1
|
Soliman BG, Chin IL, Li Y, Ishii M, Ho MH, Doan VK, Cox TR, Wang PY, Lindberg GCJ, Zhang YS, Woodfield TBF, Choi YS, Lim KS. Droplet-based microfluidics for engineering shape-controlled hydrogels with stiffness gradient. Biofabrication 2024; 16:045026. [PMID: 39121873 DOI: 10.1088/1758-5090/ad6d8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Current biofabrication strategies are limited in their ability to replicate native shape-to-function relationships, that are dependent on adequate biomimicry of macroscale shape as well as size and microscale spatial heterogeneity, within cell-laden hydrogels. In this study, a novel diffusion-based microfluidics platform is presented that meets these needs in a two-step process. In the first step, a hydrogel-precursor solution is dispersed into a continuous oil phase within the microfluidics tubing. By adjusting the dispersed and oil phase flow rates, the physical architecture of hydrogel-precursor phases can be adjusted to generate spherical and plug-like structures, as well as continuous meter-long hydrogel-precursor phases (up to 1.75 m). The second step involves the controlled introduction a small molecule-containing aqueous phase through a T-shaped tube connector to enable controlled small molecule diffusion across the interface of the aqueous phase and hydrogel-precursor. Application of this system is demonstrated by diffusing co-initiator sodium persulfate (SPS) into hydrogel-precursor solutions, where the controlled SPS diffusion into the hydrogel-precursor and subsequent photo-polymerization allows for the formation of unique radial stiffness patterns across the shape- and size-controlled hydrogels, as well as allowing the formation of hollow hydrogels with controllable internal architectures. Mesenchymal stromal cells are successfully encapsulated within hollow hydrogels and hydrogels containing radial stiffness gradient and found to respond to the heterogeneity in stiffness through the yes-associated protein mechano-regulator. Finally, breast cancer cells are found to phenotypically switch in response to stiffness gradients, causing a shift in their ability to aggregate, which may have implications for metastasis. The diffusion-based microfluidics thus finds application mimicking native shape-to-function relationship in the context of tissue engineering and provides a platform to further study the roles of micro- and macroscale architectural features that exist within native tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Yiwei Li
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Melissa Ishii
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Minh Hieu Ho
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Vinh Khanh Doan
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Peng Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 32500, People's Republic of China
| | - Gabriella C J Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, United States of America
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
2
|
Del Giudice F, Curtis DJ, Aufderhorst-Roberts A. A New Approach for On-Chip Production of Biological Microgels Using Photochemical Cross-Linking. Anal Chem 2024; 96:10140-10144. [PMID: 38862384 PMCID: PMC11209654 DOI: 10.1021/acs.analchem.4c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Photochemical cross-linking is a key step for manufacturing microgels in numerous applications, including drug delivery, tissue engineering, material production, and wound healing. Existing photochemical cross-linking techniques in microfluidic devices rely on UV curing, which can cause cell and DNA damage. We address this challenge by developing a microfluidic workflow for producing microgels using visible light-driven photochemical cross-linking of aqueous droplets dispersed in a continuous oil phase. We report a proof-of-concept to construct microgels from the protein Bovine Serum Albumin (BSA) with [Ru(bpy)3]2+ mediated cross-linking. By controlling the capillary number of the continuous and dispersed phases, the volumetric flow rate, and the photochemical reaction time within the microfluidic tubing, we demonstrate the construction of protein microgels with controllable and uniform dimensions. Our technique can, in principle, be applied to a wide range of different proteins with biological and responsive properties. This work therefore bridges the gap between hydrogel manufacturing using visible light and microfluidic microgel templating, facilitating numerous biomedical applications.
Collapse
Affiliation(s)
- Francesco Del Giudice
- Complex
Fluids Research Group, Department of Chemical Engineering, School
of Engineering and Applied Science, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | - Dan J. Curtis
- Complex
Fluids Research Group, Department of Chemical Engineering, School
of Engineering and Applied Science, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, United Kingdom
| | | |
Collapse
|
3
|
de Athayde Moncorvo Collado A, Socías SB, González-Lizárraga F, Ploper D, Vera Pingitore E, Chehín RN, Chaves S. Magnetic amyloid-based biocatalyst for the hydrolysis of urea. Food Chem 2024; 433:136830. [PMID: 37683486 DOI: 10.1016/j.foodchem.2023.136830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 09/10/2023]
Abstract
The presence of urea in wines and other alcoholic beverages represents a critical problem since it can chemically react with ethanol, which leads to the formation of ethyl carbamate, a carcinogenic agent according to the World Health Organization. Here we report the creation of a biocatalyst for the hydrolysis of urea, which could potentially be used before bottling alcoholic drinks. For this, the effective surface area of streptavidin-labeled magnetic microparticles was amplified by functionalization with biotin-labeled hen egg lysozyme amyloid fibers. Subsequently, by using copper and hydrogen peroxide induced cross-linking of unmodified proteins (CHICUP), soybean urease was immobilized to the fibers. This gave rise to a magnetic biocatalyst with remarkable urease activity, which was maintained even after 10 reuses. We propose that this strategy could be used as a platform for immobilizing other molecules to design and develop a myriad of biocatalysts for the food industry.
Collapse
Affiliation(s)
- A de Athayde Moncorvo Collado
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina; Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT). Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Chacabuco 461, CP 4000 Tucumán, Argentina.
| | - S B Socías
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - F González-Lizárraga
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - D Ploper
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - E Vera Pingitore
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| | - R N Chehín
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina; Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT). Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Batalla de Chacabuco 461, CP 4000 Tucumán, Argentina.
| | - S Chaves
- Instituto de Medicina Molecular y Celular Aplicada, Universidad Nacional de Tucumán-Consejo Nacional de Investigación Científicas y Técnicas- Sistema Provincial de Salud (UNT-CONICET-SIPROSA), Pasaje Manuel Dorrego, 1080. CP 4000. Tucumán, Argentina.
