1
|
Singh A, Mantebea H, Badar F, Batool S, Abdelmessih G, Sebastian T, Newton M, Baker K, Salem S, Xia Y. Assessment of articular cartilage degradation in response to an impact injury using µMRI. Connect Tissue Res 2024; 65:146-160. [PMID: 38415672 PMCID: PMC10994738 DOI: 10.1080/03008207.2024.2319050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE Degradation of articular cartilage (AC) due to injury to the knee joint may initiate post-traumatic osteoarthritis (PTOA). Failure to diagnose the onset of the disease at an early stage makes the cure ineffective for PTOA. This study investigated the consequences of a mechanical injury to the knee in a rabbit model using microscopic magnetic resonance imaging (µMRI) at high resolution. MATERIALS AND METHODS A mechanical injury was induced to the knee joints of 12 rabbits. Cartilage blocks were extracted from the non-impacted and impacted knee joints after 2 and 14 weeks post-impact. The specimens were studied using µMRI T2 relaxation and inductively coupled plasma analysis to determine the early degradation of the articular cartilage. RESULTS The data established a connection between T2 relaxation time and the early progression of knee PTOA after an impact injury. T2 values were found to be higher in the impacted cartilage at both 2 and 14 weeks, in particular, T2-55° values in the impacted samples displayed a significant rise of 6.93% after 2 weeks and 20.02% after 14 weeks. Lower glycosaminoglycan measurement and higher water content in the impacted cartilage confirmed the µMRI results. CONCLUSIONS This µMRI T2 study was able to detect cartilage damage in the impacted knees. In addition, greater degradation in the affected knees at 14 weeks than at 2 weeks indicated the progressive nature of cartilage deterioration over time. The µMRI results were in accord with the biochemical analysis, indicating the detection of early structural damage in the cartilage.
Collapse
Affiliation(s)
- Amanveer Singh
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309
| | - Hannah Mantebea
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309
| | - Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309
| | - Syeda Batool
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309
| | | | - Talia Sebastian
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | - Michael Newton
- Beaumont Hospital, Royal Oak, MI 48073
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Kevin Baker
- Beaumont Hospital, Royal Oak, MI 48073
- Henry Ford Hospital, Detroit, MI 48202
| | - Sarah Salem
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309
| |
Collapse
|
2
|
Wei L, Pan Q, Teng J, Zhang H, Qin N. Intra-articular administration of PLGA resveratrol sustained-release nanoparticles attenuates the development of rat osteoarthritis. Mater Today Bio 2024; 24:100884. [PMID: 38173866 PMCID: PMC10761803 DOI: 10.1016/j.mtbio.2023.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Our previous studies have confirmed that resveratrol (RSV) can prevent the development of osteoarthritis through a variety of mechanisms, such as apoptosis inhibition, autophagy induction and SIRT 1 activation. However, the pharmaceutical application of RSV is mainly limited by its low bioavailability. Here, we designed and synthesized RSV-loaded poly (D, l-lactide-coglycolide acid) (PLGA)-nanoparticles (NPs). The average particle size, polydispersity index and positive charge of RSV-loaded PLGA NPs were 50.40 nm, 0.217 and 12.57 mV, respectively. These nanoparticles had marked encapsulation efficiency (92.35 %) and drug loading (15.1 %) for RSV. It was found that RSV-loaded PLGA NPs not only inhibited the apoptosis of chondrocytes induced by IL-1, but also rescued GAG loss in vitro. Pharmacokinetic data showed that RSV-loaded PLGA NPs demonstrated a significantly profound and prolonged concentration profile in joint tissues, with quantifiable RSV concentrations over 35 days. The therapeutic effects of RSV-loaded PLGA NPs were then examined in rat osteoarthritis models. In vitro magnetic resonance imaging results showed that RSV-loaded PLGA NPs treatment dramatically reduced both T1ρ and T2 relaxation times at 4, 8, 12 weeks during administration, implying that cartilage destruction was alleviated. Histological assessments showed that RSV-loaded PLGA NPs significantly improved osteoarthritis symptoms. Gene expression analysis revealed that osteoarthritis mediator genes were downregulated in rats treated with RSV-PLGA NPs. Mechanistic studies indicated that RSV-loaded PLGA NPs inhibit apoptosis and promote autophagy. Collectively, this study demonstrates that intra-articular delivery of RSV via PLGA NPs might be an effective therapeutic approach for osteoarthritis.
Collapse
Affiliation(s)
- Liwei Wei
- Department of Sports Medicine, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| | - Qingqing Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junyan Teng
- Bone Pharmacology Laboratory, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| | - Hong Zhang
- Bone Pharmacology Laboratory, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| | - Na Qin
- Bone Pharmacology Laboratory, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| |
Collapse
|
3
|
Geng R, Li J, Yu C, Zhang C, Chen F, Chen J, Ni H, Wang J, Kang K, Wei Z, Xu Y, Jin T. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med 2023; 26:481. [PMID: 37745043 PMCID: PMC10515111 DOI: 10.3892/etm.2023.12180] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Knee osteoarthritis (KOA) is a common chronic articular disease worldwide. It is also the most common form of OA and is characterized by high morbidity and disability rates. With the gradual increase in life expectancy and ageing population, KOA not only affects the quality of life of patients, but also poses a burden on global public health. OA is a disease of unknown etiology and complex pathogenesis. It commonly affects joints subjected to greater loads and higher levels of activity. The knee joint, which is the most complex joint of the human body and bears the greatest load among all joints, is therefore most susceptible to development of OA. KOA lesions may involve articular cartilage, synovium, joint capsule and periarticular muscles, causing irreversible articular damage. Factors such as mechanical overload, inflammation, metabolism, hormonal changes and ageing serve key roles in the acceleration of KOA progression. The clinical diagnosis of KOA is primarily based on combined analysis of symptoms, signs, imaging and laboratory examination results. At present, there is no cure for KOA and the currently available therapies primarily focus on symptomatic treatment and delay of disease progression. Knee replacement surgery is typically performed in patients with advanced disease. The current study presents a review of epidemiological characteristics, risk factors, histopathological manifestations, pathogenesis, diagnosis, treatment modalities and progress in KOA research.
Collapse
Affiliation(s)
- Ruizhi Geng
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jiayi Li
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Yu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Chaoqun Zhang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Fei Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jie Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Haonan Ni
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaxu Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Kaiqiang Kang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Ziqi Wei
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yongqing Xu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Tao Jin
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
4
|
Li T, Luo T, Chen B, Huang C, Shen Z, Xu Z, Nissman D, Golightly YM, Nelson AE, Niethammer M, Zhu H. Charting Aging Trajectories of Knee Cartilage Thickness for Early Osteoarthritis Risk Prediction: An MRI Study from the Osteoarthritis Initiative Cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295398. [PMID: 37745529 PMCID: PMC10516090 DOI: 10.1101/2023.09.12.23295398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Knee osteoarthritis (OA), a prevalent joint disease in the U.S., poses challenges in terms of predicting of its early progression. Although high-resolution knee magnetic resonance imaging (MRI) facilitates more precise OA diagnosis, the heterogeneous and multifactorial aspects of OA pathology remain significant obstacles for prognosis. MRI-based scoring systems, while standardizing OA assessment, are both time-consuming and labor-intensive. Current AI technologies facilitate knee OA risk scoring and progression prediction, but these often focus on the symptomatic phase of OA, bypassing initial-stage OA prediction. Moreover, their reliance on complex algorithms can hinder clinical interpretation. To this end, we make this effort to construct a computationally efficient, easily-interpretable, and state-of-the-art approach aiding in the radiographic OA (rOA) auto-classification and prediction of the incidence and progression, by contrasting an individual's cartilage thickness with a similar demographic in the rOA-free cohort. To better visualize, we have developed the toolset for both prediction and local visualization. A movie demonstrating different subtypes of dynamic changes in local centile scores during rOA progression is available at https://tli3.github.io/KneeOA/. Specifically, we constructed age-BMI-dependent reference charts for knee OA cartilage thickness, based on MRI scans from 957 radiographic OA (rOA)-free individuals from the Osteoarthritis Initiative cohort. Then we extracted local and global centiles by contrasting an individual's cartilage thickness to the rOA-free cohort with a similar age and BMI. Using traditional boosting approaches with our centile-based features, we obtain rOA classification of KLG ≤ 1 versus KLG = 2 (AUC = 0.95, F1 = 0.89), KLG ≤ 1 versus KLG ≥ 2 (AUC = 0.90, F1 = 0.82) and prediction of KLG2 progression (AUC = 0.98, F1 = 0.94), rOA incidence (KLG increasing from < 2 to ≥ 2; AUC = 0.81, F1 = 0.69) and rOA initial transition (KLG from 0 to 1; AUC = 0.64, F1 = 0.65) within a future 48-month period. Such performance in classifying KLG ≥ 2 matches that of deep learning methods in recent literature. Furthermore, its clinical interpretation suggests that cartilage changes, such as thickening in lateral femoral and anterior femoral regions and thinning in lateral tibial regions, may serve as indicators for prediction of rOA incidence and early progression. Meanwhile, cartilage thickening in the posterior medial and posterior lateral femoral regions, coupled with a reduction in the central medial femoral region, may signify initial phases of rOA transition.
Collapse
Affiliation(s)
- Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boqi Chen
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chao Huang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Zhengyang Shen
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhenlin Xu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Nissman
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yvonne M. Golightly
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amanda E. Nelson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc Niethammer
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Ciliberti FK, Cesarelli G, Guerrini L, Gunnarsson AE, Forni R, Aubonnet R, Recenti M, Jacob D, Jónsson H, Cangiano V, Islind AS, Gambacorta M, Gargiulo P. The role of bone mineral density and cartilage volume to predict knee cartilage degeneration. Eur J Transl Myol 2022; 32. [PMID: 35766481 PMCID: PMC9295173 DOI: 10.4081/ejtm.2022.10678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
Knee Osteoarthritis (OA) is a highly prevalent condition affecting knee joint that causes loss of physical function and pain. Clinical treatments are mainly focused on pain relief and limitation of disabilities; therefore, it is crucial to find new paradigms assessing cartilage conditions for detecting and monitoring the progression of OA. The goal of this paper is to highlight the predictive power of several features, such as cartilage density, volume and surface. These features were extracted from the 3D reconstruction of knee joint of forty-seven different patients, subdivided into two categories: degenerative and non-degenerative. The most influent parameters for the degeneration of the knee cartilage were determined using two machine learning classification algorithms (logistic regression and support vector machine); later, box plots, which depicted differences between the classes by gender, were presented to analyze several of the key features’ trend. This work is part of a strategy that aims to find a new solution to assess cartilage condition based on new-investigated features.
