1
|
Sharma V, Sharma A, Wadje BN, Bharate SB. Benzopyrone, a privileged scaffold in drug discovery: An overview of FDA-approved drugs and clinical candidates. Med Res Rev 2024; 44:2035-2077. [PMID: 38532246 DOI: 10.1002/med.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Natural products have always served as an important source of drugs for treating various diseases. Among various privileged natural product scaffolds, the benzopyrone class of compounds has a substantial presence among biologically active compounds. One of the pioneering anticoagulant drugs, warfarin approved in 1954 bears a benzo-α-pyrone (coumarin) nucleus. The widely investigated psoriasis drugs, methoxsalen, and trioxsalen, also contain a benzo-α-pyrone nucleus. Benzo-γ-pyrone (chromone) containing drugs, cromoglic acid, and pranlukast were approved as treatments for asthma in 1982 and 2007, respectively. Numerous other small molecules with a benzopyrone core are under clinical investigation. The present review discusses the discovery, absorption, distribution, metabolism, excretion properties, and synthetic approaches for the Food and Drug Administration-approved and clinical-stage benzopyrone class of compounds. The role of the pyrone core in biological activity has also been discussed. The present review unravels the potential of benzopyrone core in medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Venu Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bhagyashri N Wadje
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Janzing NBM, Niehoff M, Sander W, Senges CHR, Schäkermann S, Bandow JE. A metabolomics perspective on clorobiocin biosynthesis: discovery of bromobiocin and novel derivatives through LC-MS E-based molecular networking. Microbiol Spectr 2024; 12:e0042324. [PMID: 38864648 PMCID: PMC11218499 DOI: 10.1128/spectrum.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Clorobiocin is a well-known, highly effective inhibitor of DNA gyrase belonging to the aminocoumarin antibiotics. To identify potentially novel derivatives of this natural product, we conducted an untargeted investigation of clorobiocin biosynthesis in the known producer Streptomyces roseochromogenes DS 12.976 using LC-MSE, molecular networking, and analysis of fragmentation spectra. Previously undescribed clorobiocin derivatives uncovered in this study include bromobiocin, a variant halogenated with bromine instead of chlorine, hydroxylated clorobiocin, carrying an additional hydroxyl group on its 5-methyl-pyrrole 2-carboxyl moiety, and two other derivatives with modifications on their 3-dimethylallyl 4-hydroxybenzoate moieties. Furthermore, we identified several compounds not previously considered clorobiocin pathway products, which provide new insights into the clorobiocin biosynthetic pathway. By supplementing the medium with different concentrations of potassium bromide, we confirmed that the clorobiocin halogenase can utilize bromine instead of chlorine. The reaction, however, is impeded such that non-halogenated clorobiocin derivatives accumulate. Preliminary assays indicate that the antibacterial activity of bromobioin against Bacillus subtilis and efflux-impaired Escherichia coli matches that of clorobiocin. Our findings emphasize that yet unexplored compounds can be discovered from established strains and biosynthetic gene clusters by means of metabolomics analysis and highlight the utility of LC-MSE-based methods to contribute to unraveling natural product biosynthetic pathways. IMPORTANCE The aminocoumarin clorobiocin is a well-known gyrase inhibitor produced by the gram-positive bacterium Streptomyces roseochromogenes DS 12.976. To gain a deeper understanding of the biosynthetic pathway of this complex composite of three chemically distinct entities and the product spectrum, we chose a metabolite-centric approach. Employing high-resolution LC-MSE analysis, we investigated the pathway products in extracted culture supernatants of the natural producer. Novel pathway products were identified that expand our understanding of three aspects of the biosynthetic pathway, namely the modification of the noviose, transfer and methylation of the pyrrole 2-carboxyl moiety, and halogenation. For the first time, brominated products were detected. Their levels and the levels of non-halogenated products increased in medium supplemented with KBr. Based on the presented data, we propose that the enzyme promiscuity contributes to a broad product spectrum.
Collapse
Affiliation(s)
- Niklas B. M. Janzing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Maurice Niehoff
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Wolfram Sander
- Organic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Wan W, Wu W, Amier Y, Li X, Yang J, Huang Y, Xun Y, Yu X. Engineered microorganisms: A new direction in kidney stone prevention and treatment. Synth Syst Biotechnol 2024; 9:294-303. [PMID: 38510204 PMCID: PMC10950756 DOI: 10.1016/j.synbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Numerous studies have shown that intestinal and urinary tract flora are closely related to the formation of kidney stones. The removal of probiotics represented by lactic acid bacteria and the colonization of pathogenic bacteria can directly or indirectly promote the occurrence of kidney stones. However, currently existing natural probiotics have limitations. Synthetic biology is an emerging discipline in which cells or living organisms are genetically designed and modified to have biological functions that meet human needs, or even create new biological systems, and has now become a research hotspot in various fields. Using synthetic biology approaches of microbial engineering and biological redesign to enable probiotic bacteria to acquire new phenotypes or heterologous protein expression capabilities is an important part of synthetic biology research. Synthetic biology modification of microorganisms in the gut and urinary tract can effectively inhibit the development of kidney stones by a range of means, including direct degradation of metabolites that promote stone production or indirect regulation of flora homeostasis. This article reviews the research status of engineered microorganisms in the prevention and treatment of kidney stones, to provide a new and effective idea for the prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Wenlong Wan
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Weisong Wu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yirixiatijiang Amier
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianmiao Li
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Junyi Yang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yisheng Huang
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yang Xun
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Yu
- Department of Urology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Cook GD, Stasulli NM. Employing synthetic biology to expand antibiotic discovery. SLAS Technol 2024; 29:100120. [PMID: 38340893 DOI: 10.1016/j.slast.2024.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Antimicrobial-resistant (AMR) bacterial pathogens are a continually growing threat as our methods for combating these infections continue to be overcome by the evolution of resistance mechanisms. Recent therapeutic methods have not staved off the concern of AMR infections, so continued research focuses on new ways of identifying small molecules to treat AMR pathogens. While chemical modification of existing antibiotics is possible, there has been rapid development of resistance by pathogens that were initially susceptible to these compounds. Synthetic biology is becoming a key strategy in trying to predict and induce novel, natural antibiotics. Advances in cloning and mutagenesis techniques applied through a synthetic biology lens can help characterize the native regulation of antibiotic biosynthetic gene clusters (BGCs) to identify potential modifications leading to more potent antibiotic activity. Additionally, many cryptic antibiotic BGCs are derived from non-ribosomal peptide synthase (NRPS) and polyketide synthase (PKS) biosynthetic pathways; complex, clustered genetic sequences that give rise to amino acid-derived natural products. Synthetic biology can be applied to modify and metabolically engineer these enzyme-based systems to promote rapid and sustainable production of natural products and their variants. This review will focus on recent advances related to synthetic biology as applied to genetic pathway characterization and identification of antibiotics from naturally occurring BGCs. Specifically, we will summarize recent efforts to characterize BGCs via general genomic mutagenesis, endogenous gene expression, and heterologous gene expression.
