1
|
Swackhammer A, Provencher EAP, Donkor AK, Garofalo J, Dowling S, Garchitorena K, Phyo A, Ramírez Veliz N, Karen M, Kwon A, Diep R, Norris M, Safo MK, Pierce BD. Mechanistic Analysis of the VirA Sensor Kinase in Agrobacterium tumefaciens Using Structural Models. Front Microbiol 2022; 13:898785. [PMID: 35651496 PMCID: PMC9149312 DOI: 10.3389/fmicb.2022.898785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium tumefaciens pathogenesis of plants is initiated with signal reception and culminates with transforming the genomic DNA of its host. The histidine sensor kinase VirA receives and reacts to discrete signaling molecules for the full induction of the genes necessary for this process. Though many of the components of this process have been identified, the precise mechanism of how VirA coordinates the response to host signals, namely phenols and sugars, is unknown. Recent advances of molecular modeling have allowed us to test structure/function predictions and contextualize previous experiments with VirA. In particular, the deep mind software AlphaFold has generated a structural model for the entire protein, allowing us to construct a model that addresses the mechanism of VirA signal reception. Here, we deepen our analysis of the region of VirA that is critical for phenol reception, model and probe potential phenol-binding sites of VirA, and refine its mechanism to strengthen our understanding of A. tumefaciens signal perception.
Collapse
Affiliation(s)
| | - Edward A. P. Provencher
- Department of Biology, University of Richmond, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, United States
| | - Akua K. Donkor
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Jessica Garofalo
- Department of Biology, University of Richmond, Richmond, VA, United States
| | - Sinead Dowling
- Department of Biology, University of Richmond, Richmond, VA, United States
| | | | - Ahkar Phyo
- Department of Biology, University of Richmond, Richmond, VA, United States
| | | | - Matthew Karen
- Department of Biology, University of Richmond, Richmond, VA, United States
| | - Annie Kwon
- Department of Biology, University of Richmond, Richmond, VA, United States
| | - Rich Diep
- Department of Biology, University of Richmond, Richmond, VA, United States
| | - Michael Norris
- Department of Chemistry, University of Richmond, Richmond, VA, United States
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - B. Daniel Pierce
- Department of Biology, University of Richmond, Richmond, VA, United States
| |
Collapse
|
2
|
Binns AN, Zhao J. The MexE/MexF/AmeC Efflux Pump of Agrobacterium tumefaciens and Its Role in Ti Plasmid Virulence Gene Expression. J Bacteriol 2020; 202:e00609-19. [PMID: 32015146 PMCID: PMC7099130 DOI: 10.1128/jb.00609-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the tumor-inducing (Ti) plasmid virulence genes of Agrobacterium tumefaciens is required for the transfer of DNA from the bacterium into plant cells, ultimately resulting in the initiation of plant tumors. The vir genes are induced as a result of exposure to certain phenol derivatives, monosaccharides, and low pH in the extracellular milieu. The soil, as well as wound sites on a plant-the usual site of the virulence activity of this bacterium-can contain these signals, but vir gene expression in the soil would be a wasteful utilization of energy. This suggests that mechanisms may exist to ensure that vir gene expression occurs only at the higher concentrations of inducers typically found at a plant wound site. In a search for transposon-mediated mutations that affect sensitivity for the virulence gene-inducing activity of the phenol, 3,5-dimethoxy-4-hydroxyacetophenone (acetosyringone [AS]), an RND-type efflux pump homologous to the MexE/MexF/OprN pump of Pseudomonas aeruginosa was identified. Phenotypes of mutants carrying an insertion or deletion of pump components included hypersensitivity to the vir-inducing effects of AS, hypervirulence in the tobacco leaf explant virulence assay, and hypersensitivity to the toxic effects of chloramphenicol. Furthermore, the methoxy substituents on the phenol ring of AS appear to be critical for recognition as a pump substrate. These results support the hypothesis that the regulation of virulence gene expression is integrated with cellular activities that elevate the level of plant-derived inducers required for induction so that this occurs preferentially, if not exclusively, in a plant environment.IMPORTANCE Expression of genes controlling the virulence activities of a bacterial pathogen is expected to occur preferentially at host sites vulnerable to that pathogen. Host-derived molecules that induce such activities in the plant pathogen Agrobacterium tumefaciens are found in the soil, as well as in the plant. Here, we tested the hypothesis that mechanisms exist to suppress the sensitivity of Agrobacterium species to a virulence gene-inducing molecule by selecting for mutant bacteria that are hypersensitive to its inducing activity. The mutant genes identified encode an efflux pump whose proposed activity increases the concentration of the inducer necessary for vir gene expression; this pump is also involved in antibiotic resistance, demonstrating a relationship between cellular defense activities and the control of virulence in Agrobacterium.