Collapse
Affiliation(s)
| | - Giuseppe Cesarelli
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Naples.
| | - Lorena Guerrini
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik.
| | | | - Riccardo Forni
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland; Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena.
| | - Romain Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik.
| | - Marco Recenti
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik.
| | - Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik.
| | - Halldór Jónsson
- Department of Orthopaedics, Landspitali, University Hospital of Iceland, Reykjavik, Iceland; Medical Faculty, University of Iceland, Reykjavik.
| | - Vincenzo Cangiano
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik.
| | | | | | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland; Department of Science, Landspitali, University Hospital of Iceland, Reykjavik.
| |
Collapse
|
6
|
Ciliberti FK, Guerrini L, Gunnarsson AE, Recenti M, Jacob D, Cangiano V, Tesfahunegn YA, Islind AS, Tortorella F, Tsirilaki M, Jónsson H, Gargiulo P, Aubonnet R. CT- and MRI-Based 3D Reconstruction of Knee Joint to Assess Cartilage and Bone. Diagnostics (Basel) 2022; 12:279. [PMID: 35204370 PMCID: PMC8870751 DOI: 10.3390/diagnostics12020279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
For the observation of human joint cartilage, X-ray, computed tomography (CT) or magnetic resonance imaging (MRI) are the main diagnostic tools to evaluate pathologies or traumas. The current work introduces a set of novel measurements and 3D features based on MRI and CT data of the knee joint, used to reconstruct bone and cartilages and to assess cartilage condition from a new perspective. Forty-seven subjects presenting a degenerative disease, a traumatic injury or no symptoms or trauma were recruited in this study and scanned using CT and MRI. Using medical imaging software, the bone and cartilage of the knee joint were segmented and 3D reconstructed. Several features such as cartilage density, volume and surface were extracted. Moreover, an investigation was carried out on the distribution of cartilage thickness and curvature analysis to identify new markers of cartilage condition. All the extracted features were used with advanced statistics tools and machine learning to test the ability of our model to predict cartilage conditions. This work is a first step towards the development of a new gold standard of cartilage assessment based on 3D measurements.
Collapse
Affiliation(s)
- Federica Kiyomi Ciliberti
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
- Department of Electrical, Information Engineering and Applied Mathematics, University of Salerno, 84084 Salerno, Italy;
| | - Lorena Guerrini
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, 47521 Cesena, Italy
| | - Arnar Evgeni Gunnarsson
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
| | - Marco Recenti
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
| | - Deborah Jacob
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
| | - Vincenzo Cangiano
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
| | | | | | - Francesco Tortorella
- Department of Electrical, Information Engineering and Applied Mathematics, University of Salerno, 84084 Salerno, Italy;
| | - Mariella Tsirilaki
- Department of Radiology, Landspitali, University Hospital of Iceland, 101 Reykjavik, Iceland;
| | - Halldór Jónsson
- Department of Orthopaedics, Landspitali, University Hospital of Iceland, 101 Reykjavik, Iceland;
- Medical Faculty, University of Iceland, 101 Reykjavik, Iceland
| | - Paolo Gargiulo
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
- Department of Science, Landspitali, University Hospital of Iceland, 101 Reykjavik, Iceland
| | - Romain Aubonnet
- Institute of Biomedical and Neural Engineering, Reykjavik University, 101 Reykjavik, Iceland; (F.K.C.); (L.G.); (A.E.G.); (M.R.); (D.J.); (V.C.); (R.A.)
| |
Collapse
|
7
|
Wang X, He T, He L, Yang B, Liu Z, Pang M, Xie P, Zhang L, Rong L. Melatonin contributes to the hypertrophic differentiation of mesenchymal stem cell-derived chondrocytes via activation of the Wnt/β-catenin signaling pathway : Melatonin promotes MSC-derived chondrocytes hypertrophy. Stem Cell Res Ther 2021; 12:467. [PMID: 34419165 PMCID: PMC8379782 DOI: 10.1186/s13287-021-02536-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypertrophy is a critical process for chondrocyte differentiation and maturation during endochondral ossification, which is responsible for the formation of long bone and postnatal longitudinal growth. Increasing evidence suggests that melatonin, an indole hormone, plays a pivotal role in chondrogenesis. However, little is known about the effects of melatonin on the terminal differentiation of chondrocytes. METHODS Mesenchymal stem cell (MSC)-derived chondrocytes generated by a high-density micromass culture system were induced to undergo hypertrophic differentiation. Melatonin-mediated hypertrophic differentiation was examined by reverse transcription polymerase chain reaction analysis (RT-PCR) analysis, histological staining and immunohistochemistry. Activation of the Wnt signaling pathway was evaluated by PCR array, RT-PCR, western blotting and immunofluorescence. XAV-939, a Wnt signaling pathway antagonist, was further used to determine whether the effect of melatonin on chondrocyte hypertrophic differentiation was mediated occurred by activation of Wnt signaling pathway. RESULTS Histological staining showed melatonin increased chondrocyte cell volume and the expression of type X collagen but decreased the expression of type II collagen compared with the control group. RT-PCR showed that melatonin significantly up-regulated the gene expressions of biomarkers of hypertrophic chondrocytes, including type X collagen, alkaline phosphatase, runt-related transcription factor 2, Indian hedgehog and parathyroid hormone-related protein receptor, and melatonin down-regulated the mRNA expression of hallmarks of chondrocytes, including parathyroid hormone-related protein. PCR array showed that the effect of melatonin on chondrocyte hypertrophic differentiation was accompanied by the up-regulation of multiple target genes of the canonical Wnt signaling pathway, and this effect was blocked by XAV-939. CONCLUSIONS The current findings demonstrate that melatonin enhances the hypertrophic differentiation of MSC-derived chondrocytes through the Wnt signaling pathway. Our findings add evidence to the role of melatonin in promoting bone development and highlight the positive effects of melatonin on terminal differentiation of chondrocytes.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Bu Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Zhongyu Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Badar F, Lee J, Qu X, Xia Y. Topographical and zonal patterns of T2 relaxation in osteoarthritic tibial cartilage by low- and high-resolution MRI. Magn Reson Imaging 2021; 78:98-108. [PMID: 33493580 DOI: 10.1016/j.mri.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/20/2020] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to establish the topographical and zonal T2 patterns of multi-resolution MRI in medial tibial cartilage in a canine model of osteoarthritis (OA), initiated by the anterior cruciate ligament (ACL) transection surgery, and studied after 8-weeks and 12-weeks post-surgery. METHODS Articular cartilage from healthy, two stages of contralateral, and of OA knees were quantitatively imaged by the MRI T2 protocols at two imaging resolutions (100 and 17.6 μm/pixel). The zonal T2 changes at five topographical locations (anterior (AMT), exterior (EMT), posterior (PMT), central (CMT) and interior (IMT) medial tibia) and subsequent two averaged regions (covered by meniscus and exposed) were analyzed. At each location, full-thickness cartilage was studied in four sub-tissue zones (superficial, transitional, upper and lower radial zones). RESULTS Tissue degradation can be detected by measurable changes of T2, which is resolution- and orientation-dependent. T2 changes ranging from +28.82% increase (SZ, PMT) to -23.15% decrease (RZ1, AMT) in healthy to disease (8C), with the largest increase of T2 in the surface tissue. Various location-dependent patterns of degradation are found over the tibial surface, most commonly shown in early-stage OA (8C) on the anterior site, different from the posterior. Finally, the contralateral cartilage has specific degradation patterns, different from those in OA cartilage. CONCLUSIONS This is the first quantitative and highest multi-resolution characterization of cartilage at five topographical locations over the medial tibial plateau with fine zonal resolution in an animal model of OA, which would benefit future investigation of human OA in clinics.
Collapse
Affiliation(s)
- Farid Badar
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Jihyun Lee
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
9
|
T1 and T2 mapping of articular cartilage and menisci in early osteoarthritis of the knee using 3-Tesla magnetic resonance imaging. Pol J Radiol 2019; 84:e549-e564. [PMID: 32082454 PMCID: PMC7016502 DOI: 10.5114/pjr.2019.91375] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose 3-Tesla magnetic resonance imaging (MRI) T1 and T2 mapping to detect and quantify cartilage matrix and meniscal degeneration between normal healthy volunteers and early osteoarthritis patients. Material and methods A prospective study including 25 patients and 10 healthy volunteers was done. Patients with symptoms of early osteoarthritis and Kellgren-Lawrence grade I-II on plain radiograph were included for MRI knee. Patients with inflammatory arthritis, infection, trauma, and history of knee surgery were excluded. Healthy, normal adult volunteers (preferably age and sex matched) without symptoms of osteoarthritis of the knee were drawn from patient's relatives/hospital employees/colleagues for MRI knee. Results T1 and T2 relaxation time values of articular cartilage and menisci were significantly higher in osteoarthritis patients as compared to healthy volunteers. No significant difference was found in morphological thickness of articular cartilage and menisci in early osteoarthritis patients and healthy volunteers. Conclusions T1 and T2 mapping are noninvasive MRI techniques reflecting changes in the biochemical composition of cartilage and menisci. T1 values reflect changes in proteoglycan content, and T2 values are sensitive to interaction between water molecules and collagen network. Mapping techniques assess early cartilage and meniscal matrix degeneration in osteoarthritis of the knee, and help in initiating treatment and monitoring disease progression. MRI is a sensitive modality for assessment of pathological changes in articular cartilage. With use of T1 and T2 mapping techniques, it is possible to evaluate the collagen network and proteoglycan content in articular cartilage and meniscal matrix.
Collapse
|
10
|
Tsai LC, Cooper E, Hetzendorfer K, Warren G, Chang YH, Willett N. Effects of treadmill running and limb immobilization on knee cartilage degeneration and locomotor joint kinematics in rats following knee meniscal transection. Osteoarthritis Cartilage 2019; 27:1851-1859. [PMID: 31437580 PMCID: PMC7576441 DOI: 10.1016/j.joca.2019.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study examined the effects of reduced and elevated weight bearing on post-traumatic osteoarthritis (PTOA) development, locomotor joint kinematics, and degree of voluntary activity in rats following medial meniscal transection (MMT). DESIGN Twenty-one adult rats were subjected to MMT surgery of the left hindlimb and then assigned to one of three groups: (1) regular (i.e., no intervention), (2) hindlimb immobilization, or (3) treadmill running. Sham surgery was performed in four additional rats. Voluntary wheel run time/distance was measured, and 3D hindlimb kinematics were quantified during treadmill locomotion using biplanar radiography. Rats were euthanized 8 weeks after MMT or sham surgery, and the microstructure of the tibial cartilage and subchondral bone was quantified using contrast enhanced micro-CT. RESULTS All three MMT groups showed signs of PTOA (full-thickness lesions and/or increased cartilage volume) compared to the sham group, however the regular and treadmill-running groups had greater osteophyte formation than the immobilization group. For the immobilization group, increased volume was only observed in the anterior region of the cartilage. The treadmill-running group demonstrated a greater knee varus angle at mid-stance than the sham group, while the immobilization group demonstrated greater reduction in voluntary running than all the other groups at 2 weeks post-surgery. CONCLUSIONS Elevated weight-bearing via treadmill running at a slow/moderate speed did not accelerate PTOA in MMT rats when compared to regular weight-bearing. Reduced weight-bearing via immobilization may attenuate overall PTOA but still resulted in regional cartilage degeneration. Overall, there were minimal differences in hindlimb kinematics and voluntary running between MMT and sham rats.