Collapse
Affiliation(s)
- Greta D Cook
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA
| | - Nikolas M Stasulli
- Department of Biology and Environmental Science, University of New Haven, 300 Boston Post Rd, Dodds Hall 316, West Haven 06516 USA.
| |
Collapse
|
5
|
Patil SA, Kandathil V, Sobha A, Somappa SB, Feldman MR, Bugarin A, Patil SA. Comprehensive Review on Medicinal Applications of Coumarin-Derived Imine-Metal Complexes. Molecules 2022; 27:5220. [PMID: 36014460 PMCID: PMC9413576 DOI: 10.3390/molecules27165220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are fused six-membered oxygen-containing benzoheterocycles that join two synthetically useful rings: α-pyrone and benzene. A survey of the literature shows that coumarins and their metal complexes have received great interest from synthetic chemists, medicinal scientists, and pharmacists due to their wide spectrum of biological applications. For instance, coumarin and its derivatives have been used as precursors to prepare a large variety of medicinal agents. Likewise, coumarin-derived imine-metal complexes have been found to display a variety of therapeutic applications, such as antibacterial, antifungal, anticancer, antioxidant, anthelmintic, pesticidal, and nematocidal activities. This review highlights the current synthetic methodologies and known bioactivities of coumarin-derived imine-metal complexes that make this molecule a more attractive scaffold for the discovery of newer drugs.
Collapse
Affiliation(s)
- Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, India
| | - Vishal Kandathil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore 562112, India
| | - Anjali Sobha
- Organic Chemistry Section, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India
| | - Sasidhar B Somappa
- Organic Chemistry Section, Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram 695019, India
| | - Max R Feldman
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965, USA
| | - Shivaputra A Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| |
Collapse
|
6
|
Melnyk S, Stepanyshyn A, Yushchuk O, Mandler M, Ostash I, Koshla O, Fedorenko V, Kahne D, Ostash B. Genetic approaches to improve clorobiocin production in Streptomyces roseochromogenes NRRL 3504. Appl Microbiol Biotechnol 2022; 106:1543-1556. [PMID: 35147743 PMCID: PMC9528727 DOI: 10.1007/s00253-022-11814-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/15/2023]
Abstract
Streptomyces roseochromogenes NRRL 3504 is best known as a producer of clorobiocin, a DNA replication inhibitor from the aminocoumarin family of antibiotics. This natural product currently draws attention as a promising adjuvant for co-application with other antibiotics against Gram-negative multidrug-resistant pathogens. Herein, we expand the genetic toolkit for NRRL 3504 by showing that a set of integrative and replicative vectors, not tested previously for this strain, could be conjugally transferred at high frequency from Escherichia coli to NRRL 3504. Using this approach, we leverage a cumate-inducible expression of cluster-situated regulatory gene novG to increase clorobiocin titers by 30-fold (up to approximately 200 mg/L). To our best knowledge, this is the highest level of clorobiocin production reported so far. Our findings set a working ground for further improvement of clorobiocin production as well as for the application of genetic methods to illuminate the cryptic secondary metabolome of NRRL 3504. Key Points • Efficient system for conjugative transfer of plasmids into NRRL 3504 was developed. • Expression of regulatory genes in NRRL 3504 led to increase in clorobiocin titer. • Secondary metabolome of NRRL 3504 becomes an accessible target for genetic manipulations using the expanded vector set and improved intergeneric conjugation protocol.
Collapse
Affiliation(s)
- Sofia Melnyk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Anastasia Stepanyshyn
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Michael Mandler
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Oksana Koshla
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|
7
|
Elicitation of Streptomyces lunalinharesii secondary metabolism through co-cultivation with Rhizoctonia solani. Microbiol Res 2021; 251:126836. [PMID: 34371303 DOI: 10.1016/j.micres.2021.126836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
The concern regarding the emergence of phytopathogens strains which are resistant to conventional agrochemicals has given support to the search for alternatives on the use of chemical pesticides in agriculture. In this context, microorganisms are considered as promising sources of useful natural compounds and actinobacteria are particularly relevant since they are known to produce several bioactive metabolites. The objective of this work was to investigate the production of secondary metabolites with antifungal activity by a strain of the actinobacteria Streptomyces lunalinharesii (A54A) under axenic conditions and in co-cultivation with the phytopathogen Rhizoctonia solani. Tests to evaluate antifungal activity of the extracts indicated the presence of diffusable molecules capable of inhibiting the growth of R. solani produced by S. lunalinharesii, especially when in the presence of the fungus during fermentation. Metabolomic analyzes allowed the putative annotation of the bioactive compounds desferrioxamine E and anisomycin, in addition to the evaluation of the metabolic profile of the isolate when grown in axenic mode and in co-cultivation, while statistical analyzes enabled the comparison of such profiles and the identification of metabolites produced in greater relative quantities in the elicitation condition. Such methodologies provided the selection of unknown features with high bioactive potential for dereplication, and several metabolites of S. lunalinharesii possibly represent novel compounds.