| |
Collapse
|
4
|
Paul S, Schrobback K, Tran PA, Meinert C, Davern JW, Weekes A, Klein TJ. Photo-Cross-Linkable, Injectable, and Highly Adhesive GelMA-Glycol Chitosan Hydrogels for Cartilage Repair. Adv Healthc Mater 2023; 12:e2302078. [PMID: 37737465 PMCID: PMC11468424 DOI: 10.1002/adhm.202302078] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Indexed: 09/23/2023]
Abstract
Hydrogels provide a promising platform for cartilage repair and regeneration. Although hydrogels have shown some efficacy, they still have shortcomings including poor mechanical properties and suboptimal integration with surrounding cartilage. Herein, hydrogels that are injectable, cytocompatible, mechanically robust, and highly adhesive to cartilage are developed. This approach uses GelMA-glycol chitosan (GelMA-GC) that is crosslinkable with visible light and photoinitiators (lithium acylphosphinate and tris (2,2'-bipyridyl) dichlororuthenium (II) hexahydrate ([RuII(bpy)3 ]2+ and sodium persulfate (Ru/SPS)). Ru/SPS-cross-linked hydrogels have higher compressive and tensile modulus, and most prominently higher adhesive strength with cartilage, which also depends on inclusion of GC. Tensile and push-out tests of the Ru/SPS-cross-linked GelMA-GC hydrogels demonstrate adhesive strength of ≈100 and 46 kPa, respectively. Hydrogel precursor solutions behave in a Newtonian manner and are injectable. After injection in focal bovine cartilage defects and in situ cross-linking, this hydrogel system remains intact and integrated with cartilage following joint manipulation ex vivo. Cells remain viable (>85%) in the hydrogel system and further show tissue regeneration potential after three weeks of in vitro culture. These preliminary results provide further motivation for future research on bioadhesive hydrogels for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Sattwikesh Paul
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- Department of Surgery and RadiologyFaculty of Veterinary Medicine and Animal ScienceBangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU)Gazipur1706Bangladesh
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Karsten Schrobback
- School of Biomedical SciencesCentre for Genomics and Personalised HealthTranslational Research InstituteQueensland University of Technology (QUT)37 Kent StreetWoolloongabbaQLD4102Australia
| | - Phong Anh Tran
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Christoph Meinert
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Chief Executive Officer of Gelomics Pty LtdBrisbaneQueensland4059Australia
| | - Jordan William Davern
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQLD4059Australia
| | - Angus Weekes
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Travis Jacob Klein
- Centre for Biomedical TechnologiesQueensland University of Technology60 Musk Ave.Kelvin GroveQLD4059Australia
- School of MechanicalMedical and Process EngineeringQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
5
|
Iwasaki Y. Photoassisted Surface Modification with Zwitterionic Phosphorylcholine Polymers for the Fabrication of Ideal Biointerfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15417-15430. [PMID: 37899752 DOI: 10.1021/acs.langmuir.3c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Surface modification using zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers is commonly performed to fabricate interfaces that reduce nonspecific fouling by biomolecules and cells. Accordingly, several clinically used devices, such as guide wires, stents, oxygenators, left ventricular assist devices, and microcatheters have been modified using MPC polymers. The specific types of surface modifications vary across substrates and applications. Recently, photoreactions have garnered attention for surface modification due to their stability and tunability. This review highlights various studies that employed photoreactions to modify surfaces using MPC polymers, especially photoinduced graft polymerization of MPC. In addition to antifouling materials, several micromanipulated, long-lasting hydrophilic, and super antiwear surfaces are summarized. Furthermore, several photoreactive MPC polymers that can be used to control interactions between biomolecules and materials are presented along with their potential to form selective recognition surfaces that target biomolecules for biosensors and diagnostic devices.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
6
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
7
|
Ortigosa-Pascual L, Leiding T, Linse S, Pálmadóttir T. Photo-Induced Cross-Linking of Unmodified α-Synuclein Oligomers. ACS Chem Neurosci 2023; 14:3192-3205. [PMID: 37621159 PMCID: PMC10485903 DOI: 10.1021/acschemneuro.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Photo-induced cross-linking of unmodified proteins (PICUP) has been used in the past to study size distributions of protein assemblies. PICUP may, for example, overcome the significant experimental challenges related to the transient nature, heterogeneity, and low concentration of amyloid protein oligomers relative to monomeric and fibrillar species. In the current study, a reaction chamber was designed, produced, and used for PICUP reaction optimization in terms of reaction conditions and lighting time from ms to s. These efforts make the method more reproducible and accessible and enable the use of shorter reaction times compared to previous studies. We applied the optimized method to an α-synuclein aggregation time course to monitor the relative concentration and size distribution of oligomers over time. The data are compared to the time evolution of the fibril mass concentration, as monitored by thioflavin T fluorescence. At all time points, the smaller the oligomer, the higher its concentration observed after PICUP. Moreover, the total oligomer concentration is highest at short aggregation times, and the decline over time follows the disappearance of monomers. We can therefore conclude that these oligomers form from monomers.
Collapse
Affiliation(s)
- Lei Ortigosa-Pascual
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Thom Leiding
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Sara Linse
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| | - Tinna Pálmadóttir
- Department of Biochemistry and Structural
Biology, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
8
|
Aufderhorst-Roberts A, Cussons S, Brockwell DJ, Dougan L. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel. SOFT MATTER 2023; 19:3167-3178. [PMID: 37067782 DOI: 10.1039/d2sm01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Folded protein hydrogels are prime candidates as tuneable biomaterials but it is unclear to what extent their mechanical properties have mesoscopic, as opposed to molecular origins. To address this, we probe hydrogels inspired by the muscle protein titin and engineered to the polyprotein I275, using a multimodal rheology approach. Across multiple protocols, the hydrogels consistently exhibit power-law viscoelasticity in the linear viscoelastic regime with an exponent β = 0.03, suggesting a dense fractal meso-structure, with predicted fractal dimension df = 2.48. In the nonlinear viscoelastic regime, the hydrogel undergoes stiffening and energy dissipation, indicating simultaneous alignment and unfolding of the folded proteins on the nanoscale. Remarkably, this behaviour is highly reversible, as the value of β, df and the viscoelastic moduli return to their equilibrium value, even after multiple cycles of deformation. This highlights a previously unrevealed diversity of viscoelastic properties that originate on both at the nanoscale and the mesoscopic scale, providing powerful opportunities for engineering novel biomaterials.
Collapse
Affiliation(s)
- Anders Aufderhorst-Roberts
- Department of Physics, Centre for Materials Physics, University of Durham, Durham, DH1 3LE, UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Chen X, Josephson B, Davis BG. Carbon-Centered Radicals in Protein Manipulation. ACS CENTRAL SCIENCE 2023; 9:614-638. [PMID: 37122447 PMCID: PMC10141601 DOI: 10.1021/acscentsci.3c00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Methods to directly post-translationally modify proteins are perhaps the most straightforward and operationally simple ways to create and study protein post-translational modifications (PTMs). However, precisely altering or constructing the C-C scaffolds pervasive throughout biology is difficult with common two-electron chemical approaches. Recently, there has been a surge of new methods that have utilized single electron/radical chemistry applied to site-specifically "edit" proteins that have started to create this potential-one that in principle could be near free-ranging. This review provides an overview of current methods that install such "edits", including those that generate function and/or PTMs, through radical C-C bond formation (as well as C-X bond formation via C• where illustrative). These exploit selectivity for either native residues, or preinstalled noncanonical protein side-chains with superior radical generating or accepting abilities. Particular focus will be on the radical generation approach (on-protein or off-protein, use of light and photocatalysts), judging the compatibility of conditions with proteins and cells, and novel chemical biology applications afforded by these methods. While there are still many technical hurdles, radical C-C bond formation on proteins is a promising and rapidly growing area in chemical biology with long-term potential for biological editing.