Collapse
Affiliation(s)
- L.-C. Tsai
- Georgia State University, Atlanta, GA, USA,Address correspondence and reprint requests to: L.-C. Tsai, Department of Physical Therapy, Georgia State University, Atlanta, GA, USA. Tel: 404-413-1246. (L.-C. Tsai)
| | - E.S. Cooper
- Emory University, Atlanta, GA, USA,Georgia Institute of Technology, Atlanta, GA, USA
| | | | - G.L. Warren
- Georgia State University, Atlanta, GA, USA,Georgia Institute of Technology, Atlanta, GA, USA
| | - Y.-H. Chang
- Georgia Institute of Technology, Atlanta, GA, USA
| | - N.J. Willett
- Emory University, Atlanta, GA, USA,Georgia Institute of Technology, Atlanta, GA, USA,Atlanta VA Medical Center, Atlanta, GA, USA
| |
Collapse
|
11
|
Hall AC. The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering. Curr Rheumatol Rep 2019; 21:38. [PMID: 31203465 PMCID: PMC6571082 DOI: 10.1007/s11926-019-0837-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Articular chondrocytes are exclusively responsible for the turnover of the extracellular matrix (ECM) of hyaline cartilage. However, chondrocytes are phenotypically unstable and, if they de-differentiate into hypertrophic or fibroblastic forms, will produce a defective and weak matrix. Chondrocyte volume and morphology exert a strong influence over phenotype and a full appreciation of the factors controlling chondrocyte phenotype stability is central to understanding (a) the mechanisms underlying the cartilage failure in osteoarthritis (OA), (b) the rationale for hyaline cartilage repair, and (c) the strategies for improving the engineering of resilient cartilage. The focus of this review is on the factors involved in, and the importance of regulating, chondrocyte morphology and volume as key controllers of chondrocyte phenotype. RECENT FINDINGS The visualisation of fluorescently-labelled in situ chondrocytes within non-degenerate and mildly degenerate cartilage, by confocal scanning laser microscopy (CLSM) and imaging software, has identified the marked heterogeneity of chondrocyte volume and morphology. The presence of chondrocytes with cytoplasmic processes, increased volume, and clustering suggests important early changes to their phenotype. Results from experiments more closely aligned to the normal physico-chemical environment of in situ chondrocytes are emphasising the importance of understanding the factors controlling chondrocyte morphology and volume that ultimately affect phenotype. An appreciation of the importance of chondrocyte volume and morphology for controlling the chondrocyte phenotype is advancing at a rapid pace and holds particular promise for developing strategies for protecting the chondrocytes against deleterious changes and thereby maintaining healthy and resilient cartilage.
Collapse
Affiliation(s)
- Andrew C Hall
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
12
|
Harrison-Brown M, Scholes C, Hafsi K, Marenah M, Li J, Hassan F, Maffulli N, Murrell WD. Efficacy and safety of culture-expanded, mesenchymal stem/stromal cells for the treatment of knee osteoarthritis: a systematic review protocol. J Orthop Surg Res 2019; 14:34. [PMID: 30683159 PMCID: PMC6347797 DOI: 10.1186/s13018-019-1070-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Osteoarthritis is a progressive multifactorial condition of the musculoskeletal system with major symptoms including pain, loss of function, damage of articular cartilage and other tissues in the affected area. Knee osteoarthritis imposes major individual and social burden, especially with the cost and complexity of surgical interventions. Mesenchymal stem/stromal cells have been indicated as a treatment for degenerative musculoskeletal conditions given their capacity to differentiate into tissues of the musculoskeletal system. Methods A systematic search will be conducted in Medline, Embase, Cochrane Library, Scopus and relevant trial databases of English, Japanese, Korean, German, French, Italian, Spanish and Portuguese language papers published or in press to June 2018, with no restrictions on publication year applied. References will be screened and assessed for eligibility by two independent reviewers as per PRISMA guidelines. Cohort, cross-sectional or case controlled studies will be included for the analysis. Data extraction will be conducted using a predefined template and quality of evidence assessed. Statistical summaries and meta-analyses will be performed as necessary. Discussion Results will be published in relevant peer-reviewed scientific journals and presented at national or international conferences by the investigators. Trial registration The protocol was registered on the PROSPERO international prospective register of systematic reviews prior to commencement, CRD42018091763. Electronic supplementary material The online version of this article (10.1186/s13018-019-1070-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Kholoud Hafsi
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Maimuna Marenah
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Jinjie Li
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates
| | - Fadi Hassan
- Good Hope Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Dentistry, Salerno, Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry Centre for Sports and Exercise Medicine, Mile End Hospital, London, England
| | - William D Murrell
- Emirates Integra Medical and Surgery Centre, Dubai, United Arab Emirates.,Emirates Healthcare, Dubai, United Arab Emirates.,Department of Orthopaedic Surgery, Landstuhl Regional Medical Center, Landstuhl, Germany
| |
Collapse
|
13
|
Ali TS, Prasadam I, Xiao Y, Momot KI. Progression of Post-Traumatic Osteoarthritis in rat meniscectomy models: Comprehensive monitoring using MRI. Sci Rep 2018; 8:6861. [PMID: 29717217 PMCID: PMC5931579 DOI: 10.1038/s41598-018-25186-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Knee injury often triggers post-traumatic osteoarthritis (PTOA) that affects articular cartilage (AC), subchondral bone, meniscus and the synovial membrane. The available treatments for PTOA are largely ineffective due to late diagnosis past the “treatment window”. This study aimed to develop a detailed understanding of the time line of the progression of PTOA in murine models through longitudinal observation of the femorotibial joint from the onset of the disease to the advanced stage. Quantitative magnetic resonance microimaging (µMRI) and histology were used to evaluate PTOA-associated changes in the knee joints of rats subjected to knee meniscectomy. Systematic longitudinal changes in the articular cartilage thickness, cartilage T2 and the T2 of epiphysis within medial condyles of the tibia were all found to be associated with the development of PTOA in the animals. The following pathogenesis cascade was found to precede advanced PTOA: meniscal injury → AC swelling → subchondral bone remodelling → proteoglycan depletion → free water influx → cartilage erosion. Importantly, the imaging protocol used was entirely MRI-based. This protocol is potentially suitable for whole-knee longitudinal, non-invasive assessment of the development of OA. The results of this work will inform the improvement of the imaging methods for early diagnosis of PTOA.
Collapse
Affiliation(s)
- Tonima S Ali
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia.,Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, 4059, Australia
| | - Indira Prasadam
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia.,Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, 4059, Australia
| | - Yin Xiao
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia.,Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, 4059, Australia
| | - Konstantin I Momot
- Queensland University of Technology (QUT), Brisbane, Queensland (QLD), Australia. .,Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
14
|
Manzano S, Armengol M, J. Price A, A. Hulley P, S. Gill H, Doblaré M, Hamdy Doweidar M. Inhomogeneous Response of Articular Cartilage: A Three-Dimensional Multiphasic Heterogeneous Study. PLoS One 2016; 11:e0157967. [PMID: 27327166 PMCID: PMC4915703 DOI: 10.1371/journal.pone.0157967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage exhibits complex mechano-electrochemical behaviour due to its anisotropy, inhomogeneity and material non-linearity. In this work, the thickness and radial dependence of cartilage properties are incorporated into a 3D mechano-electrochemical model to explore the relevance of heterogeneity in the behaviour of the tissue. The model considers four essential phenomena: (i) osmotic pressure, (ii) convective and diffusive processes, (iii) chemical expansion and (iv) three-dimensional through-the-thickness heterogeneity of the tissue. The need to consider heterogeneity in computational simulations of cartilage behaviour and in manufacturing biomaterials mimicking this tissue is discussed. To this end, healthy tibial plateaus from pigs were mechanically and biochemically tested in-vitro. Heterogeneous properties were included in the mechano-electrochemical computational model to simulate tissue swelling. The simulation results demonstrated that swelling of the heterogeneous samples was significantly lower than swelling under homogeneous and isotropic conditions. Furthermore, there was a significant reduction in the flux of water and ions in the former samples. In conclusion, the computational model presented here can be considered as a valuable tool for predicting how the variation of cartilage properties affects its behaviour, opening up possibilities for exploring the requirements of cartilage-mimicking biomaterials for tissue engineering. Besides, the model also allows the establishment of behavioural patterns of swelling and of water and ion fluxes in articular cartilage.
Collapse
Affiliation(s)
- Sara Manzano
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Monica Armengol
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Andrew J. Price
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Philippa A. Hulley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, United Kingdom
| | - Harinderjit S. Gill
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, United Kingdom
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Manuel Doblaré
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Mohamed Hamdy Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- * E-mail:
| |
Collapse
|
15
|
Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 2016; 11:19. [PMID: 26837951 PMCID: PMC4738796 DOI: 10.1186/s13018-016-0346-5] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.
Collapse
Affiliation(s)
- Emmanuel L Kuyinu
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health, Farmington, CT, USA. .,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA. .,Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA. .,Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA. .,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, USA. .,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA. .,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Eckstein F, Wirth W, Lohmander LS, Hudelmaier MI, Frobell RB. Five-year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament. Arthritis Rheumatol 2015; 67:152-61. [PMID: 25252019 DOI: 10.1002/art.38881] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Anterior cruciate ligament (ACL) rupture involves an increased risk of osteoarthritis. The purpose of this study was to explore changes in cartilage thickness over 5 years after ACL rupture. METHODS A total of 121 young active adults (ages 18-35 years; 26% women) from the Knee ACL, Nonsurgical versus Surgical Treatment (KANON) study, who had acute traumatic rupture of the ACL were studied. Sagittal magnetic resonance images were acquired within 4 weeks of ACL rupture (baseline) and at the 2-year and 5-year followup assessments. Medial and lateral femorotibial cartilage was segmented (with blinding to acquisition order), and the mean cartilage thickness was computed across 16 femorotibial subregions. Total femorotibial cartilage thickness change was the primary analytic focus. Maximal subregional mean cartilage thickness loss (ordered value 1 [OV1]) and gain (ordered value 16 [OV16]), independent of its specific location in individual knees, were the secondary analytic focus. RESULTS Overall femorotibial cartilage thickness increased by 31 μm/year over 5 years (95% confidence interval 18, 44). The increase was similar in men and women and was significantly greater in those younger, as compared with those older, than the median age (25.3 years). The rate of total cartilage thickness change did not differ significantly between the first 2 years and the later 3 years. However, the maximal annualized subregional cartilage loss (OV1) and gain (OV16) were both significantly greater (P < 0.001 and P < 0.05, respectively) during the earlier interval than during the later interval (-115 versus -54 μm [OV1] and 116 versus 69 μm [OV16]). CONCLUSION Cartilage thickening was observed over 5 years following ACL injury, particularly in the medial femorotibial compartment and in younger subjects. Major perturbations in cartilage homeostasis were seen over the first 2 years after ACL rupture, with simultaneous subregional thinning and thickening occurring within the same cartilage plate or compartment.