Collapse
|
8
|
Morshed MT, Lacey E, Vuong D, Lacey AE, Lean SS, Moggach SA, Karuso P, Chooi YH, Booth TJ, Piggott AM. Chlorinated metabolites from Streptomyces sp. highlight the role of biosynthetic mosaics and superclusters in the evolution of chemical diversity. Org Biomol Chem 2021; 19:6147-6159. [PMID: 34180937 DOI: 10.1039/d1ob00600b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
LCMS-guided screening of a library of biosynthetically talented bacteria and fungi identified Streptomyces sp. MST- as a prolific producer of chlorinated metabolites. We isolated and characterised six new and nine reported compounds from MST-, belonging to three discrete classes - the depsipeptide svetamycins, the indolocarbazole borregomycins and the aromatic polyketide anthrabenzoxocinones. Following genome sequencing of MST-, we describe, for the first time, the svetamycin biosynthetic gene cluster (sve), its mosaic structure and its relationship to several distantly related gene clusters. Our analysis of the sve cluster suggested that the reported stereostructures of the svetamycins may be incorrect. This was confirmed by single-crystal X-ray diffraction analysis, allowing us to formally revise the absolute configurations of svetamycins A-G. We also show that the borregomycins and anthrabenzoxocinones are encoded by a single supercluster (bab) implicating superclusters as potential nucleation points for the evolution of biosynthetic gene clusters. These clusters highlight how individual enzymes and functional subclusters can be co-opted during the formation of biosynthetic gene clusters, providing a rare insight into the poorly understood mechanisms underpinning the evolution of chemical diversity.
Collapse
Affiliation(s)
- Mahmud T Morshed
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia.
| | - Ernest Lacey
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia. and Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Alastair E Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Soo Sum Lean
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Stephen A Moggach
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Peter Karuso
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Thomas J Booth
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
9
|
Antunes JC, Domingues JM, Miranda CS, Silva AFG, Homem NC, Amorim MTP, Felgueiras HP. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar Drugs 2021; 19:md19070359. [PMID: 34201803 PMCID: PMC8303307 DOI: 10.3390/md19070359] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Marine-derived chitosan (CS) is a cationic polysaccharide widely studied for its bioactivity, which is mostly attached to its primary amine groups. CS is able to neutralize reactive oxygen species (ROS) from the microenvironments in which it is integrated, consequently reducing cell-induced oxidative stress. It also acts as a bacterial peripheral layer hindering nutrient intake and interacting with negatively charged outer cellular components, which lead to an increase in the cell permeability or to its lysis. Its biocompatibility, biodegradability, ease of processability (particularly in mild conditions), and chemical versatility has fueled CS study as a valuable matrix component of bioactive small-scaled organic drug-delivery systems, with current research also showcasing CS’s potential within tridimensional sponges, hydrogels and sutures, blended films, nanofiber sheets and fabric coatings. On the other hand, renewable plant-derived extracts are here emphasized, given their potential as eco-friendly radical scavengers, microbicidal agents, or alternatives to antibiotics, considering that most of the latter have induced bacterial resistance because of excessive and/or inappropriate use. Loading them into small-scaled particles potentiates a strong and sustained bioactivity, and a controlled release, using lower doses of bioactive compounds. A pH-triggered release, dependent on CS’s protonation/deprotonation of its amine groups, has been the most explored stimulus for that control. However, the use of CS derivatives, crosslinking agents, and/or additional stabilization processes is enabling slower release rates, following extract diffusion from the particle matrix, which can find major applicability in fiber-based systems within ROS-enriched microenvironments and/or spiked with microbes. Research on this is still in its infancy. Yet, the few published studies have already revealed that the composition, along with an adequate drug release rate, has an important role in controlling an existing infection, forming new tissue, and successfully closing a wound. A bioactive finishing of textiles has also been promoting high particle infiltration, superior washing durability, and biological response.
Collapse
|
10
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
11
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020; 8:E405. [PMID: 33050619 PMCID: PMC7601869 DOI: 10.3390/biomedicines8100405] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain
| |
Collapse
|
12
|
Abstract
Licorice is a traditional medicine commonly used in China and many other countries. Over the last 50 years, the structure and pharmacological effects of coumarin compounds in licorice have been investigated. However, a comprehensive review of the literature summarizing current trends is currently lacking. Thus, the aim of the present review is to provide an up-to-date summary of the scientific literature regarding the pharmacological effects of coumarin compounds in licorice, thereby laying the foundation for further research and optimal utilization of licorice. We retrieved 111 articles on the coumarin components of licorice and their potential pharmacological effects, based on titles, keywords, and abstracts from databases (including PubMed and Web of Science). Glycycoumarin, isoglycycoumarin, licoarylcoumarin, licopyranocoumarin, glycyrin, isotrifoliol, glycyrol, and glycyrurol have been investigated for their anticancer, hepatoprotective, antispasmodic, immunosuppressive, anti-inflammatory, and antibacterial properties, and use as therapeutic agents in metabolic syndrome, thereby demonstrating their potential for clinical applications. Future research should further explore the pharmacological mechanisms of action of coumarin compounds, including their antibacterial activities. Investigations into the pharmacological activities of different glycycoumarin isomers might open new research frontiers.
Collapse
Affiliation(s)
- Yimei Zang
- Pharmacy Teaching and Research Office, Biomedicine College, Beijing City University, Beijing, P. R. China
| |
Collapse
|
13
|
Minges H, Sewald N. Recent Advances in Synthetic Application and Engineering of Halogenases. ChemCatChem 2020. [DOI: 10.1002/cctc.202000531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hannah Minges
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| |
Collapse
|
14
|
Harnessing and engineering amide bond forming ligases for the synthesis of amides. Curr Opin Chem Biol 2020; 55:77-85. [PMID: 32058241 DOI: 10.1016/j.cbpa.2019.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/21/2022]
Abstract
The amide functional group is ubiquitous in nature and one of the most important motifs in pharmaceuticals, agrochemicals, and other valuable products. While coupling amides and carboxylic acids is a trivial synthetic transformation, it often requires protective group manipulation, along with stoichiometric quantities of expensive and deleterious coupling reagents. Nature has evolved a range of enzymes to construct amide bonds, the vast majority of which utilize adenosine triphosphate to activate the carboxylic acid substrate for amine coupling. Despite the fact that these enzymes operate under mild conditions, as well as possessing chemoselectivity and regioselectivity that obviates the need for protecting groups, their synthetic potential has been largely unexplored. In this review, we discuss recent research into the discovery, characterization, and development of amide bond forming enzymes, with an emphasis on stand-alone ligase enzymes that can generate amides directly from simple carboxylic acid and amine substrates.