Collapse
Affiliation(s)
- Xuanxiao Chen
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
| | - Brian Josephson
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
| | - Benjamin G. Davis
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, U.K.
| |
Collapse
|
10
|
Mechanical Properties of Protein-Based Hydrogels Derived from Binary Protein Mixtures-A Feasibility Study. Polymers (Basel) 2023; 15:polym15040964. [PMID: 36850249 PMCID: PMC9964579 DOI: 10.3390/polym15040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Hydrogels based on natural polymers such as proteins are considered biocompatible and, therefore, represent an interesting class of materials for application in the field of biomedicine and high-performance materials. However, there is a lack of understanding of the proteins which are able to form hydrogel networks by photoinduced dityrosine crosslinking as well as a profound knowledge of the formed network itself and the mechanisms which are responsible for the resulting mechanical properties of such protein-based hydrogels. In this study, casein, bovine serum albumin, α-amylase, and a hydrophobic elastin-like protein were used to prepare binary protein mixtures with defined concentration ratios. After polymerization, the mechanical properties of the resulting homopolymeric and copolymeric hydrogels were determined using rheological methods depending on the protein shares used. In additional uniaxial compression tests, the fracture strain was shown to be independent of the protein shares, while hydrogel toughness and compressive strength were increased for protein-based hydrogels containing casein.
Collapse
|
11
|
Xu Y, Xiong H, Zhang B, Lee I, Xie J, Li M, Zhang H, Seung Kim J. Photodynamic Alzheimer’s disease therapy: From molecular catalysis to photo-nanomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Haas S, Körner S, Zintel L, Hubbuch J. Changing mechanical properties of photopolymerized, dityrosine-crosslinked protein-based hydrogels. Front Bioeng Biotechnol 2022; 10:1006438. [PMID: 36172024 PMCID: PMC9512244 DOI: 10.3389/fbioe.2022.1006438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogels based on renewable resources are a promising class of materials for future applications in pharmaceutics, drug delivery and personalized medicine. Thus, optional adjustments of mechanical properties such as swelling behavior, elasticity and network strength are desired. In this context, hydrogels based on the biological raw materials bovine serum albumin and casein were prepared by dityrosine-crosslinking of their tyrosine residues through visible light-induced photopolymerization. Changing the tyrosine accessibility by urea addition before photopolymerization increased the storage modulus of the hydrogels by 650% while simultaneously being more elastic. Furthermore, contributions of the buffer system composition, variation of protein concentration and storage medium towards mechanical properties of the hydrogel such as storage moduli, elasticity, fracture strain, compressive strength and relative weight swelling ratio are discussed. It could be shown, that changes in precursor solution and storage medium characteristics are crucial parameters towards tuning the mechanical properties of protein-based hydrogels.
Collapse
Affiliation(s)
| | | | | | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
13
|
Liu W, Zhang H, Dong X, Sun Y. Composite of gold nanoclusters and basified human serum albumin significantly boosts the inhibition of Alzheimer's β-amyloid by photo-oxygenation. Acta Biomater 2022; 144:157-167. [PMID: 35301147 DOI: 10.1016/j.actbio.2022.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Photo-oxygenation has become an effective way to inhibit Alzheimer's β-amyloid protein (Aβ) fibrillogenesis, which involves oxidative modification of Aβ by photo-oxidants. However, limitations of the current photo-oxidants, such as low biocompatibility and low affinity for Aβ, hinder the progression of the photo-oxygenation strategy. Herein, using human serum albumins (HSA) with binding affinity for Aβ as a platform, we have fabricated HSA-stabilized gold nanoclusters (AuNCs@HSA) and further modified the AuNCs@HSA with ethylenediamine to create basified HSA (HSA-B)-stabilized AuNCs. The basified composite, AuNCs@HSA-B, showed significantly higher potency on the inhibition of β-amyloid formation and capability of reactive oxidative species generation than AuNCs@HSA. In addition to the inhibition effect, under near-infrared (NIR) laser irradiation, AuNCs@HSA-B generated singlet oxygen to oxygenate Aβ monomers, distinctly alleviating Aβ-mediated neurotoxicity at a low concentration. In vivo studies demonstrated that NIR-activated AuNCs@HSA-B promoted the lifespan extension of transgenic C. elegans strain CL2006 by decreasing the Aβ burden. This well-designed AuNCs@HSA-B integrates inhibition, Aβ targeting, and photo-oxygenation, providing new insights into the development of protein-based photo-oxidant against Alzheimer's β-amyloid. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) has been threatening human health for more than 100 years. Recently, researchers have focused on inhibiting β-amyloid protein (Aβ) aggregation by exploring photo-excited biomaterials, which enable modulation of Aβ fibrillization with high spatiotemporal controllability. The present work demonstrates the fabrication of basified human serum albumins (HSA-B)-stabilized gold nanoclusters (AuNCs@HSA-B), and shows the potential of this near-infrared (NIR) laser-activated AuNCs@HSA-B as a photo-oxidant against Aβ aggregation by photo-oxygenation. Our work should open a new horizon in the design of protein-based photo-oxidant for treating AD in the future.
Collapse
|
14
|
Viray CM, van Magill B, Zreiqat H, Ramaswamy Y. Stereolithographic Visible-Light Printing of Poly(l-glutamic acid) Hydrogel Scaffolds. ACS Biomater Sci Eng 2022; 8:1115-1131. [PMID: 35179029 DOI: 10.1021/acsbiomaterials.1c01519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bioprinting is a promising fabrication technique aimed at developing biologically functional, tissue-like constructs for various biomedical applications. Among the different bioprinting approaches, vat polymerization-based techniques offer the highest feature resolution compared to more commonly used extrusion-based methods and therefore have greater potential to be utilized for printing complex hierarchical tissue architectures. Although significant efforts have been directed toward harnessing digital light processing techniques for high-resolution bioprinting, the use of stereolithography (SLA) setups for producing distinct hydrogel filaments smaller than 20 μm has received less attention. Improving the bioprinting resolution is still a technical challenge that must consider both the practical limitations of the bioprinter apparatus and the formulation of the cytocompatible bioresin. In this study, we developed a novel bioresin compatible with SLA and capable of printing high-resolution features. This resin, composed of a biosynthetic polypeptide poly(l-glutamic acid) functionalized with tyramine moieties (PLGA-Tyr), was crosslinked using a visible-light photoinitiator system. Varying concentrations of PLGA-Tyr and the co-photoinitiator were evaluated for the hydrogel system's gelation ability, swelling characteristics, degradation profiles, mechanical properties, and cell viability post-encapsulation. This study introduces a custom-built, cost-effective, visible-light SLA bioprinting system named the "MicroNC". Using the newly developed visible-light bioresin, we demonstrated for the first time the ability to fabricate hydrogel scaffolds with well-resolved filaments (less than 8 μm in width) capable of supporting cell viability and proliferation and directing cellular morphology at the single-cell level for up to 14 days. Overall, these experiments have underscored the exciting potential of using the visible-light-photoinitiated PLGA-Tyr material system for developing physiologically relevant in vitro hydrogel scaffolds with feature resolutions comparable to the dimensions of individual human cells for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Christina Marie Viray
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Benjamin van Magill
- School of Aerospace, Mechanical, and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Rey V, Abatedaga I, Vera C, Vieyra FEM, Borsarelli CD. Photosensitized Formation of Soluble Bionanoparticles of Lysozyme. ChemistrySelect 2021. [DOI: 10.1002/slct.202103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Valentina Rey
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Cecilia Vera
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
| | - Faustino E. Morán Vieyra
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC). CONICET Universidad Nacional de Santiago del Estero (UNSE) RN9, km 1125. 4206 Santiago del Estero Argentina
- Instituto de Ciencias Químicas (ICQ) Facultad de Agronomía y Agroindustrias (FAyA) Universidad Nacional de Santiago del Estero (UNSE) Av. Belgrano S) 1912 4200. Santiago del Estero Argentina
| |
Collapse
|
16
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
The flavonoid morin alleviates nuclear deformation in aged cells by disrupting progerin-lamin A/C binding. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Aufderhorst-Roberts A, Hughes MDG, Hare A, Head DA, Kapur N, Brockwell DJ, Dougan L. Reaction Rate Governs the Viscoelasticity and Nanostructure of Folded Protein Hydrogels. Biomacromolecules 2020; 21:4253-4260. [PMID: 32870660 DOI: 10.1021/acs.biomac.0c01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrogels constructed from folded protein domains are of increasing interest as resilient and responsive biomaterials, but their optimization for applications requires time-consuming and costly molecular design. Here, we explore a complementary approach to control their properties by examining the influence of crosslinking rate on the structure and viscoelastic response of a model hydrogel constructed from photochemically crosslinked bovine serum albumin (BSA). Gelation is observed to follow a heterogeneous nucleation pathway in which BSA monomers crosslink into compact nuclei that grow into fractal percolated networks. Both the viscoelastic response probed by shear rheology and the nanostructure probed by small-angle X-ray scattering (SAXS) are shown to depend on the photochemical crosslinking reaction rate, with increased reaction rates corresponding to higher viscoelastic moduli, lower fractal dimension, and higher fractal cluster size. Reaction rate-dependent changes are shown to be consistent with a transition between diffusion- and rate-limited assembly, and the corresponding changes to viscoelastic response are proposed to arise from the presence of nonfractal depletion regions, as confirmed by SAXS. This controllable nanostructure and viscoelasticity constitute a potential route for the precise control of hydrogel properties, without the need for molecular modification.