Collapse
Affiliation(s)
- F Eckstein
- Institute of Anatomy, Paracelsus Medical University, Salzburg and Nuremberg, Salzburg, Austria, and Chondrometrics GmbH, Ainring, Germany
| | | | | | | | | |
Collapse
|
17
|
Huttu M, Turunen S, Sokolinski V, Tiitu V, Lammi M, Korhonen RK. Effects of medium and temperature on cellular responses in the superficial zone of hypo-osmotically challenged articular cartilage. J Funct Biomater 2014; 3:544-55. [PMID: 23807905 PMCID: PMC3691548 DOI: 10.3390/jfb3030544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osmotic loading of articular cartilage has been used to study cell-tissue interactions and mechanisms in chondrocyte volume regulation in situ. Since cell volume changes are likely to affect cell’s mechanotransduction, it is important to understand how environmental factors, such as composition of the immersion medium and temperature affect cell volume changes in situ in osmotically challenged articular cartilage. In this study, chondrocytes were imaged in situ with a confocal laser scanning microscope (CLSM) through cartilage surface before and 3 min and 120 min after a hypo-osmotic challenge. Samples were measured either in phosphate buffered saline (PBS, without glucose and Ca2+) or in Dulbecco’s modified Eagle’s medium (DMEM, with glucose and Ca2+), and at 21 °C or at 37 °C. In all groups, cell volumes increased shortly after the hypotonic challenge and then recovered back to the original volumes. At both observation time points, cell volume changes as a result of the osmotic challenge were similar in PBS and DMEM in both temperatures. Our results indicate that the initial chondrocyte swelling and volume recovery as a result of the hypo-osmotic challenge of cartilage are not dependent on commonly used immersion media or temperature.
Collapse
Affiliation(s)
- Mari Huttu
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Siru Turunen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Viktoria Sokolinski
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| | - Virpi Tiitu
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- SIB-Labs, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Mikko Lammi
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland;
- Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
- Author to whom correspondence should be addressed; ; Tel.: +358-40-355-3027; Fax: +358-17-162-131
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; (M.H.); (S.T.);
(V.S.); (R.K.)
| |
Collapse
|
18
|
Eckstein F, Boeth H, Diederichs G, Wirth W, Hudelmaier M, Cotofana S, Hofmann-Amtenbrink M, Duda G. Longitudinal change in femorotibial cartilage thickness and subchondral bone plate area in male and female adolescent vs. mature athletes. Ann Anat 2013; 196:150-7. [PMID: 24439995 DOI: 10.1016/j.aanat.2013.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/28/2022]
Abstract
Little is known about changes in human cartilage thickness and subchondral bone plate area (tAB) during growth. The objective of this study was to explore longitudinal change in femorotibial cartilage thickness and tAB in adolescent athletes, and to compare these data with those of mature former athletes. Twenty young (baseline age 16.0 ± 0.6 years) and 20 mature (46.3 ± 4.7 years) volleyball athletes were studied (10 men and 10 women in each group). Magnetic resonance images were acquired at baseline and at year 2-follow-up, and longitudinal changes in cartilage thickness and tAB were determined quantitatively after segmentation. The yearly increase in total femorotibial cartilage thickness was 0.8% (95% confidence interval [CI]: -0.5; 2.1%) in young men and 1.4% (95% CI: 0.7; 2.2%) in young women; the gain in tAB was 0.4% (95% CI: -0.1; 0.8%) and 0.7% (95% CI: 0.2; 1.2%), respectively (no significant difference between sexes). The cartilage thickness increase was greatest in the medial femur, and was not significantly associated with the variability in tAB growth (r=-0.19). Mature athletes showed smaller gains in tAB, and lost >1% of femorotibial cartilage per annum, with the greatest loss observed in the lateral tibia. In conclusion, we find an increase in cartilage thickness (and some in tAB) in young athletes toward the end of adolescence. This increase appeared somewhat greater in women than men, but the differences between both sexes did not reach statistical significance. Mature (former) athletes displayed high rates of (lateral) femorotibial cartilage loss, potentially due to a high prevalence of knee injuries.
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria.
| | - Heide Boeth
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Center for Sports Science and Sports Medicine Berlin, Germany
| | - Gerd Diederichs
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Wolfgang Wirth
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Martin Hudelmaier
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Georg Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Center for Sports Science and Sports Medicine Berlin, Germany
| |
Collapse
|
19
|
Marsh M, Souza RB, Wyman BT, Hellio Le Graverand MP, Subburaj K, Link TM, Majumdar S. Differences between X-ray and MRI-determined knee cartilage thickness in weight-bearing and non-weight-bearing conditions. Osteoarthritis Cartilage 2013; 21:1876-85. [PMID: 24091161 DOI: 10.1016/j.joca.2013.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/13/2013] [Accepted: 09/08/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Determine the effect of loading upon MRI-based mean medial femorotibial cartilage thickness (mMFT_th) and radiograph-based minimum joint space width (mJSW), and determine loading's effect on the relationship between these measures. METHODS MRI and radiographs were analyzed of 25 knees in weight-bearing and non-weight-bearing conditions. Eight subjects had a Kellgren-Lawrence (KL) grade of 0, indicating no evidence of radiographic OA. The rest were KL = 2 or KL = 3, indicating mild to moderate OA. The change from unloaded to loaded conditions was calculated. RESULTS Joint space measures decreased from unloaded to loaded conditions for both radiographs (mJSW = 3.29 mm unloaded to 3.16 mm loaded, P < 0.05) and MRI (mMFT_th = 2.70 mm unloaded to 2.55 mm loaded P < 0.001). The mean absolute difference measured from radiographs was larger for the OA group than the control group, at -0.20 mm for OA vs +0.01 mm for control. Loaded X-ray and loaded MRI joint space values from our study were no better correlated to one another than loaded X-ray and unloaded MRI. CONCLUSION Knee loading does not add a very significant value to the study of joint space on healthy knees, but loading may play a role in the study of OA knees. Unloaded MRI assessments of cartilage thickness are as correlated to loaded JSW as to loaded MRI measurements. More study is necessary to determine whether loaded MRI adds significant value to the study of OA progression.
Collapse
Affiliation(s)
- M Marsh
- Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Palmer AJR, Brown CP, McNally EG, Price AJ, Tracey I, Jezzard P, Carr AJ, Glyn-Jones S. Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 2013; 95-B:738-46. [PMID: 23723266 DOI: 10.1302/0301-620x.95b6.31414] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Treatment for osteoarthritis (OA) has traditionally focused on joint replacement for end-stage disease. An increasing number of surgical and pharmaceutical strategies for disease prevention have now been proposed. However, these require the ability to identify OA at a stage when it is potentially reversible, and detect small changes in cartilage structure and function to enable treatment efficacy to be evaluated within an acceptable timeframe. This has not been possible using conventional imaging techniques but recent advances in musculoskeletal imaging have been significant. In this review we discuss the role of different imaging modalities in the diagnosis of the earliest changes of OA. The increasing number of MRI sequences that are able to non-invasively detect biochemical changes in cartilage that precede structural damage may offer a great advance in the diagnosis and treatment of this debilitating condition.
Collapse
Affiliation(s)
- A J R Palmer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, Headington OX3 7LD, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nebbaki SS, El Mansouri FE, Afif H, Kapoor M, Benderdour M, Pelletier JP, Martel-Pelletier J, Fahmi H. Expression of peroxisome proliferator-activated receptors α, β, γ, and H- and L-prostaglandin D synthase during osteoarthritis in the spontaneous hartley guinea pig and experimental dog models. J Rheumatol 2013; 40:877-90. [PMID: 23547214 DOI: 10.3899/jrheum.120738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the expression of peroxisome proliferator-activated receptors (PPAR) α, β, and γ, and hematopoietic and lipocalin-type prostaglandin D synthase (H- and L-PGDS) over the course of osteoarthritis (OA) in the spontaneous Hartley guinea pig and the anterior cruciate ligament transection dog models. METHODS Guinea pigs were sacrificed at 2 (control group), 4, 8, and 12 months of age (n = 5 per group). Non-operated (control) and operated dogs were sacrificed at 4, 8, and 12 weeks postsurgery. Cartilage was evaluated histologically using the Osteoarthritis Research Society International (OARSI) guidelines. The expression of PPAR-α, β, γ, and H- and L-PGDS was evaluated by real-time PCR and immunohistochemistry. The nonparametric Spearman test was used for correlation analysis. RESULTS PPAR-α, β, and γ were detected in medial tibial plateau from control animals in both the spontaneous and surgical models. Levels of PPAR-α and β did not change over the course of OA, whereas PPAR-γ levels decreased during progression of disease. We also observed that the expression of H-PGDS remained unchanged, whereas L-PGDS increased over the course of OA. PPAR-γ levels correlated negatively, whereas L-PGDS levels correlated positively, with the histological score of OA. CONCLUSION The level of PPAR-γ decreased, whereas level of L-PGDS increased during the progression of OA. These data suggest that reduced expression of PPAR-γ may contribute to the pathogenesis of OA, whereas enhanced expression of L-PGDS may be part of a reparative process.
Collapse
Affiliation(s)
- Sarah-Salwa Nebbaki
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Notre-Dame Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cotofana S, Buck R, Wirth W, Roemer F, Duryea J, Nevitt M, Eckstein F. Cartilage thickening in early radiographic knee osteoarthritis: a within-person, between-knee comparison. Arthritis Care Res (Hoboken) 2013; 64:1681-90. [PMID: 22556039 DOI: 10.1002/acr.21719] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine whether the presence of definite osteophytes (in the absence of joint space narrowing [JSN]) on radiographs is associated with (subregional) increases in cartilage thickness in a within-person, between-knee cross-sectional comparison of participants in the Osteoarthritis Initiative. Based on previous results, the external weight-bearing medial femoral condyle (ecMF) and external weight-bearing lateral femoral condyle (ecLF) subregions were selected as primary end points. METHODS Both knees of 61 Osteoarthritis Initiative participants (n = 4,796) displayed definite tibial or femoral marginal osteophytes and no JSN in 1 knee, and no signs of radiographic osteoarthritis (OA) in the contralateral knee; this was confirmed by an expert central reader. In these participants, cartilage thickness was measured in 16 femorotibial subregions of each knee, based on sagittal double-echo steady-state with water excitation magnetic resonance images. Location-specific joint space width from fixed-flexion radiographs was determined using dedicated software. Location-specific associations of osteophytes with cartilage thickness were evaluated using paired t-tests and mixed-effects models. RESULTS Of the 61 participants, 48% had only medial osteophytes, 36% only lateral osteophytes, and 16% bicompartmental osteophytes. The knees with osteophytes had significantly thicker cartilage than contralateral knees without osteophytes in the ecMF (mean ± SD +71 ± 223 μmoles, equivalent to an increase of +5.5%; P = 0.015) and ecLF (mean ± SD +64 ± 195 μmoles, +4.1%; P = 0.013). No significant differences between knees were noted in other subregions or in joint space width. Cartilage thickness in the ecMF and ecLF was significantly associated with tibial osteophytes in the same (medial or lateral) compartment (P = 0.003). CONCLUSION The knees with early radiographic OA display thicker cartilage than (contralateral) knees without radiographic findings of OA, specifically in the external femoral subregions of compartments with marginal osteophytes.