Collapse
|
15
|
Kavitha K, Srikrishna D, Dubey PK, Aparna P. A Green and Efficient Synthesis of Substituted 2-(4-(2-Oxo-2H-chromen-3- yl)thiazol-2-yl)-3-phenylacrylonitriles Under Environmentally Benign Conditions. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666181224112851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient and convenient method for the condensation of various aldehydes with 2-(4-(2- oxo-2H-chromen-3-yl)thiazol-2-yl)acetonitrile has been demonstrated via triphenylphosphinecatalyzed Knoevenagel condensation in good to excellent yields. The effect of solvent on this reaction was studied. In addition, a tandem method for the synthesis of 2-(4-(2-oxo-2H-chromen-3-yl)thiazol-2- yl)acetonitrile has been outlined using tetrabutylammonium tribromide as an efficient, green and ecofriendly reagent. Subsequently, the latter was reacted with various aromatic aldehydes in the presence of PEG-600 as reaction media to afford the title compounds. These reactions have widened the scope and applicability of the use of tetrabutylammonium tribromide, triphenylphosphine in organic synthesis. All these synthesized compounds were characterized by IR, 1H-NMR, Mass and 13C-NMR spectral data.
Collapse
Affiliation(s)
- Kotthireddy Kavitha
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Devulapally Srikrishna
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Pramod Kumar Dubey
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| | - Pasula Aparna
- Department of Chemistry, College of Engineering, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana 500 085, India
| |
Collapse
|
16
|
Petchey M, Cuetos A, Rowlinson B, Dannevald S, Frese A, Sutton PW, Lovelock S, Lloyd RC, Fairlamb IJS, Grogan G. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark Petchey
- Department of Chemistry; University of York; York YO10 5DD UK
| | - Anibal Cuetos
- Department of Chemistry; University of York; York YO10 5DD UK
| | | | | | - Amina Frese
- Department of Chemistry; University of York; York YO10 5DD UK
| | - Peter W. Sutton
- GSK Medicines Research Centre; Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Current address: Department of Chemical, Biological and Environmental Engineering; Bioprocess Engineering and Applied Biocatalysis Group; Engineering School; Campus de la UAB 08193 Bellaterra (Cerdanyola del Vallés) Barcelona Spain
| | - Sarah Lovelock
- GSK Medicines Research Centre; Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Current address: School of Chemistry; University of Manchester; Manchester Institute of Biotechnology; 131 Princess Street Manchester M1 7DN UK
| | - Richard C. Lloyd
- GSK Medicines Research Centre; Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | - Gideon Grogan
- Department of Chemistry; University of York; York YO10 5DD UK
| |
Collapse
|
17
|
Petchey M, Cuetos A, Rowlinson B, Dannevald S, Frese A, Sutton PW, Lovelock S, Lloyd RC, Fairlamb IJS, Grogan G. The Broad Aryl Acid Specificity of the Amide Bond Synthetase McbA Suggests Potential for the Biocatalytic Synthesis of Amides. Angew Chem Int Ed Engl 2018; 57:11584-11588. [PMID: 30035356 PMCID: PMC6282839 DOI: 10.1002/anie.201804592] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/22/2018] [Indexed: 11/08/2022]
Abstract
Amide bond formation is one of the most important reactions in pharmaceutical synthetic chemistry. The development of sustainable methods for amide bond formation, including those that are catalyzed by enzymes, is therefore of significant interest. The ATP-dependent amide bond synthetase (ABS) enzyme McbA, from Marinactinospora thermotolerans, catalyzes the formation of amides as part of the biosynthetic pathway towards the marinacarboline secondary metabolites. The reaction proceeds via an adenylate intermediate, with both adenylation and amidation steps catalyzed within one active site. In this study, McbA was applied to the synthesis of pharmaceutical-type amides from a range of aryl carboxylic acids with partner amines provided at 1-5 molar equivalents. The structure of McbA revealed the structural determinants of aryl acid substrate tolerance and differences in conformation associated with the two half reactions catalyzed. The catalytic performance of McbA, coupled with the structure, suggest that this and other ABS enzymes may be engineered for applications in the sustainable synthesis of pharmaceutically relevant (chiral) amides.
Collapse
Affiliation(s)
- Mark Petchey
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Anibal Cuetos
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | - Amina Frese
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Peter W Sutton
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.,Current address: Department of Chemical, Biological and Environmental Engineering, Bioprocess Engineering and Applied Biocatalysis Group, Engineering School, Campus de la UAB, 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Sarah Lovelock
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.,Current address: School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Richard C Lloyd
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | - Gideon Grogan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
18
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
19
|
A Comparative Review on the Catalytic Mechanism of Nonheme Iron Hydroxylases and Halogenases. Catalysts 2018. [DOI: 10.3390/catal8080314] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Enzymatic halogenation and haloperoxidation are unusual processes in biology; however, a range of halogenases and haloperoxidases exist that are able to transfer an aliphatic or aromatic C–H bond into C–Cl/C–Br. Haloperoxidases utilize hydrogen peroxide, and in a reaction with halides (Cl−/Br−), they react to form hypohalides (OCl−/OBr−) that subsequently react with substrate by halide transfer. There are three types of haloperoxidases, namely the iron-heme, nonheme vanadium, and flavin-dependent haloperoxidases that are reviewed here. In addition, there are the nonheme iron halogenases that show structural and functional similarity to the nonheme iron hydroxylases and form an iron(IV)-oxo active species from a reaction of molecular oxygen with α-ketoglutarate on an iron(II) center. They subsequently transfer a halide (Cl−/Br−) to an aliphatic C–H bond. We review the mechanism and function of nonheme iron halogenases and hydroxylases and show recent computational modelling studies of our group on the hectochlorin biosynthesis enzyme and prolyl-4-hydroxylase as examples of nonheme iron halogenases and hydroxylases. These studies have established the catalytic mechanism of these enzymes and show the importance of substrate and oxidant positioning on the stereo-, chemo- and regioselectivity of the reaction that takes place.
