that these genes function only in the patterning of endodermal tissues.
Collapse
Affiliation(s)
- Milana A Kulakova
- Laboratory of Experimental Embryology, Biological Institute of State University of St. Petersburg, Russia.
| | | | | |
Collapse
|
50
|
Shippy TD, Ronshaugen M, Cande J, He J, Beeman RW, Levine M, Brown SJ, Denell RE. Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Dev Genes Evol 2008; 218:127-39. [PMID: 18392875 PMCID: PMC2292473 DOI: 10.1007/s00427-008-0213-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 02/12/2008] [Indexed: 01/28/2023]
Abstract
The remarkable conservation of Hox clusters is an accepted but little understood principle of biology. Some organizational constraints have been identified for vertebrate Hox clusters, but most of these are thought to be recent innovations that may not apply to other organisms. Ironically, many model organisms have disrupted Hox clusters and may not be well-suited for studies of structural constraints. In contrast, the red flour beetle, Tribolium castaneum, which has a long history in Hox gene research, is thought to have a more ancestral-type Hox cluster organization. Here, we demonstrate that the Tribolium homeotic complex (HOMC) is indeed intact, with the individual Hox genes in the expected colinear arrangement and transcribed from the same strand. There is no evidence that the cluster has been invaded by non-Hox protein-coding genes, although expressed sequence tag and genome tiling data suggest that noncoding transcripts are prevalent. Finally, our analysis of several mutations affecting the Tribolium HOMC suggests that intermingling of enhancer elements with neighboring transcription units may constrain the structure of at least one region of the Tribolium cluster. This work lays a foundation for future studies of the Tribolium HOMC that may provide insights into the reasons for Hox cluster conservation.
Collapse
Affiliation(s)
- Teresa D Shippy
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | | | |
Collapse
|