Collapse
|
23
|
Buck RJ, Wirth W, Dreher D, Nevitt M, Eckstein F. Frequency and spatial distribution of cartilage thickness change in knee osteoarthritis and its relation to clinical and radiographic covariates - data from the osteoarthritis initiative. Osteoarthritis Cartilage 2013; 21:102-9. [PMID: 23099212 DOI: 10.1016/j.joca.2012.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/07/2012] [Accepted: 10/14/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Estimate the frequency and spatial location of rapid femorotibial cartilage thinning or thickening in knees with, or at risk of, osteoarthritis (OA) and examine their association with clinical and radiographic covariates. DESIGN Knee cartilage thickness change over 12 months was measured using magnetic resonance imaging in the right knee of 757 Osteoarthritis Initiative (OAI) participants that had radiographic findings of osteophytes or joint space narrowing (JSN). Thickness changes in individual knees were classified as having rapid thinning or thickening or no detectable OA-related change when compared to asymptomatic OAI Control cohort knees. RESULTS Cartilage thinning, found in 18.5% of subjects, was more frequent in knees with OAI calculated Kellgren-Lawrence grade (cKLG) > 2 (P < 0.001) and with frequent pain (P = 0.047). No link was found between body mass index, sex, and age and cartilage thinning (P > 0.15). The percent of knees with thickening was small (4.4%), but greater in knees with frequent pain (P = 0.02). Rapid thinning was most common in the central (36.4%) and external (32.1%) subregions of the medial weight-bearing femur. Mean cartilage loss in rapidly thinning subregions ranged from 11.2%/y to 24.6%/y. Knees with cKLG > 2, but classified as having no detectable OA-related change had mean cartilage loss rates significantly >0 (0.4%/y-1.3%/y) in 10 subregions. CONCLUSION Most observed subregional changes in OA knees were indistinguishable from changes found in an asymptomatic cohort, but a fraction of subregions showed rapid progression. The relative frequency of rapid thinning increases when cKLG > 2, a classification closely associated with JSN and/or frequent knee pain are present.
Collapse
Affiliation(s)
- R J Buck
- StatAnswers Consulting LLC, San Diego, CA, USA.
| | | | | | | | | |
Collapse
|
24
|
Wang Y, Wluka AE, Jones G, Ding C, Cicuttini FM. Use magnetic resonance imaging to assess articular cartilage. Ther Adv Musculoskelet Dis 2012; 4:77-97. [PMID: 22870497 PMCID: PMC3383521 DOI: 10.1177/1759720x11431005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Magnetic resonance imaging (MRI) enables a noninvasive, three-dimensional assessment of the entire joint, simultaneously allowing the direct visualization of articular cartilage. Thus, MRI has become the imaging modality of choice in both clinical and research settings of musculoskeletal diseases, particular for osteoarthritis (OA). Although radiography, the current gold standard for the assessment of OA, has had recent significant technical advances, radiographic methods have significant limitations when used to measure disease progression. MRI allows accurate and reliable assessment of articular cartilage which is sensitive to change, providing the opportunity to better examine and understand preclinical and very subtle early abnormalities in articular cartilage, prior to the onset of radiographic disease. MRI enables quantitative (cartilage volume and thickness) and semiquantitative assessment of articular cartilage morphology, and quantitative assessment of cartilage matrix composition. Cartilage volume and defects have demonstrated adequate validity, accuracy, reliability and sensitivity to change. They are correlated to radiographic changes and clinical outcomes such as pain and joint replacement. Measures of cartilage matrix composition show promise as they seem to relate to cartilage morphology and symptoms. MRI-derived cartilage measurements provide a useful tool for exploring the effect of modifiable factors on articular cartilage prior to clinical disease and identifying the potential preventive strategies. MRI represents a useful approach to monitoring the natural history of OA and evaluating the effect of therapeutic agents. MRI assessment of articular cartilage has tremendous potential for large-scale epidemiological studies of OA progression, and for clinical trials of treatment response to disease-modifying OA drugs.
Collapse
|
25
|
Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in imaging of osteoarthritis and cartilage. Radiology 2011; 260:332-54. [PMID: 21778451 DOI: 10.1148/radiol.11101359] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is the most frequent form of arthritis, with major implications for individual and public health care without effective treatment available. The field of joint imaging, and particularly magnetic resonance (MR) imaging, has evolved rapidly owing to technical advances and the application of these to the field of clinical research. Cartilage imaging certainly is at the forefront of these developments. In this review, the different aspects of OA imaging and cartilage assessment, with an emphasis on recent advances, will be presented. The current role of radiography, including advances in the technology for joint space width assessment, will be discussed. The development of various MR imaging techniques capable of facilitating assessment of cartilage morphology and the methods for evaluating the biochemical composition of cartilage will be presented. Advances in quantitative morphologic cartilage assessment and semiquantitative whole-organ assessment will be reviewed. Although MR imaging is the most important modality in imaging of OA and cartilage, others such as ultrasonography play a complementary role that will be discussed briefly.
Collapse
Affiliation(s)
- Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
26
|
Hypotonic challenge modulates cell volumes differently in the superficial zone of intact articular cartilage and cartilage explant. Biomech Model Mechanobiol 2011; 11:665-75. [DOI: 10.1007/s10237-011-0341-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
|
27
|
Quantitative cartilage imaging in knee osteoarthritis. ARTHRITIS 2010; 2011:475684. [PMID: 22046518 PMCID: PMC3200067 DOI: 10.1155/2011/475684] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/25/2010] [Indexed: 02/01/2023]
Abstract
Quantitative measures of cartilage morphology (i.e., thickness) represent potentially powerful surrogate endpoints in osteoarthritis (OA). These can be used to identify risk factors of structural disease progression and can facilitate the clinical efficacy testing of structure modifying drugs in OA. This paper focuses on quantitative imaging of articular cartilage morphology in the knee, and will specifically deal with different cartilage morphology outcome variables and regions of interest, the relative performance and relationship between cartilage morphology measures, reference values for MRI-based knee cartilage morphometry, imaging protocols for measurement of cartilage morphology (including those used in the Osteoarthritis Initiative), sensitivity to change observed in knee OA, spatial patterns of cartilage loss as derived by subregional analysis, comparison of MRI changes with radiographic changes, risk factors of MRI-based cartilage loss in knee OA, the correlation of MRI-based cartilage loss with clinical outcomes, treatment response in knee OA, and future directions of the field.
Collapse
|
28
|
Huebner JL, Williams JM, Deberg M, Henrotin Y, Kraus VB. Collagen fibril disruption occurs early in primary guinea pig knee osteoarthritis. Osteoarthritis Cartilage 2010; 18:397-405. [PMID: 19825496 PMCID: PMC2826602 DOI: 10.1016/j.joca.2009.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/04/2009] [Accepted: 09/27/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A major barrier inhibiting the discovery of structural modifying agents for osteoarthritis (OA) is an incomplete understanding of early disease events. Herein, we investigated the time course of collagen II cleavage and fibril disruption in the well-validated Hartley guinea pig model of spontaneous OA of the knee. METHODS Knee joints of 46 male Hartley guinea pigs were analyzed at 3 weeks, 2, 4, 7, 10, 12, and 18 months of age for histological severity of OA, cartilage collagen fibril disruption by semi-quantitative polarized light microscopy, and expression of type II collagen degradation biomarkers, 9A4 and Coll2-1, by immunohistochemistry. In addition, serum biomarkers specific for collagen II degradation, CTX-II, C2C, and Coll2-1 were quantified. RESULTS Collagen fibril disruption and expression of the collagenase-generated cleavage neoepitope, 9A4, were observed as early as 2 months of age, despite the appearance of histological OA at 4 months of age. Only serum Coll2-1 increased coincident with the early disruption of the collagen fibril between 3 weeks and 7 months, in contrast to serum C2C, which did not change significantly or correlate with histological severity. Inversely, CTX-II declined dramatically from 3 weeks to 4 months and remaining low thereafter, coincident with growth plate turnover. CONCLUSIONS Collagenase cleavage and disruption of the type II collagen network are early OA disease events in this model, preceding histological evidence of proteoglycan loss. The markedly different serum profiles of collagen II-related biomarkers during the early stages of disease development suggest compartmental segregation and temporal regulation of collagen degrading enzymes.
Collapse
Affiliation(s)
| | | | - Michelle Deberg
- Bone and Cartilage Research Unit, Institute of Pathology, University of Liège, Liège, Belgium
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Institute of Pathology, University of Liège, Liège, Belgium
| | | |
Collapse
|
29
|
Osteoarthritis may not be a one-way-road of cartilage loss--comparison of spatial patterns of cartilage change between osteoarthritic and healthy knees. Osteoarthritis Cartilage 2010; 18:329-35. [PMID: 19948267 DOI: 10.1016/j.joca.2009.11.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 10/23/2009] [Accepted: 11/18/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To explore whether longitudinal change in cartilage thickness in femorotibial subregions of knees with radiographic osteoarthritis (ROA) differs from that in healthy knees. METHODS 3T coronal magnetic resonance (MR) images were acquired in 152 women at seven clinical centers at baseline (BL) and 24 months. Knees from 75 women with signs of ROA in either anterior-posterior or Lyon schuss radiographs were compared with those from 77 asymptomatic healthy controls without ROA to identify knees showing greater change in cartilage thickness than expected based on observations in healthy knees. The femorotibial cartilage thickness was determined in BL and follow-up MR images across five tibial and three femoral subregions in the medial/lateral compartment, respectively. RESULTS A substantial portion of knees with ROA were classified as having longitudinal cartilage thinning (28%) or thickening (20%) in at least one medial femorotibial subregion based on comparisons to longitudinal changes observed in healthy knees; only 5% showed both subregional thinning and thickening across (different) medial subregions at the same time. Whereas the estimated proportion of Kellgren Lawrence grade (KLG) 3 knees (n=28) with significant medial cartilage thinning (46%) was substantially greater than that with cartilage thickening (18%), the estimated percentages of KLG2 knees (n=30) with significant medial thinning (20%) and thickening (23%) were similar. CONCLUSION This exploratory study indicates that OA may not be a one-way-road of cartilage loss. Subregional analysis suggests that, compared with healthy knees, cartilage changes in ROA may occur in both directions. Medial femorotibial cartilage thickening was observed as frequently as cartilage thinning in KLG2 knees.