Collapse
Affiliation(s)
| | - Matt D G Hughes
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Andrew Hare
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - David A Head
- School of Computing, University of Leeds, Leeds LS2 9JT, U.K
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - David J Brockwell
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
20
|
Hanson BS, Dougan L. Network Growth and Structural Characteristics of Globular Protein Hydrogels. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Benjamin S. Hanson
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
21
|
Soliman BG, Lindberg GCJ, Jungst T, Hooper GJ, Groll J, Woodfield TBF, Lim KS. Stepwise Control of Crosslinking in a One-Pot System for Bioprinting of Low-Density Bioinks. Adv Healthc Mater 2020; 9:e1901544. [PMID: 32323473 DOI: 10.1002/adhm.201901544] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Extrusion-based 3D bioprinting is hampered by the inability to print materials of low-viscosity. In this study, a single initiating system based on ruthenium (Ru) and sodium persulfate (SPS) is utilized for a sequential dual-step crosslinking approach: 1) primary (partial) crosslinking in absence of light to alter the bioink's rheological profile for print fidelity, and 2) subsequent secondary post-printing crosslinking for shape maintenance. Allyl-functionalized gelatin (Gel-AGE) is used as a bioink, allowing thiol-ene click reaction between allyl moieties and thiolated crosslinkers. A systematic investigation of primary crosslinking reveals that a thiol-persulfate redox reaction facilitates thiol-ene crosslinking, mediating an increase in bioink viscosity that is controllable by tailoring the Ru/SPS, crosslinker, and/or Gel-AGE concentrations. Thereafter, subsequent photoinitiated secondary crosslinking then facilitates maximum conversion of thiol-ene bonds between AGE and thiol groups. The dual-step crosslinking method is applicable to a wide biofabrication window (3-10 wt% Gel-AGE) and is demonstrated to allow printing of low-density (3 wt%) Gel-AGE, normally exhibiting low viscosity (4 mPa s), with high shape fidelity and high cell viability (>80%) over 7 days of culture. The presented approach can therefore be used as a one-pot system for printing low-viscous bioinks without the need for multiple initiating systems, viscosity enhancers, or complex chemical modifications.
Collapse
Affiliation(s)
- Bram G. Soliman
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupUniversity of Otago 2 Riccarton Avenue Christchurch 8011 New Zealand
| | - Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupUniversity of Otago 2 Riccarton Avenue Christchurch 8011 New Zealand
- Medical Technologies Centre of Research Excellence Auckland 1010 New Zealand
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry (FMZ) and Bavarian Polymer Institute (BPI)University of Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Gary J. Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupUniversity of Otago 2 Riccarton Avenue Christchurch 8011 New Zealand
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry (FMZ) and Bavarian Polymer Institute (BPI)University of Würzburg Pleicherwall 2 Würzburg 97070 Germany
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupUniversity of Otago 2 Riccarton Avenue Christchurch 8011 New Zealand
- Medical Technologies Centre of Research Excellence Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery Auckland 1010 New Zealand
| | - Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupUniversity of Otago 2 Riccarton Avenue Christchurch 8011 New Zealand
- Medical Technologies Centre of Research Excellence Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery Auckland 1010 New Zealand
| |
Collapse
|
22
|
Lim KS, Abinzano F, Nuñez Bernal P, Sanchez AA, Atienza-Roca P, Otto IA, Peiffer QC, Matsusaki M, Woodfield TBF, Malda J, Levato R. One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration. Adv Healthc Mater 2020; 9:e1901792. [PMID: 32324342 PMCID: PMC7116266 DOI: 10.1002/adhm.201901792] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Cartilage defects can result in pain, disability, and osteoarthritis. Hydrogels providing a chondroregeneration-permissive environment are often mechanically weak and display poor lateral integration into the surrounding cartilage. This study develops a visible-light responsive gelatin ink with enhanced interactions with the native tissue, and potential for intraoperative bioprinting. A dual-functionalized tyramine and methacryloyl gelatin (GelMA-Tyr) is synthesized. Photo-crosslinking of both groups is triggered in a single photoexposure by cell-compatible visible light in presence of tris(2,2'-bipyridyl)dichlororuthenium(II) and sodium persulfate as initiators. Neo-cartilage formation from embedded chondroprogenitor cells is demonstrated in vitro, and the hydrogel is successfully applied as bioink for extrusion-printing. Visible light in situ crosslinking in cartilage defects results in no damage to the surrounding tissue, in contrast to the native chondrocyte death caused by UV light (365-400 nm range), commonly used in biofabrication. Tyramine-binding to proteins in native cartilage leads to a 15-fold increment in the adhesive strength of the bioglue compared to pristine GelMA. Enhanced adhesion is observed also when the ink is extruded as printable filaments into the defect. Visible-light reactive GelMA-Tyr bioinks can act as orthobiologic carriers for in situ cartilage repair, providing a permissive environment for chondrogenesis, and establishing safe lateral integration into chondral defects.