Collapse
Affiliation(s)
- Andrew N Binns
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jinlei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Shalaby S, Horwitz BA. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions. Curr Genet 2014; 61:347-57. [PMID: 25407462 DOI: 10.1007/s00294-014-0458-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion, Israel Institute of Technology, 3200000, Haifa, Israel
| | | |
Collapse
|
4
|
Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. MOLECULAR PLANT PATHOLOGY 2010; 11:705-19. [PMID: 20696007 PMCID: PMC6640454 DOI: 10.1111/j.1364-3703.2010.00625.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced by plants mainly for protection against stress. The functions of phenolic compounds in plant physiology and interactions with biotic and abiotic environments are difficult to overestimate. Phenolics play important roles in plant development, particularly in lignin and pigment biosynthesis. They also provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexins, secreted by wounded or otherwise perturbed plants, repel or kill many microorganisms, and some pathogens can counteract or nullify these defences or even subvert them to their own advantage. In this review, we discuss the roles of phenolics in the interactions of plants with Agrobacterium and Rhizobium.
Collapse
Affiliation(s)
- Amita Bhattacharya
- Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | | | | |
Collapse
|
5
|
McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006; 22:101-27. [PMID: 16709150 DOI: 10.1146/annurev.cellbio.22.011105.102022] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Host recognition and macromolecular transfer of virulence-mediating effectors represent critical steps in the successful transformation of plant cells by Agrobacterium tumefaciens. This review focuses on bacterial and plant-encoded components that interact to mediate these two processes. First, we examine the means by which Agrobacterium recognizes the host, via both diffusible plant-derived chemicals and cell-cell contact, with emphasis on the mechanisms by which multiple host signals are recognized and activate the virulence process. Second, we characterize the recognition and transfer of protein and protein-DNA complexes through the bacterial and plant cell membrane and wall barriers, emphasizing the central role of a type IV secretion system-the VirB complex-in this process.
Collapse
Affiliation(s)
- Colleen A McCullen
- Department of Biology and Plant Sciences Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
6
|
Mukhopadhyay A, Gao R, Lynn DG. Integrating Input from Multiple Signals: The VirA/VirG Two-Component System of Agrobacterium tumefaciens. Chembiochem 2004; 5:1535-42. [PMID: 15515087 DOI: 10.1002/cbic.200300828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacteria, fungi, and plants exploit histidine sensor kinase/response regulators to mobilize complex responses to inputs as diverse as environmental stimuli and hormonal regulation. More than 50 such two-component systems are found in many organisms, yet the mechanisms of signal perception, phosphotransfer regulation, and even the nature of the activating signals remain poorly defined. Here we resolve each phosphate transfer event in vivo for the Agrobacterium tumefaciens virulence two-component system VirA/VirG. The input signals for this system are known, and the complex autocatalytic regulation of the signaling components has been removed. Two separate and independent phosphotransfer events are resolved, an initial ATP-->sensorHis approximately PO(4)-->receiver approximately PO(4), that may be activated by xenognostic sugar/low pH, and a subsequent ATP-->His approximately PO(4)-->VirG approximately PO(4) that requires xenognostic phenol activation. The identification of these separate pathways places biochemical limits on the regulated steps in this two-component signal transduction module and further extends the model of how a single sensor is able to integrate multiple input stimuli.
