1
|
Esperança-Martins M, F.Duarte I, Rodrigues M, Soares do Brito J, López-Presa D, Costa L, Fernandes I, Dias S. On the Relevance of Soft Tissue Sarcomas Metabolic Landscape Mapping. Int J Mol Sci 2022; 23:11430. [PMID: 36232732 PMCID: PMC9570318 DOI: 10.3390/ijms231911430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Soft tissue sarcomas (STS) prognosis is disappointing, with current treatment strategies being based on a "fit for all" principle and not taking distinct sarcoma subtypes specificities and genetic/metabolic differences into consideration. The paucity of precision therapies in STS reflects the shortage of studies that seek to decipher the sarcomagenesis mechanisms. There is an urge to improve STS diagnosis precision, refine STS classification criteria, and increase the capability of identifying STS prognostic biomarkers. Single-omics and multi-omics studies may play a key role on decodifying sarcomagenesis. Metabolomics provides a singular insight, either as a single-omics approach or as part of a multi-omics strategy, into the metabolic adaptations that support sarcomagenesis. Although STS metabolome is scarcely characterized, untargeted and targeted metabolomics approaches employing different data acquisition methods such as mass spectrometry (MS), MS imaging, and nuclear magnetic resonance (NMR) spectroscopy provided important information, warranting further studies. New chromatographic, MS, NMR-based, and flow cytometry-based methods will offer opportunities to therapeutically target metabolic pathways and to monitorize the response to such metabolic targeting therapies. Here we provide a comprehensive review of STS omics applications, comprising a detailed analysis of studies focused on the metabolic landscape of these tumors.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Iola F.Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Mara Rodrigues
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joaquim Soares do Brito
- Orthopedics Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Dolores López-Presa
- Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Isabel Fernandes
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Sérgio Dias
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| |
Collapse
|
2
|
Delikatny EJ, Chawla S, Leung DJ, Poptani H. MR-visible lipids and the tumor microenvironment. NMR IN BIOMEDICINE 2011; 24:592-611. [PMID: 21538631 PMCID: PMC3640643 DOI: 10.1002/nbm.1661] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/22/2010] [Accepted: 12/04/2010] [Indexed: 05/08/2023]
Abstract
MR-visible lipids or mobile lipids are defined as lipids that are observable using proton MRS in cells and tissues. These MR-visible lipids are composed of triglycerides and cholesterol esters that accumulate in neutral lipid droplets, where their MR visibility is conferred as a result of the increased molecular motion available in this unique physical environment. This review discusses the factors that lead to the biogenesis of MR-visible lipids in cancer cells and in other cell types, such as immune cells and fibroblasts. We focus on the accumulations of mobile lipids that are inducible in cultured cells by a number of stresses, including culture conditions, and in response to activating stimuli or apoptotic cell death induced by anticancer drugs. This is compared with animal tumor models, where increases in mobile lipids are observed in response to chemo- and radiotherapy, and to human tumors, where mobile lipids are observed predominantly in high-grade brain tumors and in regions of necrosis. Conducive conditions for mobile lipid formation in the tumor microenvironment are discussed, including low pH, oxygen availability and the presence of inflammatory cells. It is concluded that MR-visible lipids appear in cancer cells and human tumors as a stress response. Mobile lipids stored as neutral lipid droplets may play a role in the detoxification of the cell or act as an alternative energy source, especially in cancer cells, which often grow in ischemic/hypoxic environments. The role of MR-visible lipids in cancer diagnosis and the assessment of the treatment response in both animal models of cancer and human brain tumors is also discussed. Although technical limitations exist in the accurate detection of intratumoral mobile lipids, early increases in mobile lipids after therapeutic interventions may be useful as a potential biomarker for the assessment of treatment response in cancer.
Collapse
Affiliation(s)
- E James Delikatny
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
3
|
Dewhirst MW, Richardson R, Cardenas-Navia I, Cao Y. The relationship between the tumor physiologic microenvironment and angiogenesis. Hematol Oncol Clin North Am 2004; 18:973-90, vii. [PMID: 15474330 DOI: 10.1016/j.hoc.2004.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article examines the pathophysiology of tumors, with an emphasis on how these features influence angiogenesis in tumors.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Room 201, Medical Science Research Building, Research Drive, Box 3455, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
4
|
Abstract
A multidisciplinary approach that includes active participation by a radiologist is beneficial for optimal diagnostic evaluation and treatment of soft-tissue sarcomas. Recent advances in diagnostic imaging include a better understanding of the practical roles of ultrasonography, computed tomography, and magnetic resonance imaging in the evaluation of primary and recurrent soft-tissue sarcomas. The potential role of positron emission tomography scanning and dynamic magnetic resonance imaging in the evaluation of soft-tissue sarcomas has been preliminarily evaluated. The clinically practical utility of radiologic imaging in the evaluation of soft-tissue sarcomas is discussed, and ongoing research is briefly reviewed.
Collapse
Affiliation(s)
- D G Varma
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 057, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Singer S, Millis K, Souza K, Fletcher C. Correlation of lipid content and composition with liposarcoma histology and grade. Ann Surg Oncol 1997; 4:557-63. [PMID: 9367021 DOI: 10.1007/bf02305536] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The determination of sarcoma grade, histologic type, and differentiation is often pathologist dependent and requires considerable expertise. METHODS Lipid content and composition was analyzed in ex vivo fat, lipoma, and liposarcoma tissue samples using proton-decoupled 13C nuclear magnetic resonance (13C-NMR) spectroscopy and correlated with the histologic type and grade of liposarcoma. RESULTS The well-differentiated liposarcomas were found to have threefold increases in fatty acyl chain content compared with benign lipomas. The fatty acyl chain content of the dedifferentiated and pleomorphic liposarcomas was 1% of that found in lipoma and < 0.2% of that found in well-differentiated liposarcoma. The 2.1- to 2.8-fold increase in the degree of polyunsaturation in the dedifferentiated and pleomorphic liposarcomas compared with well-differentiated liposarcoma could largely be accounted for by the 2.3-fold increase in the percentage of fatty acyl chains of lipid containing linoleic acid. The dedifferentiated and pleomorphic liposarcomas contained both free fatty acids and phospholipids that were not NMR detectable in normal fat, lipoma, and well-differentiated liposarcoma. CONCLUSION Ex vivo 13C-NMR spectroscopy may be used to distinguish lipoma from well-differentiated, dedifferentiated, and pleomorphic liposarcoma based on changes in lipid and phospholipid metabolite profiles and may serve as adjunct to conventional light microscopy for the determination of liposarcoma histologic type and thus grade.
Collapse
Affiliation(s)
- S Singer
- Department of Surgery, Brigham and Woman's Hospital/Harvard Medical School, Boston 02115, USA
| | | | | | | |
Collapse
|