Collapse
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Florencia Abinzano
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Ane Albillos Sanchez
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Pau Atienza-Roca
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Iris A. Otto
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Quentin C. Peiffer
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Michiya Matsusaki
- Department of Applied Chemistry Graduate School of Engineering
Osaka University 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
- Department of Clinical Sciences Faculty of Veterinary Medicine
Utrecht University Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Riccardo Levato
- Levato Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
- Department of Clinical Sciences Faculty of Veterinary Medicine
Utrecht University Yalelaan 1, Utrecht 3584 CL, The Netherlands
| |
Collapse
|
23
|
Curry AM, Fernàndez RD, Pagani TD, Abeyawardhane DL, Trahan ML, Lucas HR. Mapping of Photochemically-Derived Dityrosine across Fe-Bound N-Acetylated α-Synuclein. Life (Basel) 2020; 10:life10080124. [PMID: 32726960 PMCID: PMC7459884 DOI: 10.3390/life10080124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurological disease and belongs to a group of neurodegenerative disorders called synucleinopathies in which pathological aggregates of N-terminally acetylated α-synuclein (NAcα-Syn) accumulate in various regions of the brain. In PD, these NAcα-Syn aggregates have been found to contain covalent dityrosine crosslinks, which can occur either intermolecularly or intramolecularly. Cerebral metal imbalance is also a hallmark of PD, warranting investigations into the effects of brain biometals on NAcα-Syn. NAcα-Syn is an intrinsically disordered protein, and metal-mediated conformational modifications of this structurally dynamic protein have been demonstrated to influence its propensity for dityrosine formation. In this study, a library of tyrosine-to-phenylalanine (Y-to-F) NAcα-Syn constructs were designed in order to elucidate the nature and the precise residues involved in dityrosine crosslinking of Fe-bound NAcα-Syn. The structural capacity of each mutant to form dityrosine crosslinks was assessed using Photo-Induced Cross-Linking of Unmodified Proteins (PICUP), demonstrating that coordination of either FeIII or FeII to NAcα-Syn inhibits dityrosine crosslinking among the C-terminal residues. We further demonstrate that Y39 is the main contributor to dityrosine formation of Fe-bound NAcα-Syn, while Y125 is the main residue involved in dityrosine crosslinks in unmetalated NAcα-Syn. Our results confirm that iron coordination has a global effect on NAcα-Syn structure and reactivity.
Collapse
|
24
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
25
|
Lim KS, Galarraga JH, Cui X, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chem Rev 2020; 120:10662-10694. [DOI: 10.1021/acs.chemrev.9b00812] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jonathan H. Galarraga
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch 8011, New Zealand
- Medical Technologies Centre of Research Excellence (MedTech CoRE), Auckland 1010, New Zealand
| |
Collapse
|
26
|
Abeyawardhane DL, Curry AM, Forney AK, Roberts JW, Lucas HR. Biometals as conformational modulators of α-synuclein photochemical crosslinking. J Biol Inorg Chem 2019; 24:1261-1268. [PMID: 31728738 PMCID: PMC7334974 DOI: 10.1007/s00775-019-01738-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/26/2019] [Indexed: 11/28/2022]
Abstract
Metal dyshomeostasis has long been linked to Parkinson's disease (PD), and the amyloidogenic protein α-synuclein (αS) is universally recognized as a key player in PD pathology. Structural consequences upon coordination of copper and iron to αS have gained attention due to significant dyshomeostasis of both metals in the PD brain. Protein-metal association can navigate protein folding in distinctive pathways based on the identity of the bio-metal in question. In this work, we employed photo-chemical crosslinking of unmodified proteins (PICUP) to evaluate these potential metal ion-induced structural alterations in the folding dynamics of N-terminally acetylated αS (NAcαS) following metal coordination. Through fluorescence analysis and immunoblotting analyses following photoirradiation, we discovered that coordination of iron obstructs copper-promoted crosslinking. The absence of intra-molecular crosslinking upon iron association further supports its C-terminal coordination site and suggests a potential role for iron in mitigating nearby post-translational modification of tyrosine residues. Decreased fluorescence emission upon synergistic coordination of both copper and iron highlighted that although copper acts as a conformational promotor of NAcαS crosslinking, iron inhibits analogous conformational changes within the protein. The metal coordination preferences of NAcαS suggest that both competitive binding sites as well as dual metal coordination contribute to the changes in folding dynamics, unveiling unique structural orientations for NAcαS that have a direct and measureable influence on photoinitiated dityrosine crosslinks. Moreover, our findings have physiological implications in that iron overload, as is associated with PD-insulted brain tissue, may serve as a conformational block of copper-promoted protein oxidation.
Collapse
Affiliation(s)
| | - Alyson M Curry
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Ashley K Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Joel W Roberts
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Heather R Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
27
|
Beard HA, Hauser JR, Walko M, George RM, Wilson AJ, Bon RS. Photocatalytic proximity labelling of MCL-1 by a BH3 ligand. Commun Chem 2019; 2:133. [PMID: 33763603 PMCID: PMC7610391 DOI: 10.1038/s42004-019-0235-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ligand-directed protein labelling allows the introduction of diverse chemical functionalities onto proteins without the need for genetically encoded tags. Here we report a method for the rapid labelling of a protein using a ruthenium-bipyridyl (Ru(II)(bpy)3)-modified peptide designed to mimic an interacting BH3 ligand within a BCL-2 family protein-protein interactions. Using sub-stoichiometric quantities of (Ru(II)(bpy)3)-modified NOXA-B and irradiation with visible light for 1 min, the anti-apoptotic protein MCL-1 can be photolabelled with a variety of functional tags. In contrast with previous reports on Ru(II)(bpy)3-mediated photolabelling, tandem mass spectrometry experiments reveal that the labelling site is a cysteine residue of MCL-1. MCL-1 can be labelled selectively in mixtures with other proteins, including the structurally related BCL-2 member, BCL-xL. These results demonstrate that proximity-induced photolabelling is applicable to interfaces that mediate protein-protein interactions, and pave the way towards future use of ligand-directed proximity labelling for dynamic analysis of the interactome of BCL-2 family proteins.
Collapse
Affiliation(s)
- Hester A Beard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Jacob R Hauser
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Martin Walko
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Rachel M George
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Robin S Bon
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT laboratories, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
28
|
Van Hoorick J, Tytgat L, Dobos A, Ottevaere H, Van Erps J, Thienpont H, Ovsianikov A, Dubruel P, Van Vlierberghe S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 2019; 97:46-73. [PMID: 31344513 DOI: 10.1016/j.actbio.2019.07.035] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for biofabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs. STATEMENT OF SIGNIFICANCE: Gelatin and more specifically gelatin-methacryloyl has emerged to become one of the gold standard materials as an extracellular matrix mimic in the field of biofabrication. However, also other modification strategies have been elaborated to take advantage of a plethora of crosslinking chemistries. Therefore, a review paper focusing on the different modification strategies and processing of gelatin is presented. Particular attention is paid to the underlying chemistry along with the benefits and drawbacks of each type of crosslinking chemistry. The different strategies were classified based on their basic crosslinking mechanism including chain- or step-growth polymerization. Within the step-growth classification, a further distinction is made between click chemistries as well as other strategies. The influence of these modifications on the physical gelation and processing conditions including mechanical properties is presented. Additionally, substantial attention is put to the applied photoinitiators and the different biofabrication technologies including inkjet, deposition or light-based technologies.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Agnes Dobos
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
29
|
Aβ(M1-40) and Wild-Type Aβ40 Self-Assemble into Oligomers with Distinct Quaternary Structures. Molecules 2019; 24:molecules24122242. [PMID: 31208071 PMCID: PMC6631858 DOI: 10.3390/molecules24122242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023] Open
Abstract
Amyloid-β oligomers (AβOs) self-assemble into polymorphic species with diverse biological activities that are implicated causally to Alzheimer’s disease (AD). Synaptotoxicity of AβO species is dependent on their quaternary structure, however, low-abundance and environmental sensitivity of AβOs in vivo have impeded a thorough assessment of structure–function relationships. We developed a simple biochemical assay to quantify the relative abundance and morphology of cross-linked AβOs. We compared oligomers derived from synthetic Aβ40 (wild-type (WT) Aβ40) and a recombinant source, called Aβ(M1–40). Both peptides assemble into oligomers with common sizes and morphology, however, the predominant quaternary structures of Aβ(M1–40) oligomeric states were more diverse in terms of dispersity and morphology. We identified self-assembly conditions that stabilize high-molecular weight oligomers of Aβ(M1–40) with apparent molecular weights greater than 36 kDa. Given that mixtures of AβOs derived from both peptides have been shown to be potent neurotoxins that disrupt long-term potentiation, we anticipate that the diverse quaternary structures reported for Aβ(M1–40) oligomers using the assays reported here will facilitate research efforts aimed at isolating and identifying common toxic species that contribute to synaptic dysfunction.