Collapse
Affiliation(s)
- Aindrila Mukhopadhyay
- Center for Fundamental and Applied Molecular Evolution, Department of Chemistry and Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
7
|
Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG. Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:439-464. [PMID: 15283673 DOI: 10.1146/annurev.phyto.41.052002.095701] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The xenognostic mechanisms of two multi-host pathogens, the causative agent of crown gall tumors Agrobacterium tumefaciens and the parasitic plant Striga asiatica, are compared. Both organisms are general plant pathogens and require similar information prior to host commitment. Two mechanistic strategies, chemical perception and metabolic complementation, are used to ensure successful host commitment. The critical reactions at host-parasite contact are proton and electron transfer events. Such strategies may be common among multi-host pathogens.
Collapse
Affiliation(s)
- Andrew G Palmer
- Center for Fundamental and Applied Molecular Evolution, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
8
|
Wang Y, Gao R, Lynn DG. Ratcheting up vir gene expression in Agrobacterium tumefaciens: coiled coils in histidine kinase signal transduction. Chembiochem 2002; 3:311-7. [PMID: 11933231 DOI: 10.1002/1439-7633(20020402)3:4<311::aid-cbic311>3.0.co;2-n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transmembrane histidine kinase VirA is responsible for the recognition of information from several plant-derived xenognostic signals that control gene transfer between Agrobacterium tumefaciens and its eukaryotic host. As with other histidine autokinases, VirA appears to exist as a homodimer within the inner membrane of the bacterium. In this study, we identify the putative homodimeric coiled-coil-like motifs Helix TM2 (amino acids (aa) 259-288) and Helix C (aa 293-327) within the previously assigned signal input domain. The functional importance of these coiled-coil interactions in signal-mediated VirA activation is investigated by the construction of fusion proteins with the leucine zipper domain of the transcription factor GCN4. Replacement of the membrane-spanning and periplasmic domains of VirA with the GCN4 leucine zipper gave functional proteins with increased signal-induced vir gene expression. When the GCN4 fusion was used to conformationally bias the interface of the Helix C coiled coil, constitutively active chimeras were created. The activity of these constructs was dependent on the interface of the Helix C coiled coil, and a ratchet model is proposed in which VirA activation is achieved by signal-induced switching of the interfaces of the homodimer. Since VirA functions as a transducer and integrates various host cues indirectly, these data highlight its role as an "antenna" for the tumor-inducing (Ti) plasmid, able to monitor the host proteome so as to select for successful xenognostic signaling strategies.
Collapse
Affiliation(s)
- Yulei Wang
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
9
|
Alvarez-Martinez MT, Machold J, Weise C, Schmidt-Eisenlohr H, Baron C, Rouot B. The Brucella suis homologue of the Agrobacterium tumefaciens chromosomal virulence operon chvE is essential for sugar utilization but not for survival in macrophages. J Bacteriol 2001; 183:5343-51. [PMID: 11514518 PMCID: PMC95417 DOI: 10.1128/jb.183.18.5343-5351.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella strains possess an operon encoding type IV secretion machinery very similar to that coded by the Agrobacterium tumefaciens virB operon. Here we describe cloning of the Brucella suis homologue of the chvE-gguA-gguB operon of A. tumefaciens and characterize the sugar binding protein ChvE (78% identity), which in A. tumefaciens is involved in virulence gene expression. B. suis chvE is upstream of the putative sugar transporter-encoding genes gguA and gguB, also present in A. tumefaciens, but not adjacent to that of a LysR-type transcription regulator. Although results of Southern hybridization experiments suggested that the gene is present in all Brucella strains, the ChvE protein was detected only in B. suis and Brucella canis with A. tumefaciens ChvE-specific antisera, suggesting that chvE genes are differently expressed in different Brucella species. Analysis of cell growth of B. suis and of its chvE or gguA mutants in different media revealed that ChvE exhibited a sugar specificity similar to that of its A. tumefaciens homologue and that both ChvE and GguA were necessary for utilization of these sugars. Murine or human macrophage infections with B. suis chvE and gguA mutants resulted in multiplication similar to that of the wild-type strain, suggesting that virB expression was unaffected. These data indicate that the ChvE and GguA homologous proteins of B. suis are essential for the utilization of certain sugars but are not necessary for survival and replication inside macrophages.