Collapse
|
20
|
Gkotsi DS, Dhaliwal J, McLachlan MMW, Mulholand KR, Goss RJM. Halogenases: powerful tools for biocatalysis (mechanisms applications and scope). Curr Opin Chem Biol 2018; 43:119-126. [DOI: 10.1016/j.cbpa.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/04/2018] [Indexed: 10/24/2022]
|
21
|
Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Appl Microbiol Biotechnol 2018; 102:2063-2073. [PMID: 29392389 PMCID: PMC5814477 DOI: 10.1007/s00253-018-8787-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 11/23/2022]
Abstract
Antibiotic resistance is a growing threat worldwide, causing serious problems in the treatment of microbial infections. The discovery and development of new drugs is urgently needed to overcome this problem which has greatly undermined the clinical effectiveness of conventional antibiotics. An intricate cell-cell communication system termed quorum sensing (QS) and the coordinated multicellular behaviour of biofilm formation have both been identified as promising targets for the treatment and clinical management of microbial infections. QS systems allow bacteria to adapt rapidly to harsh conditions, and are known to promote the formation of antibiotic tolerant biofilm communities. It is well known that biofilm is a recalcitrant mode of growth and it also increases bacterial resistance to conventional antibiotics. The pharmacological properties of coumarins have been well described, and these have included several that possess antimicrobial properties. More recently, reports have highlighted the potential role of coumarins as alternative therapeutic strategies based on their ability to block the QS signalling systems and to inhibit the formation of biofilms in clinically relevant pathogens. In addition to human infections, coumarins have also been found to be effective in controlling plant pathogens, infections in aquaculture, food spoilage and in reducing biofouling caused by eukaryotic organisms. Thus, the coumarin class of small molecule natural product are emerging as a promising strategy to combat bacterial infections in the new era of antimicrobial resistance.
Collapse
Affiliation(s)
- F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland.,BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - José A Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - María L Parages
- Departamento de Ecología, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - Fergal O Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland. .,Human Microbiome Programme, School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, Australia.
| |
Collapse
|
22
|
Sharma SV, Tong X, Pubill-Ulldemolins C, Cartmell C, Bogosyan EJA, Rackham EJ, Marelli E, Hamed RB, Goss RJM. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo. Nat Commun 2017; 8:229. [PMID: 28794415 PMCID: PMC5550429 DOI: 10.1038/s41467-017-00194-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/07/2017] [Indexed: 01/21/2023] Open
Abstract
Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C–Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures. Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.
Collapse
Affiliation(s)
- Sunil V Sharma
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Xiaoxue Tong
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Cristina Pubill-Ulldemolins
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Christopher Cartmell
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Emma J A Bogosyan
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,Analytical Development, GSK, Cobden Street, Montrose, Angus, DD10 8EA, UK
| | - Emma J Rackham
- School of Chemistry, University of East, Norwich, NR4 7TJ, UK.,School of Medicine, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich, NR4 7UQ, UK
| | - Enrico Marelli
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Refaat B Hamed
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Rebecca J M Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. .,BSRC, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|
23
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
24
|
Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, Walker JK, Rybenkov VV, Baudry J, Smith JC, Zgurskaya HI. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump. ACS Infect Dis 2017; 3:89-98. [PMID: 27768847 DOI: 10.1021/acsinfecdis.6b00167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for the development of effective EPIs, especially in light of constantly emerging resistance. Here, we describe EPIs that interact with periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump, change its structure in vivo, inhibit efflux of fluorescent probes, and potentiate the activities of antibiotics in Escherichia coli and other Gram-negative bacteria. Our findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.
Collapse
Affiliation(s)
- Narges Abdali
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerry M. Parks
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Keith M. Haynes
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Julie L. Chaney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Adam T. Green
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - John K. Walker
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerome Baudry
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy C. Smith
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
25
|
Krishnamurthy M, Moore RT, Rajamani S, Panchal RG. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol 2016; 16:258. [PMID: 27814687 PMCID: PMC5097395 DOI: 10.1186/s12866-016-0876-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. RESEARCH The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. CONCLUSIONS The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Richard T. Moore
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Sathish Rajamani
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Rekha G. Panchal
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| |
Collapse
|
26
|
Liu YF, Zhong JJ, Lin L, Liu JJ, Wang YG, He WQ, Yang ZY. New C-19-modified geldanamycin derivatives: synthesis, antitumor activities, and physical properties study. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:752-764. [PMID: 26988280 DOI: 10.1080/10286020.2016.1160896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Thiazinogeldanamycin (2) was identified from Streptomyces hygroscopicus 17997 at the late stage of the fermentation. The pH was firstly proposed as an important factor in the biosynthesis of it. It was verified that 2 was produced by direct chemical reactions between geldanamycin (1, GDM) and cysteine or aminoethanethiol hydrochloride at pH > 7 in vitro. The proposed synthesis pathway for compound 2 was also discussed. Eleven new C-19-modified GDM derivatives, including five stable hydroquinone form derivatives, were synthesized, most of which exhibited desirable properties such as lower cytotoxicity, increased water solubility, and potent antitumor activity. Especially, compounds 5 and 8 showed antitumor activities against HepG2 cell with IC50 values of 2.97-6.61 μM, lower cytotoxicity and at least 15-fold higher water solubility compared with 1 in pH 7.0 phosphate buffer.