Collapse
|
30
|
Lim KS, Klotz BJ, Lindberg GCJ, Melchels FPW, Hooper GJ, Malda J, Gawlitta D, Woodfield TBF. Visible Light Cross-Linking of Gelatin Hydrogels Offers an Enhanced Cell Microenvironment with Improved Light Penetration Depth. Macromol Biosci 2019; 19:e1900098. [PMID: 31026127 DOI: 10.1002/mabi.201900098] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 01/08/2023]
Abstract
In this study, the cyto-compatibility and cellular functionality of cell-laden gelatin-methacryloyl (Gel-MA) hydrogels fabricated using a set of photo-initiators which absorb in 400-450 nm of the visible light range are investigated. Gel-MA hydrogels cross-linked using ruthenium (Ru) and sodium persulfate (SPS), are characterized to have comparable physico-mechanical properties as Gel-MA gels photo-polymerized using more conventionally adopted photo-initiators, such as 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure 2959) and lithium phenyl(2,4,6-trimethylbenzoyl) phosphinate (LAP). It is demonstrated that the Ru/SPS system has a less adverse effect on the viability and metabolic activity of human articular chondrocytes encapsulated in Gel-MA hydrogels for up to 35 days. Furthermore, cell-laden constructs cross-linked using the Ru/SPS system have significantly higher glycosaminoglycan content and re-differentiation capacity as compared to cells encapsulated using I2959 and LAP. Moreover, the Ru/SPS system offers significantly greater light penetration depth as compared to the I2959 system, allowing thick (10 mm) Gel-MA hydrogels to be fabricated with homogenous cross-linking density throughout the construct. These results demonstrate the considerable advantages of the Ru/SPS system over traditional UV polymerizing systems in terms of clinical relevance and practicability for applications such as cell encapsulation, biofabrication, and in situ cross-linking of injectable hydrogels.
Collapse
Affiliation(s)
- Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - Barbara J Klotz
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Gabriella C J Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, 1010, New Zealand
| | - Ferry P W Melchels
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Jos Malda
- Regenerative Medicine Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands.,University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, Utrecht, CM, 3584, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| |
Collapse
|
31
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylation Chemistry for Bioconjugation. Angew Chem Int Ed Engl 2019; 58:4810-4839. [PMID: 30399206 PMCID: PMC6433541 DOI: 10.1002/anie.201806009] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Bioconjugation chemistry has been used to prepare modified biomolecules with functions beyond what nature intended. Central to these techniques is the development of highly efficient and selective bioconjugation reactions that operate under mild, biomolecule compatible conditions. Methods that form a nucleophile-sp2 carbon bond show promise for creating bioconjugates with new modifications, sometimes resulting in molecules with unparalleled functions. Here we outline and review sulfur, nitrogen, selenium, oxygen, and carbon arylative bioconjugation strategies and their applications to modify peptides, proteins, sugars, and nucleic acids.
Collapse
Affiliation(s)
- Chi Zhang
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Ekaterina V. Vinogradova
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Dr. E. V. Vinogradova, The Skaggs Institute for Chemical Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander M. Spokoyny
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
- Prof. Dr. A. M. Spokoyny, Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Stephen L. Buchwald
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| | - Bradley L. Pentelute
- Dr. C. Zhang, Dr. E. V. Vinogradova, Prof. Dr. A. M. Spokoyny, Prof. Dr. S. L. Buchwald, Prof. Dr. B. L. Pentelute, Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ,
| |
Collapse
|
32
|
Ohata J, Martin SC, Ball ZT. Metallvermittelte Funktionalisierung natürlicher Peptide und Proteine: Biokonjugation mit Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
33
|
Ohata J, Martin SC, Ball ZT. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angew Chem Int Ed Engl 2019; 58:6176-6199. [DOI: 10.1002/anie.201807536] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
34
|
Angerani S, Winssinger N. Visible Light Photoredox Catalysis Using Ruthenium Complexes in Chemical Biology. Chemistry 2019; 25:6661-6672. [PMID: 30689234 DOI: 10.1002/chem.201806024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/24/2022]
Abstract
The development of bioorthogonal reactions have had a transformative impact in chemical biology and the quest to expand this toolbox continues. Herein we review recent applications of ruthenium-catalyzed photoredox reactions used in chemical biology.
Collapse
Affiliation(s)
- Simona Angerani
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
35
|
Zhang C, Vinogradova EV, Spokoyny AM, Buchwald SL, Pentelute BL. Arylierungschemie für die Biokonjugation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chi Zhang
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ekaterina V. Vinogradova
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- The Skaggs Institute for Chemical Biology and Department of Molecular MedicineThe Scripps Research Institute La Jolla CA 92037 USA
| | - Alexander M. Spokoyny
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
- Department of Chemistry and BiochemistryUniversity of California, Los Angeles 607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
36
|
Lobão JBDS, Gondim ACS, Guimarães WG, Gilles‐Gonzalez M, Lopes LGDF, Sousa EHS. Oxygen triggers signal transduction in the DevS (DosS) sensor of
Mycobacterium tuberculosis
by modulating the quaternary structure. FEBS J 2019; 286:479-494. [DOI: 10.1111/febs.14734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/05/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Josiane Bezerra da Silva Lobão
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Ana C. S. Gondim
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Wellinson G. Guimarães
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | | | - Luiz Gonzaga de França Lopes
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| | - Eduardo H. S. Sousa
- Laboratory of Bioinorganic Chemistry Department of Organic and Inorganic Chemistry Federal University of Ceara Center for Sciences Fortaleza Brazil
| |
Collapse
|
37
|
Leshem G, Richman M, Lisniansky E, Antman-Passig M, Habashi M, Gräslund A, Wärmländer SKTS, Rahimipour S. Photoactive chlorin e6 is a multifunctional modulator of amyloid-β aggregation and toxicity via specific interactions with its histidine residues. Chem Sci 2018; 10:208-217. [PMID: 30713632 PMCID: PMC6333166 DOI: 10.1039/c8sc01992d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022] Open
Abstract
Photoactive chlorin e6 selectively damage the histidine residues of amyloid-β and reduce its aggregation and toxicity even in the presence of Cu ions.