Collapse
|
30
|
Roemer FW, Eckstein F, Guermazi A. Magnetic resonance imaging-based semiquantitative and quantitative assessment in osteoarthritis. Rheum Dis Clin North Am 2010; 35:521-55. [PMID: 19931802 DOI: 10.1016/j.rdc.2009.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whole organ magnetic resonance imaging (MRI)-based semiquantitative (SQ) assessment of knee osteoarthritis (OA), based on reliable scoring methods and expert reading, has become a powerful research tool in OA. SQ morphologic scoring has been applied to large observational cross-sectional and longitudinal epidemiologic studies as well as interventional clinical trials. SQ whole organ scoring analyzes all joint structures that are potentially relevant as surrogate outcome measures of OA and potential disease modification, including cartilage, subchondral bone, osteophytes, intra- and periarticular ligaments, menisci, synovial lining, cysts, and bursae. Resources needed for SQ scoring rely on the MRI protocol, image quality, experience of the expert readers, method of documentation, and the individual scoring system that will be applied. The first part of this article discusses the different available OA whole organ scoring systems, focusing on MRI of the knee, and also reviews alternative approaches. Rheumatologists are made aware of artifacts and differential diagnoses when applying any of the SQ scoring systems. The second part focuses on quantitative approaches in OA, particularly measurement of (subregional) cartilage loss. This approach allows one to determine minute changes that occur relatively homogeneously across cartilage structures and that are not apparent to the naked eye. To this end, the cartilage surfaces need to be segmented by trained users using specialized software. Measurements of knee cartilage loss based on water-excitation spoiled gradient recalled echo acquisition in the steady state, fast low-angle shot, or double-echo steady-state imaging sequences reported a 1% to 2% decrease in cartilage thickness annually, and a high degree of spatial heterogeneity of cartilage thickness changes in femorotibial subregions between subjects. Risk factors identified by quantitative measurement technology included a high body mass index, meniscal extrusion and meniscal tears, knee malalignment, advanced radiographic OA grade, bone marrow alterations, and focal cartilage lesions.
Collapse
Affiliation(s)
- Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, FGH Building, 3rd floor, 820 Harrison Avenue, Boston, MA 02118, USA.
| | | | | |
Collapse
|
31
|
Bagheri MH, Nazhvani SD, Nikahval B, Pakbaz S, Tanideh N, Mehrabani D. Articular cartilage changes in experimental osteoarthritis in rabbits: MRI and morphological findings. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s00580-009-0951-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Yao W, Qu N, Lu Z, Yang S. The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis. Skeletal Radiol 2009; 38:1055-62. [PMID: 19688346 DOI: 10.1007/s00256-009-0769-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/09/2009] [Accepted: 07/17/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We compare the T1 and T2 relaxation times and magnetization transfer ratios (MTRs) of normal subjects and patients with osteoarthritis (OA) to evaluate the ability of these techniques to aid in the early diagnosis and treatment of OA. MATERIALS AND METHODS The knee joints in 11 normal volunteers and 40 patients with OA were prospectively evaluated using T1 relaxation times as measured using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T2 relaxation times (multiple spin-echo sequence, T2 mapping), and MTRs. The OA patients were further categorized into mild, moderate, and severe OA. RESULTS The mean T1 relaxation times of the four groups (normal, mild OA, moderate OA, and severe OA) were: 487.3 +/- 27.7, 458.0 +/- 55.9, 405.9 +/- 57.3, and 357.9 +/- 36.7 respectively (p <0.001). The mean T2 relaxation times of the four groups were: 37.8 +/- 3.3, 44.0 +/- 8.5, 50.9 +/- 9.5, and 57.4 +/- 4.8 respectively (p < 0.001). T1 relaxation time decreased and T2 relaxation time increased with worsening degeneration of patellar cartilage. The result of the covariance analysis showed that the covariate age had a significant influence on T2 relaxation time (p < 0.001). No significant differences between the normal and OA groups using MTR were noted. CONCLUSION T1 and T2 relaxation times are relatively sensitive to early degenerative changes in the patellar cartilage, whereas the MTR may have some limitations with regard to early detection of OA. In addition, The T1 and T2 relaxation times negatively correlate with each other, which is a novel finding.
Collapse
Affiliation(s)
- Weiwu Yao
- Department of Radiology, Shanghai No.6 People's Hospital affiliated to Shanghai Jiaotong University, Shanghai, China.
| | | | | | | |
Collapse
|
33
|
Hellio Le Graverand MP, Buck RJ, Wyman BT, Vignon E, Mazzuca SA, Brandt KD, Piperno M, Charles HC, Hudelmaier M, Hunter DJ, Jackson C, Kraus VB, Link TM, Majumdar S, Prasad PV, Schnitzer TJ, Vaz A, Wirth W, Eckstein F. Subregional femorotibial cartilage morphology in women--comparison between healthy controls and participants with different grades of radiographic knee osteoarthritis. Osteoarthritis Cartilage 2009; 17:1177-85. [PMID: 19341831 DOI: 10.1016/j.joca.2009.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/19/2009] [Accepted: 03/06/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify subregional differences in femorotibial cartilage morphology between healthy controls and women with different grades of radiographic knee osteoarthritis (OA). DESIGN 158 women aged > or =40 years were studied. Weight-bearing extended anterior-posterior (AP) and Lyon schuss radiographs were obtained and the Kellgren Lawrence grade (KLG) determined. 97 women had a body mass index (BMI)< or =28, no symptoms, and were AP KLG0. 61 women had a BMI> or =30, symptoms in the target knee, and mild (KLG2=31) to moderate (KLG3=30) medial femorotibial radiographic OA in the AP views. Coronal spoiled gradient echo water excitation sequences were acquired at 3.0 Tesla. Total plate and regional measures of cartilage morphology of the weight-bearing femorotibial joint were quantified. RESULTS KLG2 participants displayed, on average, thicker cartilage than healthy controls in the medial femorotibial compartment (particularly anterior subregion of the medial tibia (MT) and peripheral [external, internal] subregions of the medial femur), and in the lateral femur. KLG3 participants displayed significantly thinner cartilage than KLG0 participants in the medial weight-bearing femur (central subregion), in the external subregion of the MT, and in the internal subregion of the lateral tibia. These differences were generally unaffected when possible effects of demographic covariates were considered. CONCLUSIONS The results indicate that in femorotibial OA regional cartilage thickening and thinning may occur, dependent on the (radiographic) disease status of the joint. These changes appear to display a heterogeneous spatial pattern, where certain subregions are more strongly affected than others.
Collapse
|
34
|
Buck RJ, Wyman BT, Le Graverand MPH, Hudelmaier M, Wirth W, Eckstein F. Does the use of ordered values of subregional change in cartilage thickness improve the detection of disease progression in longitudinal studies of osteoarthritis? ACTA ACUST UNITED AC 2009; 61:917-24. [DOI: 10.1002/art.24613] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Quantitative MR Imaging of Cartilage and Trabecular Bone in Osteoarthritis. Radiol Clin North Am 2009; 47:655-73. [DOI: 10.1016/j.rcl.2009.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Zheng S, Xia Y. Effect of phosphate electrolyte buffer on the dynamics of water in tendon and cartilage. NMR IN BIOMEDICINE 2009; 22:158-164. [PMID: 18720450 PMCID: PMC6925598 DOI: 10.1002/nbm.1294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A number of NMR spectroscopic and microscopic MRI (microMRI) techniques were used to study proton dynamics in canine tendon and articular cartilage immersed in normal saline solution (NaCl solution) and high-concentration phosphate-buffered saline (PBS) solution. In a proton CPMG experiment on tendons, the T(2) relaxation of the tissue was found to be anisotropic and had two populations. When immersed in saline, the T(2) values were short and their relative populations were anisotropic. When immersed in PBS, the T(2) values increased and their relative populations became isotropic. These phenomena, also verified by proton double-quantum-filtered (DQF) NMR spectroscopy, were interpreted as the catalyzing effect of phosphate ions on proton exchange between water molecules. In the experiment on articular cartilage, the immersion of cartilage-bone blocks in PBS resulted in a significant reduction in the laminar appearance of cartilage on MRI (the magic angle effect). The quantitative T(2) anisotropy by microMRI at 13 microm pixel resolution and DQF NMR spectroscopy confirmed the substantial effect of PBS on the water dynamics in cartilage tissue blocks. This preliminary study has two important implications. For in vitro cartilage research, this work confirms the importance of the salt solution in which the specimen is stored - not all salts have the same effect on the measurable quantities in NMR and MRI. For in vivo cartilage diagnosis, especially using whole-body MRI scanners, this work suggests the possibility of using a suitable electrolyte as a novel contrast agent to assess the ultrastructural changes in cartilage due to tissue degradation.
Collapse
Affiliation(s)
- ShaoKuan Zheng
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
37
|
Naruse K, Urabe K, Jiang SX, Uchida K, Kozai Y, Minehara H, Mikuni-Takagaki Y, Kashima I, Itoman M. Osteoarthritic changes of the patellofemoral joint in STR/OrtCrlj mice are the earliest detectable changes and may be caused by internal tibial torsion. Connect Tissue Res 2009; 50:243-55. [PMID: 19637060 DOI: 10.1080/03008200902836065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STR/ort mice develop a naturally occurring osteoarthritis (OA) of the knee joints. However, the evaluation of early OA changes has been difficult due to variability caused by gender, individual differences, and differences between the right and left lower limbs. The objective of this study was to analyze the variability of the early OA changes with age in STR/ort mice and to identify the cause of onset. A total of 115 STR/OrtCrlj mice aged 10-45 weeks were examined. In addition to conventional radiological and histological evaluation of the knee joints, histological sections were used to examine the patellofemoral, femorotibial, and growth plate cartilage under similar conditions. A morphological evaluation of tibiae, including micro-3-dimensional computed tomography, was performed. Radiological evaluation showed OA changes in the joints of mice over 35 weeks old and histological evaluation showed early OA changes in the femorotibial joints of mice over 26 weeks old. However, these changes were not common in all individuals. In contrast, most common and reproducible OA changes were observed in the bilateral patellofemoral joints of all individuals, and even in subjects ranging from 10 to 20 weeks of age. Morphological evaluations also demonstrated an abnormal tibial internal torsion that increased with age and was associated with medial patellar dislocation. In conclusion, the earliest histological OA change was observed in the patellofemoral joint prior to similar observations in the femorotibial joint. Internal tibial torsion may be a cause of OA in the patellofemoral joints, which leads to the development of medial femorotibial OA.
Collapse
Affiliation(s)
- Kouji Naruse
- Department of Orthopaedic Surgery, Kitasasto University School of Medicine, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Recent technical developments in high-field magnetic resonance (MR) scanners, improvement in radio frequency coil design and gradient performance along with the development of efficient pulse sequences and new methods of enhancing contrast have made high-quality imaging of animal arthritis models feasible. MR can provide high-resolution structural information about the osteoarthritic changes in animal models, and also information about the biophysical properties of cartilage. This paper reviews the MR techniques available for animal knee imaging, and the various MR-derived readouts of knee osteoarthritis in animal models. Pitfalls in interpreting animal joint anatomy and joint composition are highlighted.