Collapse
Affiliation(s)
- Yu-Feng Liu
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
- b Department of Pharmacy , Jining Medical University , Jining 272067 , China
| | - Jing-Jing Zhong
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ling Lin
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Juan-Juan Liu
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Yi-Guang Wang
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Wei-Qing He
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Zhao-Yong Yang
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
27
|
Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair. Proc Natl Acad Sci U S A 2016; 113:3797-802. [PMID: 27001835 DOI: 10.1073/pnas.1519695113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes.
Collapse
|
28
|
Wolański M, Łebkowski T, Kois-Ostrowska A, Zettler J, Apel AK, Jakimowicz D, Zakrzewska-Czerwińska J. Two transcription factors, CabA and CabR, are independently involved in multilevel regulation of the biosynthetic gene cluster encoding the novel aminocoumarin, cacibiocin. Appl Microbiol Biotechnol 2015; 100:3147-64. [PMID: 26637421 DOI: 10.1007/s00253-015-7196-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/30/2022]
Abstract
Aminocoumarins are potent antibiotics belonging to a relatively small group of secondary metabolites produced by actinomycetes. Genome mining of Catenulispora acidiphila has recently led to the discovery of a gene cluster responsible for biosynthesis of novel aminocoumarins, cacibiocins. However, regulation of the expression of this novel gene cluster has not yet been analyzed. In this study, we identify transcriptional regulators of the cacibiocin gene cluster. Using a heterologous expression system, we show that the CabA and CabR proteins encoded by cabA and cabR genes in the cacibiocin gene cluster control the expression of genes involved in the biosynthesis, modification, regulation, and potentially, efflux/resistance of cacibiocins. CabA positively regulates the expression of cabH (the first gene in the cabHIYJKL operon) and cabhal genes encoding key enzymes responsible for the biosynthesis and halogenation of the aminocoumarin moiety, respectively. We provide evidence that CabA is a direct inducer of cacibiocin production, whereas the second transcriptional factor, CabR, is involved in the negative regulation of its own gene and cabT-the latter of which encodes a putative cacibiocin transporter. We also demonstrate that CabR activity is negatively regulated in vitro by aminocoumarin compounds, suggesting the existence of analogous regulation in vivo. Finally, we propose a model of multilevel regulation of gene transcription in the cacibiocin gene cluster by CabA and CabR.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.
| | - Tomasz Łebkowski
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| | | | - Judith Zettler
- Pharmazeutische Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Alexander K Apel
- Pharmazeutische Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site, Tübingen, Germany
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14A, 50-383, Wrocław, Poland.,Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114, Wrocław, Poland
| |
Collapse
|
29
|
Investigation of halogenation during the biosynthesis of ramoplanin in Actinoplanes sp. ATCC33076. Appl Microbiol Biotechnol 2015; 100:289-98. [DOI: 10.1007/s00253-015-7014-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/17/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
|
30
|
Pang AH, Garneau-Tsodikova S, Tsodikov OV. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. J Struct Biol 2015; 192:349-357. [PMID: 26416533 DOI: 10.1016/j.jsb.2015.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Pyoluteorin is an antifungal agent composed of a 4,5-dichlorinated pyrrole group linked to a resorcinol moiety. The pyoluteorin biosynthetic gene cluster in Pseudomonas fluorescens Pf-5 encodes the halogenase PltA, which has been previously demonstrated to perform both chlorinations in vitro. PltA selectively accepts as a substrate a pyrrole moiety covalently tethered to a nonribosomal peptide thiolation domain PltL (pyrrolyl-S-PltL) for FAD-dependent di-chlorination, yielding 4,5-dichloropyrrolyl-S-PltL. We report a 2.75 Å-resolution crystal structure of PltA in complex with FAD and chloride. PltA is a dimeric enzyme, containing a flavin-binding fold conserved in flavin-dependent halogenases and monooxygenases, and an additional unique helical region at the C-terminus. This C-terminal region blocks a putative substrate-binding cleft, suggesting that a conformational change involving repositioning of this region is necessary to allow binding of the pyrrolyl-S-PltL substrate for its dichlorination by PltA.
Collapse
Affiliation(s)
- Allan H Pang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536-0596, USA.
| |
Collapse
|
31
|
Enzymatic Halogenases and Haloperoxidases: Computational Studies on Mechanism and Function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 100:113-51. [PMID: 26415843 DOI: 10.1016/bs.apcsb.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the fact that halogenated compounds are rare in biology, a number of organisms have developed processes to utilize halogens and in recent years, a string of enzymes have been identified that selectively insert halogen atoms into, for instance, a CH aliphatic bond. Thus, a number of natural products, including antibiotics, contain halogenated functional groups. This unusual process has great relevance to the chemical industry for stereoselective and regiospecific synthesis of haloalkanes. Currently, however, industry utilizes few applications of biological haloperoxidases and halogenases, but efforts are being worked on to understand their catalytic mechanism, so that their catalytic function can be upscaled. In this review, we summarize experimental and computational studies on the catalytic mechanism of a range of haloperoxidases and halogenases with structurally very different catalytic features and cofactors. This chapter gives an overview of heme-dependent haloperoxidases, nonheme vanadium-dependent haloperoxidases, and flavin adenine dinucleotide-dependent haloperoxidases. In addition, we discuss the S-adenosyl-l-methionine fluoridase and nonheme iron/α-ketoglutarate-dependent halogenases. In particular, computational efforts have been applied extensively for several of these haloperoxidases and halogenases and have given insight into the essential structural features that enable these enzymes to perform the unusual halogen atom transfer to substrates.
Collapse
|
32
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|
33
|
|
34
|
|
35
|
Goss RJM, Shankar S, Fayad AA. The generation of "unnatural" products: synthetic biology meets synthetic chemistry. Nat Prod Rep 2012; 29:870-89. [PMID: 22744619 DOI: 10.1039/c2np00001f] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural product analogue generation is important, providing tools for chemical biology, enabling structure activity relationship determination and insight into the way in which natural products interact with their target biomolecules. The generation of analogues is also often necessary in order to improve bioavailability and to fine tune compounds' activity. This review provides an overview of the catalogue of approaches available for accessing series of analogues. Over the last few years there have been major advances in genome sequencing and the development of tools for biosynthetic pathway engineering; it is therefore becoming increasingly easy to combine molecular biology and synthetic organic chemistry in order to enable expeditious access to series of natural products. This review outlines the various ways of combining biology and chemistry that have been applied to analogue generation, drawing upon a series of examples to illustrate each approach.