The self-assembly of Aβ to β-sheet-rich neurotoxic oligomers is a main pathological event leading to Alzheimer's disease (AD). Selective targeting of Aβ oligomers without affecting other functional proteins is therefore an attractive approach to prevent the disease and its progression. In this study, we report that photodynamic treatment of Aβ in the presence of catalytic amounts of chlorin e6 can selectively damage Aβ and inhibit its aggregation and toxicity. Chlorin e6 also reversed the amyloid aggregation process in the dark by binding its soluble and low molecular weight oligomers, as shown by thioflavin T (ThT) fluorescence and photoinduced cross-linking of unmodified protein (PICUP) methods. Using HSQC NMR spectroscopy, ThT assays, amino acid analysis, SDS/PAGE, and EPR spectroscopy, we show that catalytic amounts of photoexcited chlorin e6 selectively damage the Aβ histidine residues H6, H13, and H14, and induce Aβ cross-linking by generating singlet oxygen. In contrast, photoexcited chlorin e6 was unable to cross-link ubiquitin and α-synuclein, demonstrating its high selectivity for Aβ. By binding to the Aβ histidine residues, catalytic amounts of chlorin e6 can also inhibit the Cu2+-induced aggregation and toxicity in darkness, while at stoichiometric amounts it acts as a chelator to reduce the amount of free Cu2+. This study demonstrates the great potential of chlorin e6 as a multifunctional agent for treatment of AD, and shows that the three N-terminal Aβ histidine residues are a suitable target for Aβ-specific drugs.
Collapse
Affiliation(s)
- Guy Leshem
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Michal Richman
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Elvira Lisniansky
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Merav Antman-Passig
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Maram Habashi
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics , Arrhenius Laboratories , Stockholm University , S-106 91 Stockholm , Sweden .
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics , Arrhenius Laboratories , Stockholm University , S-106 91 Stockholm , Sweden .
| | - Shai Rahimipour
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel .
| |
Collapse
|
38
|
Jiménez HR, Arbona M. Spectroscopic studies of water-soluble superstructured iron(III) porphyrin. Interaction with the bovine serum albumin protein. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1434624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hermas R. Jiménez
- Facultad de Química, Departamento de Química Inorgánica, Universitat de València, Valencia, Spain
| | - María Arbona
- Conselleria de Cultura, Educació i Ciència, Generalitat Valenciana, Valencia, Spain
| |
Collapse
|
39
|
Estalayo-Adrián S, Garnir K, Moucheron C. Perspectives of ruthenium(ii) polyazaaromatic photo-oxidizing complexes photoreactive towards tryptophan-containing peptides and derivatives. Chem Commun (Camb) 2018; 54:322-337. [DOI: 10.1039/c7cc06542f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review focuses on recent advances in the search for RuII polyazaaromatic complexes as molecular photoreagents for tryptophan-containing peptides and proteins, in view of future biomedical applications.
Collapse
Affiliation(s)
- S. Estalayo-Adrián
- Organic Chemistry and Photochemistry
- Université Libre de Bruxelles, (U. L. B.)
- 1050 Bruxelles
- Belgium
| | - K. Garnir
- Organic Chemistry and Photochemistry
- Université Libre de Bruxelles, (U. L. B.)
- 1050 Bruxelles
- Belgium
| | - C. Moucheron
- Organic Chemistry and Photochemistry
- Université Libre de Bruxelles, (U. L. B.)
- 1050 Bruxelles
- Belgium
| |
Collapse
|
40
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
41
|
Mawhinney MT, Williams TL, Hart JL, Taheri ML, Urbanc B. Elucidation of insulin assembly at acidic and neutral pH: Characterization of low molecular weight oligomers. Proteins 2017; 85:2096-2110. [PMID: 28796342 DOI: 10.1002/prot.25365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Deficiency in insulin secretion and function that characterize type 2 diabetes often requires administration of extraneous insulin, leading to injection-site amyloidosis. Insulin aggregation at neutral pH is not well understood. Although oligomer formation is believed to play an important role, insulin oligomers have not been fully characterized yet. Here, we elucidate similarities and differences between in vitro insulin aggregation at acidic and neutral pH for a range of insulin concentrations (2.5-100 μM) by using kinetic thioflavin T fluorescence, circular dichroism, atomic force and electron microscopy imaging. Importantly, we characterize the size distribution of insulin oligomers at different assembly stages by the application of covalent cross-linking and gel electrophoresis. Our results show that at the earliest assembly stage, oligomers comprise up to 40% and 70% of soluble insulin at acidic and neutral pH, respectively. While the highest oligomer order increases with insulin concentration at acidic pH, the opposite tendency is observed at neutral pH, where oligomers up to heptamers are formed in 10 μM insulin. These findings suggest that oligomers may be on- and off-pathway assemblies for insulin at acidic and neutral pH, respectively. Agitation, which is required to induce insulin aggregation at neutral pH, is shown to increase fibril formation rate and fibrillar mass both by an order of magnitude. Insulin incubated under agitated conditions at neutral pH rapidly aggregates into large micrometer-sized aggregates, which may be of physiological relevance and provides insight into injection-site amyloidosis and toxic pulmonary aggregates induced by administration of extraneous insulin.
Collapse
Affiliation(s)
| | - Thomas L Williams
- Department of Physics, Drexel University, Philadelphia, PA, USA.,Clarivate Analytics, 1500 Spring Garden Street, Philadelphia, PA, USA
| | - James L Hart
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Mitra L Taheri
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA, USA.,Faculty of Mathematics and Physics, Jadranska ulica 19, Ljubljana, 1000, Slovenia
| |
Collapse
|
42
|
Konstantinou EK, Notomi S, Kosmidou C, Brodowska K, Al-Moujahed A, Nicolaou F, Tsoka P, Gragoudas E, Miller JW, Young LH, Vavvas DG. Verteporfin-induced formation of protein cross-linked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity. Sci Rep 2017; 7:46581. [PMID: 28429726 PMCID: PMC5399488 DOI: 10.1038/srep46581] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Verteporfin (VP) was first used in Photodynamic therapy, where a non-thermal laser light (689 nm) in the presence of oxygen activates the drug to produce highly reactive oxygen radicals, resulting in local cell and tissue damage. However, it has also been shown that Verteporfin can have non-photoactivated effects such as interference with the YAP-TEAD complex of the HIPPO pathway, resulting in growth inhibition of several neoplasias. More recently, it was proposed that, another non-light mediated effect of VP is the formation of cross-linked oligomers and high molecular weight protein complexes (HMWC) that are hypothesized to interfere with autophagy and cell growth. Here, in a series of experiments, using human uveal melanoma cells (MEL 270), human embryonic kidney cells (HEK) and breast cancer cells (MCF7) we showed that Verteporfin-induced HMWC require the presence of light. Furthermore, we showed that the mechanism of this cross-linking, which involves both singlet oxygen and radical generation, can occur very efficiently even after lysis of the cells, if the lysate is not protected from ambient light. This work offers a better understanding regarding VP's mechanisms of action and suggests caution when one studies the non-light mediated actions of this drug.