Collapse
Affiliation(s)
- Yi-Xiang Wang
- Department of Radiology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Bolbos R, Benoit-Cattin H, Langlois JB, Chomel A, Chereul E, Odet C, Janier M, Pastoureau P, Beuf O. Measurement of knee cartilage thickness using MRI: a reproducibility study in a meniscectomized guinea pig model of osteoarthritis. NMR IN BIOMEDICINE 2008; 21:366-75. [PMID: 17708519 DOI: 10.1002/nbm.1198] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The in vivo precision (reproducibility) of quantitative MRI is of particular importance in osteoarthritis (OA) progression of small magnitude and response to therapy. In this study, three-dimensional high-resolution MRI performed at 7 T was used to assess the short-term reproducibility of measurements of mean tibial cartilage thickness in a meniscectomized guinea pig model of OA. MR image acquisition was repeated five times in nine controls (SHAM) and 10 osteoarthritic animals 3 months after meniscectomy (MNX), in vivo. The animals were then killed for histomorphometric assessment and correlation with the MRI-based measurements. Medial tibial cartilage thickness was measured on MR images using semi-automatic dedicated 3D software developed in-house. The reproducibility of measurements of cartilage thickness was assessed by five repeated MRI examinations with a short recovery delay between examinations (48 h). The computed coefficients of variation were 8.9% for the SHAM group and 8.2% for the MNX group. The coefficients of variation were compatible with expected thickness variations between normal and pathological animals. A positive agreement and significant partial correlation (Spearman r' = 0.74; P < 0.01) between the MRI and histomorphometric data was established. Three-dimensional high-resolution MRI is a promising non-invasive research tool for in vivo follow-up. This modality could be used for staging and monitoring therapy response in small-animal models of OA.
Collapse
Affiliation(s)
- R Bolbos
- Plate-forme ANIMAGE, Université Claude Bernard Lyon I, Rhône-Alpes Genopole, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bolbos R, Benoit-Cattin H, Langlois JB, Chomel A, Chereul E, Odet C, Pastoureau P, Janier M, Beuf O. Knee cartilage thickness measurements using MRI: a 4(1/2)-month longitudinal study in the meniscectomized guinea pig model of OA. Osteoarthritis Cartilage 2007; 15:656-65. [PMID: 17303445 DOI: 10.1016/j.joca.2006.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 12/23/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to follow, over a 4(1/2)-month period, the medial tibia cartilage thickness on a meniscectomy (MNX) guinea pig osteoarthritis (OA) model and to compare with control animals, using three-dimensional high-resolution magnetic resonance imaging (3D HR-MRI). METHODS MRI experimentations were performed in vivo at 7 T on guinea pig knee joints. 3D HR-MR images were acquired in 60 controls (SHAM) and 45 osteoarthritic animals (MNX) at four time-points (15, 45, 90 and 135 days) after surgery. Medial tibial cartilage thickness was measured from MRI images using in-house dedicated 3D software followed by a statistical analysis. At each time-point 15 SHAM and 15 MNX animals were sacrificed for histomorphometric assessments. RESULTS No significant difference of mean cartilage thickness between the groups was found at early stage (D45) using MRI; however, significant differences were found between the groups at D90 (P<0.001) and D135 (P<0.001). Histomorphometry data confirmed the pathological status of the animals and was well correlated with MRI at D15 (r=0.79, P<0.01), D45 (r=0.67, P<0.01), and D135 (r=0.39, P<0.05) for SHAM, and at D45 (r=0.63, P<0.01), and D135 (r=0.81, P<0.01) for MNX. CONCLUSION Medial tibial cartilage measurement based on HR-MR images enables the monitoring of longitudinal cartilage thickness changes. This technique showed significant differences between SHAM and MNX as from D90 after surgery. It could be used as a noninvasive and reproducible tool to monitor therapeutic response in this OA model.
Collapse
Affiliation(s)
- R Bolbos
- Plate-forme ANIMAGE, Université Claude Bernard Lyon I, Rhône-Alpes Genopole, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bi X, Yang X, Bostrom MP, Bartusik D, Ramaswamy S, Fishbein KW, Spencer RG, Camacho NP. Fourier transform infrared imaging and MR microscopy studies detect compositional and structural changes in cartilage in a rabbit model of osteoarthritis. Anal Bioanal Chem 2006; 387:1601-12. [PMID: 17143596 PMCID: PMC2944229 DOI: 10.1007/s00216-006-0910-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 10/03/2006] [Accepted: 10/06/2006] [Indexed: 11/30/2022]
Abstract
Assessment of subtle changes in proteoglycan (PG) and collagen, the primary macromolecular components of cartilage, which is critical for diagnosis of the early stages of osteoarthritis (OA), has so far remained a challenge. In this study we induced osteoarthritic cartilage changes in a rabbit model by ligament transection and medial meniscectomy and monitored disease progression by infrared fiber optic probe (IFOP) spectroscopy, Fourier transform infrared imaging spectroscopy (FT-IRIS), and magnetic resonance imaging (MRI) microscopy. IFOP studies combined with chemometric partial least-squares analysis enabled us to monitor progressive cartilage surface changes from two to twelve weeks post-surgery. FT-IRIS studies of histological sections of femoral condyle cartilage revealed that compared with control cartilage the OA cartilage had significantly reduced PG content 2 and 4 weeks post-surgery, collagen fibril orientation changes 2 and 4 weeks post-surgery, and changes in collagen integrity 2 and 10 weeks post-surgery, but no significant changes in collagen content at any time. MR microscopy studies revealed reduced fixed charge density (FCD), indicative of reduced PG content, in the OA cartilage, compared with controls, 4 weeks post-surgery. A non-significant trend toward higher apparent MT exchange rate, k(m), was also found in the OA cartilage at this time point, suggesting changes in collagen structural features. These two MR findings for FCD and k(m) parallel the FT-IRIS findings of reduced PG content and altered collagen integrity, respectively. MR microscopy studies of the cartilage at the 12-week time point also found a trend toward longer T (2) values and reduced anisotropy in the deep zone of the OA cartilage, consistent with increased hydration and less ordered collagen. These studies reveal that FT-IRIS and MR microscopy provide complementary data on compositional changes in articular cartilage in the early stages of osteoarthritic degradation.
Collapse
Affiliation(s)
- Xiaohong Bi
- Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021
| | - Xu Yang
- Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021
| | - Mathias P.G. Bostrom
- Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021
| | - Dorota Bartusik
- National Institute on Aging, Intramural Research Program, GRC 4D-08, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Sharan Ramaswamy
- National Institute on Aging, Intramural Research Program, GRC 4D-08, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Kenneth W. Fishbein
- National Institute on Aging, Intramural Research Program, GRC 4D-08, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Richard G. Spencer
- National Institute on Aging, Intramural Research Program, GRC 4D-08, 5600 Nathan Shock Drive, Baltimore, MD 21224
| | - Nancy Pleshko Camacho
- Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021
| |
Collapse
|
42
|
Huser CAM, Davies ME. Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage. J Orthop Res 2006; 24:725-32. [PMID: 16514652 DOI: 10.1002/jor.20111] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was the development and characterization of an in vitro model of the initiation of traumatic osteoarthritis (OA). Articular cartilage was obtained from seven healthy horses and from four horses diagnosed with OA. Cartilage disks were subjected to a single-impact load (500 g from 25, 50, or 100 mm) using a simple drop-tower device and cultured in vitro for up to 20 days. Cartilage sections were examined histologically to observe surface damage and proteoglycan loss. Percentage cell death was determined using TUNEL, release of glycosaminoglycans (GAG) to the medium was measured using the DMMB assay, and percentage weight gain calculated. Following a single-impact load and subsequent culture in vitro, articular cartilage explants demonstrated characteristic surface damage, proteoglycan loss, and chondrocyte death. This closely resembled degenerative changes observed in OA cartilage samples. A kinetic study showed that these degenerative changes (increased weight gain, GAG release into the medium, and chondrocyte death) were initiated within 48 h following impact and increased with recovery time in culture. These parameters were proportional to impact height, that is, impact energy. In conclusion, articular cartilage disks subjected to a single-impact load followed by 48 h of recovery time in culture in vitro developed traumatic OA-like changes. These changes can be quantified and compared, making the in vitro single-impact load model a useful tool for the elucidation of the early molecular pathways involved in the process leading from trauma to cartilage degeneration.
Collapse
Affiliation(s)
- Camille A M Huser
- Comparative Orthopaedics Research Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom.
| | | |
Collapse
|
43
|
Rudin M, Beckmann N, Rausch M. Evaluation of drug candidates: efficacy readouts during lead optimization. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 62:185-255. [PMID: 16329258 DOI: 10.1007/3-7643-7426-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Markus Rudin
- Institute for Biomedical Engineering, University of Zurich/ETH Zurich, Switzerland.
| | | | | |
Collapse
|
44
|
Calvo E, Palacios I, Delgado E, Sánchez-Pernaute O, Largo R, Egido J, Herrero-Beaumont G. Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis. Osteoarthritis Cartilage 2004; 12:878-86. [PMID: 15501403 DOI: 10.1016/j.joca.2004.07.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Accepted: 07/26/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We previously reported that an increase of cartilage thickness is the earliest measurable change by magnetic resonance imaging (MRI) in early stages of experimental osteoarthritis (OA). Our present objective was to study the microscopic translation of this finding in order to know whether the cartilage thickness increment represents the earliest structural damage or whether it alternatively constitutes a non-progressive reversible phenomenon. METHODS OA was induced by partial medial meniscectomy in rabbits. Normal and sham-operated animals were used as controls. Gross and microscopic cartilage changes were sequentially assessed after surgery at 0, 2, 4, 6, 8, 10 and 52 weeks, and compared to MRI findings. RESULTS The swelling of cartilage detected by MRI correlated with depletion in matrix proteoglycans and cellular loss, which were closely related to the progression of OA at the earliest stages. Abnormalities of the cartilage structure appeared only in advanced OA. CONCLUSION Cartilage swelling detected by MRI is due to proteoglycan depletion and represents the earliest abnormality in OA. Because it is accompanied by cellular loss, it cannot be merely attributed to surgical trauma and represents true tissue damage. The biological meaning of volume variations detected by MRI should be assessed carefully taking into account the disease stage as an increase in cartilage height also reflects cartilage damage and not a reparative process.
Collapse
Affiliation(s)
- E Calvo
- Department of Orthopaedic Surgery, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
45
|
Alhadlaq HA, Xia Y, Moody JB, Matyas JR. Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Ann Rheum Dis 2004; 63:709-17. [PMID: 15140779 PMCID: PMC1755020 DOI: 10.1136/ard.2003.011783] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To detect changes in the collagen fibril network in articular cartilage in a canine experimental model of early osteoarthritis (OA) using microscopic magnetic resonance imaging (microMRI) and polarised light microscopy (PLM). METHODS Eighteen specimens from three pairs of the medial tibia of an anterior cruciate ligament transection canine model were subjected to microMRI and PLM study 12 weeks after surgery. For each specimen, the following experiments were carried out: (a) two dimensional microMRI images of T(2) relaxation at four orientations; (b) the tangent Young's modulus; and (c) two dimensional PLM images of optical retardance and fibril angle. Disease induced changes in tissue were examined across the depth of the cartilage at a microMRI resolution of 13.7-23.1 microm. RESULTS Several distinct changes from T(2) weighted images of cartilage in OA tibia were seen. For the specimens that were covered at least in part by the meniscus, the significant changes in microMRI included a clear shift in the depth of maximum T(2) (21-36%), a decrease in the superficial zone thickness (37-38%), and an increase in cartilage total thickness (15-27%). These microMRI changes varied topographically in the tibia surface because they were not significant in completely exposed locations in medial tibia. The microMRI results were confirmed by the PLM measurements and correlated well with the mechanical measurements. CONCLUSION Both microMRI and PLM can detect quantitatively changes in collagen fibre architecture in early OA and resolve topographical variations in cartilage microstructure of canine tibia.