Collapse
Affiliation(s)
- Rebecca J M Goss
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, UKNR4 7TJ
| | | | | |
Collapse
|
36
|
An artificial pathway to 3,4-dihydroxybenzoic acid allows generation of new aminocoumarin antibiotic recognized by catechol transporters of E. coli. ACTA ACUST UNITED AC 2011; 18:304-13. [PMID: 21439475 DOI: 10.1016/j.chembiol.2010.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/22/2022]
Abstract
An artificial operon was synthesized, consisting of the genes for chorismate pyruvate-lyase of E. coli and for 4-hydroxybenzoate 3-hydroxylase of Corynebacterium cyclohexanicum. This operon, directing the biosynthesis of 3,4-dihdroxybenzoate, was expressed in the heterologous expression host Streptomyces coelicolor M512, together with a modified biosynthetic gene cluster for the aminocoumarin antibiotic clorobiocin. The resulting strain produced a clorobiocin derivative containing a 3,4-dihdroxybenzoyl moiety. Its structure was confirmed by MS and NMR analysis, and it was found to be a potent inhibitor of the gyrases from Escherichia coli and Staphylococcus aureus. Bioassays against different E. coli mutants suggested that this compound is actively imported by catechol siderophore transporters in the cell envelope. This study provides an example of the structure of a natural product that can be rationally modified by synthetic biology.
Collapse
|
37
|
Alt S, Mitchenall LA, Maxwell A, Heide L. Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. J Antimicrob Chemother 2011; 66:2061-9. [DOI: 10.1093/jac/dkr247] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Deb Roy A, Grüschow S, Cairns N, Goss RJM. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J Am Chem Soc 2010; 132:12243-5. [PMID: 20712319 DOI: 10.1021/ja1060406] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction of prnA, the halogenase gene from pyrrolnitrin biosynthesis, into Streptomyces coeruleorubidus resulted in efficient in situ chlorination of the uridyl peptide antibotic pacidamycin. The installed chlorine provided a selectably functionalizable handle enabling synthetic modification of the natural product using mild cross-coupling conditions in crude aqueous extracts of the culture broth.
Collapse
Affiliation(s)
- Abhijeet Deb Roy
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
39
|
Binz TM, Maffioli SI, Sosio M, Donadio S, Müller R. Insights into an unusual nonribosomal peptide synthetase biosynthesis: identification and characterization of the GE81112 biosynthetic gene cluster. J Biol Chem 2010; 285:32710-32719. [PMID: 20710026 DOI: 10.1074/jbc.m110.146803] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GE81112 tetrapeptides (1-3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.
Collapse
Affiliation(s)
- Tina M Binz
- From the Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), and Department of Pharmaceutical Biotechnology, Saarland University, Campus C2 3, Saarbrücken 66123, Germany
| | | | | | | | - Rolf Müller
- From the Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), and Department of Pharmaceutical Biotechnology, Saarland University, Campus C2 3, Saarbrücken 66123, Germany.
| |
Collapse
|
40
|
Flinspach K, Westrich L, Kaysser L, Siebenberg S, Gomez-Escribano JP, Bibb M, Gust B, Heide L. Heterologous expression of the biosynthetic gene clusters of coumermycin A1, clorobiocin and caprazamycins in genetically modified Streptomyces coelicolor strains. Biopolymers 2010; 93:823-32. [DOI: 10.1002/bip.21493] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Yin X, Chen Y, Zhang L, Wang Y, Zabriskie TM. Enduracidin analogues with altered halogenation patterns produced by genetically engineered strains of Streptomyces fungicidicus. JOURNAL OF NATURAL PRODUCTS 2010; 73:583-589. [PMID: 20353165 PMCID: PMC2862637 DOI: 10.1021/np900710q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Enduracidins (1, 2) and ramoplanin (3) are structurally and functionally closely related lipodepsipeptide antibiotics. They are active against multi-drug-resistant Gram-positive pathogens, including MRSA. Each peptide contains one chlorinated non-proteinogenic amino acid residue, Cl(2)-Hpg or Cl-Hpg. To investigate the timing of halogenation and the importance of chlorination on bioactivity and bioavailability of enduracidin, and to probe the substrate specificity and portability of the ramoplanin halogenase, we constructed the mutant strain SfDelta30 in which the enduracidin halogenase gene orf30 had been deleted and complemented it with the ramoplanin counterpart orf20. We also expressed orf20 in the enduracidin wild-type producer. Metabolite analysis revealed SfDelta30 produced the novel analogues dideschloroenduracidins A (4) and B (5), while the recombinant strains SfDelta30R20 and SfR20 produced monodeschloroenduracidins A (6) and B (7) and a trichlorinated enduracidin (8), respectively. In addition, orf30 self-complementation yielded the strain SfDelta30E30, which is capable of producing six peptides including 6 and 7. MS/MS analysis positioned the single chlorine atom in 6 at Hpg(13) and localized the third chlorine atom in 8 to Hpg(11). Biological evaluation of these enduracidin analogues indicated that all retained activity against Staphylococcus aureus. Our findings lay the foundation for further utilization of enduracidin and ramoplanin halogenases in combinatorial biosynthesis.