Collapse
Affiliation(s)
- Eleni K. Konstantinou
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Shoji Notomi
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Cassandra Kosmidou
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Katarzyna Brodowska
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmad Al-Moujahed
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Fotini Nicolaou
- Pediatric Surgery Laboratories, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Pavlina Tsoka
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Evangelos Gragoudas
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Joan W. Miller
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucy H. Young
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Retina service, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Kang J, Lee SJC, Nam JS, Lee HJ, Kang MG, Korshavn KJ, Kim HT, Cho J, Ramamoorthy A, Rhee HW, Kwon TH, Lim MH. An Iridium(III) Complex as a Photoactivatable Tool for Oxidation of Amyloidogenic Peptides with Subsequent Modulation of Peptide Aggregation. Chemistry 2017; 23:1645-1653. [PMID: 27862428 DOI: 10.1002/chem.201604751] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 02/03/2023]
Abstract
Aggregates of amyloidogenic peptides are involved in the pathogenesis of several degenerative disorders. Herein, an iridium(III) complex, Ir-1, is reported as a chemical tool for oxidizing amyloidogenic peptides upon photoactivation and subsequently modulating their aggregation pathways. Ir-1 was rationally designed based on multiple characteristics, including 1) photoproperties leading to excitation by low-energy radiation; 2) generation of reactive oxygen species responsible for peptide oxidation upon photoactivation under mild conditions; and 3) relatively easy incorporation of a ligand on the IrIII center for specific interactions with amyloidogenic peptides. Biochemical and biophysical investigations illuminate that the oxidation of representative amyloidogenic peptides (i.e., amyloid-β, α-synuclein, and human islet amyloid polypeptide) is promoted by light-activated Ir-1, which alters the conformations and aggregation pathways of the peptides. Additionally, their potential oxidation sites are identified as methionine, histidine, or tyrosine residues. Overall, our studies on Ir-1 demonstrate the feasibility of devising metal complexes as chemical tools suitable for elucidating the nature of amyloidogenic peptides at the molecular level, as well as controlling their aggregation.
Collapse
Affiliation(s)
- Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Shin Jung C Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung Seung Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyuck Jin Lee
- School of Life Sciences, UNIST, Ulsan, 44919, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyle J Korshavn
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyun-Tak Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyun-Woo Rhee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
44
|
Ren J, Tian K, Jia L, Han X, Zhao M. Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking. Bioconjug Chem 2016; 27:2266-2270. [DOI: 10.1021/acs.bioconjchem.6b00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Ren
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Kaikai Tian
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Lingyun Jia
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Xiuyou Han
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| | - Mingshan Zhao
- School of Life Science and Biotechnology and ‡School of Physics and Optoelectronic
Engineering, Dalian University of Technology, Dalian, 116023, P. R. China
| |
Collapse
|
45
|
Lim KS, Schon BS, Mekhileri NV, Brown GCJ, Chia CM, Prabakar S, Hooper GJ, Woodfield TBF. New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks. ACS Biomater Sci Eng 2016; 2:1752-1762. [DOI: 10.1021/acsbiomaterials.6b00149] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Khoon S. Lim
- Christchurch
Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department
of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Benjamin S. Schon
- Christchurch
Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department
of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Naveen V. Mekhileri
- Christchurch
Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department
of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Gabriella C. J. Brown
- Christchurch
Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department
of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Catherine M. Chia
- Christchurch
Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department
of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Sujay Prabakar
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
- LASRA, Fitzherbert Science Centre, Manawatu-Wanganui, Wellington 6140, New Zealand
| | - Gary J. Hooper
- Christchurch
Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department
of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Tim B. F. Woodfield
- Christchurch
Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department
of Orthopaedics Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
46
|
Chaves S, Pera LM, Avila CL, Romero CM, Baigori M, Morán Vieyra FE, Borsarelli CD, Chehin RN. Towards efficient biocatalysts: photo-immobilization of a lipase on novel lysozyme amyloid-like nanofibrils. RSC Adv 2016. [DOI: 10.1039/c5ra19590j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Photoimmobilization of enzymes on an amyloid-like fibrillar scaffold.
Collapse
Affiliation(s)
- Silvina Chaves
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| | - Licia M. Pera
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - Cesar Luis Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| | - Cintia M. Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - Mario Baigori
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)
- San Miguel de Tucumán
- Argentina
- Facultad de Bioquímica
- Química, Farmacia
| | - F. Eduardo Morán Vieyra
- Instituto de Bionanotecnología
- INBIONATEC-CONICET
- Universidad Nacional de Santiago del Estero (UNSE)
- Santiago del Estero
- Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología
- INBIONATEC-CONICET
- Universidad Nacional de Santiago del Estero (UNSE)
- Santiago del Estero
- Argentina
| | - Rosana N. Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-UNT, and Instituto de Química Biológica “Dr Bernabé Bloj”
- Facultad de Bioquímica
- Química y Farmacia
- UNT
| |
Collapse
|
47
|
Degtyar E, Mlynarczyk B, Fratzl P, Harrington MJ. Recombinant engineering of reversible cross-links into a resilient biopolymer. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Lim KS, Ramaswamy Y, Roberts JJ, Alves MH, Poole-Warren LA, Martens PJ. Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)-Tyramine Hydrogels. Macromol Biosci 2015; 15:1423-32. [PMID: 26097045 DOI: 10.1002/mabi.201500121] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Indexed: 11/06/2022]
Abstract
A photopolymerizable-tyraminated poly(vinyl alcohol) (PVA-Tyr) system that has the ability to covalently bind proteins in their native state was evaluated as a platform for cell encapsulation. However, a key hurdle to this system is the radicals generated during the cross-linking that can cause oxidative stress to the cells. This research hypothesized that incorporation of anti-oxidative proteins (sericin and gelatin) into PVA-Tyr gels would mitigate any toxicity caused by the radicals. The results showed that although incorporation of 1 wt% sericin promoted survival of the fibroblasts, both sericin and gelatin acted synergistically to facilitate long-term 3D cell function. The encapsulated cells formed clusters with deposition of laminin and collagen, as well as remaining metabolically active after 21 d.
Collapse
Affiliation(s)
- Khoon S Lim
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia, 2052
| | - Yogambha Ramaswamy
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia, 2052
| | - Justine J Roberts
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia, 2052
| | - Marie-Helene Alves
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia, 2052
| | - Laura A Poole-Warren
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia, 2052
| | - Penny J Martens
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia, 2052.
| |
Collapse
|
49
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
50
|
Sato S, Morita K, Nakamura H. Regulation of Target Protein Knockdown and Labeling Using Ligand-Directed Ru(bpy)3 Photocatalyst. Bioconjug Chem 2015; 26:250-6. [DOI: 10.1021/bc500518t] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shinichi Sato
- Chemical
Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Kohei Morita
- Department
of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Tokyo 171-8588, Japan
| | - Hiroyuki Nakamura
- Chemical
Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|