Collapse
Affiliation(s)
- H A Alhadlaq
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | | | | | | |
Collapse
|
46
|
Arokoski JPA, Arokoski MH, Vainio P, Kröger H, Jurvelin JS. Estimation of femoral head bone density using magnetic resonance imaging: comparison between men with and without hip osteoarthritis. J Clin Densitom 2004; 7:183-91. [PMID: 15181262 DOI: 10.1385/jcd:7:2:183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Revised: 11/19/2003] [Accepted: 12/19/2003] [Indexed: 11/11/2022]
Abstract
Bone changes are thought to be one important etiological element in the pathogenesis of hip osteoarthritis (OA). The magnetic resonance imaging (MRI)-derived T2* relaxation time has been shown to provide information about bone mineral status of the femoral neck. The aim of this study was to test the hypothesis that the MRI-derived T2* relaxation time of the proximal femur in hip OA differs from that seen in healthy subjects. Based on the American College of Rheumatology criteria regarding classification of the OA of the hip, 27 men (aged 47-64 yr) with unilateral or bilateral hip OA and 30 age-matched randomly selected healthy men were studied. Bone mineral density (BMD), bone mineral content (BMC), and bone width of the femoral neck were measured with dual-energy X-ray absorptiometry (DXA). Subsequently, T2* measurements were performed with a 1.5-T scanner (Siemens Magnetom 63SP; Erlangen, Germany). A single 10-mm-thick coronal slice was generated on the femur, with a repetition time of 60 ms and nine echo times (4-20 ms) to derive T2* values. T2* measurements were performed from the different region of interests (ROIs) from the femoral neck and head. T2* relaxation times showed significant negative correlations with BMC, BMD (r = -0.401 to -0.794; p < 0.05-0.001). T2* relaxation time values revealed no significant differences between the groups in the femoral neck and in the head of the femur, whereas it was 12% lower (p < 0.01) in OA subjects than in controls in acetabulum. There were no significant differences in the T2* relaxation time values between the radiographic OA subgroups. Our findings suggest that hip OA is not associated with an increase of BMD in the femoral neck or in the head of the femur.
Collapse
Affiliation(s)
- Jari P A Arokoski
- Department of Physical and Rehabilitation Medicine, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
47
|
Wachsmuth L, Keiffer R, Juretschke HP, Raiss RX, Kimmig N, Lindhorst E. In vivo contrast-enhanced micro MR-imaging of experimental osteoarthritis in the rabbit knee joint at 7.1T1. Osteoarthritis Cartilage 2003; 11:891-902. [PMID: 14629965 DOI: 10.1016/j.joca.2003.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this longitudinal MR study the early stages of joint pathology in two surgically-induced rabbit models of osteoarthritis (OA) were monitored by in vivo contrast-enhanced MRI at 7.1T. Qualitative and quantitative MR data were compared with macroscopic and microscopic findings. METHOD Scanning of mature, male New Zealand White rabbits (N=12) was performed before surgery, and at 2, 4, and 8 weeks after unilateral transection of the anterior cruciate ligament (ACLT), medial meniscectomy (ME), or sham operation. MR-images were simultaneously obtained of both knee joints after intravenous injection of Magnevist. We implemented a 2D T1-weighted (T1w) coronal, fat-saturated gradientecho protocol (68 x 138 microm2, slice thickness 1 mm). Additionally, consecutive 3D gradientecho images were obtained from two sham-operated and two rabbits of the ME group (234 x 273 x 234 microm(3)). ACLT animals were sacrificed at 2 weeks (N=1), and 8 weeks (N=3), ME animals were sacrificed at 4 weeks (N=2), and 8 weeks (N=4), and sham-operated animals were sacrificed at 2 weeks (N=1) and 8 weeks (N=1), respectively. RESULTS Both OA models reflected important characteristics of the clinical picture of OA. With MR we were able to monitor time dependently the decline of synovial effusion and the formation of osteophytes. Morphologic MR examination showed a moderate to high accuracy for detecting synovial effusion (75%), meniscus (86%) and cruciate ligament (91%) lesions, and osteophytes (88%) as assessed by macroscopic examination. False-negative MR findings for gross macroscopic changes were due to the relative high slice thickness in 2D scans and the fact that the slices only covered the main weightbearing area of the femorotibial joint. Contour abnormalities of articular cartilage were not reliably detected. Quantitative analysis revealed a statistically significant increase of cartilage signal intensity in medial tibial cartilage (48+/-9% ACLT, and 29+/-9% ME in 2D datasets) as compared to contralateral control knees in two-week scans. Signal enhancement persisted or increased at later dates. CONCLUSION With high-resolution contrast-enhanced MRI at 7.1T the time course of gross pathologic changes in rabbit knees with surgically induced OA can be monitored. Still insufficient spatial resolution and image contrast of the applied 2D protocols limit the sensitivity and prohibit detection of articular cartilage contour abnormalities. However, signal alterations in the cartilage layer indicate alterations of tissue composition at a very early stage of OA development. When used with 3D protocols, contrast-enhanced MRI offers a promising tool for qualitative and quantitative in vivo monitoring of OA in rabbit models.
Collapse
Affiliation(s)
- Lydia Wachsmuth
- Institute of Medical Physics, University Erlangen-Nuernberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
McGibbon CA. Inter-rater and intra-rater reliability of subchondral bone and cartilage thickness measurement from MRI☆. Magn Reson Imaging 2003; 21:707-14. [PMID: 14559334 DOI: 10.1016/s0730-725x(03)00107-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
MRI is often used to visualize and quantify the articular cartilage layer of load bearing joints affected by degenerative diseases, such as osteoarthritis (OA). Although the role played by the subchondral bone in the etiology and/or progression of OA may be important, the ability to visualize and quantify subchondral bone with MRI has received little attention. In this report we examined the inter-rater and intra-rater reliability of subchondral bone and cartilage thickness measurements from MR images of cadaver femoral head specimens. A 3D-SPGR pulse sequence tuned to eliminate chemical shift artifact through phase cancellation was used to image the specimens. Three raters manually segmented four specimens on two different occasions. Subchondral bone and cartilage thickness measurements were calculated from the segmented images. Inter-rater and intra-rater reliabilities were very high (>.98) for both cartilage and subchondral bone thickness measurements. We conclude that subchondral bone thickness can be measured as reliably as cartilage thickness from MR images.
Collapse
Affiliation(s)
- Chris A McGibbon
- Department of Orthopaedic Surgery, Massachusetts General Hospital Biomotion Laboratory, MGH Institute of Health Professions and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Cohen ZA, Mow VC, Henry JH, Levine WN, Ateshian GA. Templates of the cartilage layers of the patellofemoral joint and their use in the assessment of osteoarthritic cartilage damage. Osteoarthritis Cartilage 2003; 11:569-79. [PMID: 12880579 DOI: 10.1016/s1063-4584(03)00091-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop a methodology for generating templates that represent the normal human patellofemoral joint (PFJ) topography and cartilage thickness, based on a statistical average of healthy joints. Also, to determine the cartilage thickness in the PFJs of patients with osteoarthritis (OA) and develop a methodology for comparing an individual patient's thickness maps to the normal templates in order to identify regions that are most likely to represent loss of cartilage thickness. DESIGN The patella and femur surfaces of 14 non-arthritic human knee joints were quantified using either stereophotogrammetry or magnetic resonance imaging. The surfaces were aligned, scaled, and averaged to create articular topography templates. Cartilage thicknesses were measured across the surfaces and averaged to create maps of normal cartilage thickness distribution. In vivo thickness maps of articular layers from 33 joints with OA were also generated, and difference maps were created depicting discrepancies between the patients' cartilage thickness maps and the normative template. RESULTS In the normative template, the surface-wide mean+/-SD (maximum) of the cartilage thickness was 2.2+/-0.4mm (3.7mm) and 3.3+/-0.6mm (4.6mm) for the femur and patella, respectively. It was demonstrated that difference maps could be used to identify regions of thinner-than-normal cartilage in patients with OA. Patients were shown to have statistically greater regions of thin cartilage over their articular layers than the normal joints. On average, patients showed deficits in cartilage thickness in the lateral facet of the patella, in the anterior medial and lateral condyles, and in the lateral trochlea of the femur. CONCLUSIONS This technique can be useful for in vivo clinical evaluation of cartilage thinning in the osteoarthritic patellofemoral joint.
Collapse
Affiliation(s)
- Z A Cohen
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
50
|
Pastoureau P, Leduc S, Chomel A, De Ceuninck F. Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis. Osteoarthritis Cartilage 2003; 11:412-23. [PMID: 12801481 DOI: 10.1016/s1063-4584(03)00050-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE A new image analysis system was employed to quantify the main histological parameters reflecting osteoarthritic features, at the cartilage and bone levels, in the meniscectomized guinea pig model of osteoarthritis (OA). METHODS Meniscectomized (MNX) and sham-operated (SH) guinea pigs were studied 1 and 3 months after partial meniscectomy at the medial side of the left knee (n=10 to 12 animals/group). The left proximal tibias were included in methylmethacrylate. Sections were cut and stained with safranin O or Goldner trichrome. Parameters were quantified using special programs of a Biocom image analyser. The following parameters were evaluated at the medial side of the tibia: cartilage thickness (CT); fibrillation index (FI); proteoglycan content ratio based on safranin O staining intensities (PC); chondrocyte density (CD); bone volume (BV) and subchondral bone plate thickness (SBPT). The degree of user interaction varied from manually tracing objects to almost complete computer automation. RESULTS Meniscectomy resulted in significant variations of these reproducible histomorphometric parameters both after 1 month (FI: +522%, P<0.01) and 3 months (FI: +162%, P<0.001; PC: -36.7%, P<0.001; CD: -31.8%, P<0.001; SBPT: +8.7%, P<0.05) post-operation (results expressed as percentage variation of MNX vs SH). The linear correlation analysis including data from SH and/or MNX animals at the two grouped time points revealed significant r values, in particular between cartilage (CT) and subchondral bone parameters (SBPT) (r=-0.41, P<0.01). CONCLUSIONS Contrary to scoring evaluation, this system allowed to show the time-dependent impact of the pathology with an early fibrillation of the medial tibial cartilage appearing as soon as 1 month post-surgery, and the close relationship between bone and cartilage parameters during the progression of OA.
Collapse
Affiliation(s)
- P Pastoureau
- Division of Rheumatology, Institut de Recherches Servier, Suresnes, France.
| | | | | | | |
Collapse
|