Collapse
|
10
|
Liu Z, Jacobs M, Schaff DA, McCullen CA, Binns AN. ChvD, a chromosomally encoded ATP-binding cassette transporter-homologous protein involved in regulation of virulence gene expression in Agrobacterium tumefaciens. J Bacteriol 2001; 183:3310-7. [PMID: 11344138 PMCID: PMC99628 DOI: 10.1128/jb.183.11.3310-3317.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2000] [Accepted: 03/06/2001] [Indexed: 11/20/2022] Open
Abstract
A yeast two-hybrid screen searching for chromosomally encoded proteins that interact with the Agrobacterium tumefaciens VirB8 protein was carried out. This screen identified an interaction candidate homologous to the partial sequence of a gene that had previously been identified in a transposon screen as a potential regulator of virG expression, chvD. In this report, the cloning of the entire chvD gene is described and the gene is sequenced and characterized. Insertion of a promoterless lacZ gene into the chvD locus greatly attenuated virulence and vir gene expression. Compared to that of the wild-type strain, growth of the chvD mutant was reduced in rich, but not minimal, medium. Expression of chvD, as monitored by expression of beta-galactosidase activity from the chvD-lacZ fusion, occurred in both rich and minimal media as well as under conditions that induce virulence gene expression. The ChvD protein is highly homologous to a family of ATP-binding cassette transporters involved in antibiotic export from bacteria and has two complete Walker box motifs. Molecular genetic analysis demonstrated that disruption of either Walker A box, singly, does not inactivate this protein's effect on virulence but that mutations in both Walker A boxes renders it incapable of complementing a chvD mutant strain. Constitutive expression of virG in the chvD mutant strain restored virulence, supporting the hypothesis that ChvD controls virulence through effects on virG expression.
Collapse
Affiliation(s)
- Z Liu
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | | | | | |
Collapse
|
11
|
Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG. At the maize/Agrobacterium interface: natural factors limiting host transformation. CHEMISTRY & BIOLOGY 2000; 7:611-21. [PMID: 11048952 DOI: 10.1016/s1074-5521(00)00007-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Agrobacterium tumefaciens has been successfully harnessed as the only natural vector for the incorporation of foreign genes into higher plants, but its use in the grain crops is often limited. Low transformation efficiency has been partly attributed to a failure in the initial events in the transformation process, specifically in the capacity of the VirA/VirG two-component system to induce expression of the virulence genes. RESULTS Here we show that the root exudate of Zea mays seedlings specifically inhibits virulence gene expression, determine that 2-hydroxy-4,7-dimethoxybenzoxazin-3-one (MDIBOA), which constitutes > 98% of the organic exudate of the roots of these seedlings, is the most potent and specific inhibitor of signal perception in A. tumefaciens-mediated gene transfer yet discovered, and develop a model that is able to predict the MDIBOA concentration at any distance from the root surface. Finally, variants of A. tumefaciens resistant to MDIBOA-mediated inhibition of vir gene expression have been selected and partially characterized. CONCLUSIONS These results suggest a strategy in which a plant may resist pathogen invasion by specifically blocking virulence gene activation and yet ensure that the 'resistance factor' does not accumulate to levels sufficient to impose toxicity and selection pressure on the pathogen. The data further establish that naturally occurring inhibitors directed against signal perception by the VirA/VirG two-component regulatory system can play an important role in host defense. Finally, selected variants resistant to specific MDIBOA inhibition may now be used to extend the transformation efficiency of maize and possibly other cereals.
Collapse
Affiliation(s)
- J Zhang
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|