Collapse
Affiliation(s)
- Xihou Yin
- To whom correspondence should be addressed. Tel: (541) 737-9842 or (541) 737-5774. Fax: (541) 737-3999. or
| | | | | | | | - T. Mark Zabriskie
- To whom correspondence should be addressed. Tel: (541) 737-9842 or (541) 737-5774. Fax: (541) 737-3999. or
| |
Collapse
|
42
|
Formation and attachment of the deoxysugar moiety and assembly of the gene cluster for caprazamycin biosynthesis. Appl Environ Microbiol 2010; 76:4008-18. [PMID: 20418426 DOI: 10.1128/aem.02740-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caprazamycins are antimycobacterials produced by Streptomyces sp. MK730-62F2. Previously, cosmid cpzLK09 was shown to direct the biosynthesis of caprazamycin aglycones, but not of intact caprazamycins. Sequence analysis of cpzLK09 identified 23 genes involved in the formation of the caprazamycin aglycones and the transfer and methylation of the sugar moiety, together with genes for resistance, transport, and regulation. In this study, coexpression of cpzLK09 in Streptomyces coelicolor M512 with pRHAM, containing all the required genes for dTDP-l-rhamnose biosynthesis, led to the production of intact caprazamycins. In vitro studies showed that Cpz31 is responsible for the attachment of the l-rhamnose to the caprazamycin aglycones, generating a rare acylated deoxyhexose. An l-rhamnose gene cluster was identified elsewhere on the Streptomyces sp. MK730-62F2 genome, and its involvement in caprazamycin formation was demonstrated by insertional inactivation of cpzDIII. The l-rhamnose subcluster was assembled with cpzLK09 using Red/ET-mediated recombination. Heterologous expression of the resulting cosmid, cpzEW07, led to the production of caprazamycins, demonstrating that both sets of genes are required for caprazamycin biosynthesis. Knockouts of cpzDI and cpzDV in the l-rhamnose subcluster confirmed that four genes, cpzDII, cpzDIII, cpzDIV, and cpzDVI, are sufficient for the biosynthesis of the deoxysugar moiety. The presented recombineering strategy may provide a useful tool for the assembly of biosynthetic building blocks for heterologous production of microbial compounds.
Collapse
|
43
|
Xiang WS, Zhang J, Wang JD, Jiang L, Jiang B, Xiang ZD, Wang XJ. Isolation and identification of chlorinated genistein from Actinoplanes sp. HBDN08 with antioxidant and antitumor activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:1933-1938. [PMID: 20028010 DOI: 10.1021/jf9035194] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A strain Actinoplanes sp. HBDN08 was screened by PCR-guided method using primers derived from conserved regions of halogenase genes. A new chlorinated isoflavone, 3',8-dichlorogenistein (1), along with 8-chlorogenistein (2) were isolated from the fermentation broth of Actinoplanes sp. HBDN08. Their structures were elucidated on the basis of extensive 1D and 2D NMR as well as HRESI-MS, ESI-MS, UV, and IR spectroscopic analyses. The origin of the two compounds was also investigated by high-performance liquid chromatography (HPLC) analysis. The results demonstrated that they were not biosynthesized but derived from the biotransformation of genistein by Actinoplanes sp. HBDN08. The antioxidant activities of the isolated compounds 1 and 2 were evaluated by using the lipid peroxidation assay. Their antitumor activities were calculated according to the inhibitory rate of cell proliferation against the human breast cancer cell line MDA-MB-231. The results indicated that compounds 1 (IC(50) = 5.2 microM) and 2 (IC(50) = 7.5 microM) showed stronger antioxidant activities than genistein (IC(50) = 13.6 microM). In comparison with the antitumor activities of genistein, those of compounds 1 and 2 increased 7.7- and 2.6-fold, respectively. These results suggest that the PCR-guided screening strategy is a rapid method for obtaining halometabolite-producing strains. Moreover, these results reveal that chlorination has significant effects on the bioactivities of genistein. This could be important information for studying the structure-activity relationships of genistein.
Collapse
Affiliation(s)
- Wen-Sheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
DNA topoisomerases are enzymes that control the topological state of DNA in all cells; they have central roles in DNA replication and transcription. They are classified into two types, I and II, depending on whether they catalyze reactions involving the breakage of one or both strands of DNA. Structural and mechanistic distinctions have led to further classifications: IA, IB, IC, IIA, and IIB. The essence of the topoisomerase reaction is the ability of the enzymes to stabilize transient breaks in DNA, via the formation of tyrosyl-phosphate covalent intermediates. The essential nature of topoisomerases and their ability to stabilize DNA breaks has led to them being key targets for antibacterial and anticancer agents. This chapter reviews the basic features of topoisomerases focussing mainly on the prokaryotic enzymes. We highlight recent structural advances that have given new insight into topoisomerase mechanisms and into the molecular basis of the action of topoisomerase-specific drugs.
Collapse
|
45
|
Heide L. Genetic engineering of antibiotic biosynthesis for the generation of new aminocoumarins. Biotechnol Adv 2009; 27:1006-1014. [PMID: 19463934 DOI: 10.1016/j.biotechadv.2009.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A(1) are inhibitors of gyrase and highly effective antibacterial agents. Their biosynthetic gene clusters have been cloned from the respective Streptomyces producer strains, and the function of nearly all genes contained therein has been elucidated by genetic and biochemical methods. Efficient methods have been developed for the genetic manipulation and the heterologous expression of the clusters, and more than 100 new derivatives of these antibiotics have been generated by metabolic engineering, mutasynthesis and chemoenzymatic synthesis, providing a model for the power of genetic and genomic methods for the generation of new bioactive compounds.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmaceutical Biology, Pharmaceutical Institute, Tübingen University, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
46
|
Wagner C, El Omari M, König GM. Biohalogenation: nature's way to synthesize halogenated metabolites. JOURNAL OF NATURAL PRODUCTS 2009; 72:540-553. [PMID: 19245259 DOI: 10.1021/np800651m] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Halogenated natural products are widely distributed in nature, some of them showing potent biological activities. Incorporation of halogen atoms in drug leads is a common strategy to modify molecules in order to vary their bioactivities and specificities. Chemical halogenation, however, often requires harsh reaction conditions and results in unwanted byproduct formation. It is thus of great interest to investigate the biosynthesis of halogenated natural products and the biotechnological potential of halogenating enzymes. This review aims to give a comprehensive overview on the current knowledge concerning biological halogenations.
Collapse
Affiliation(s)
- Claudia Wagner
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | | | | |
Collapse
|
47
|
|
48
|
Heide L. Aminocoumarins mutasynthesis, chemoenzymatic synthesis, and metabolic engineering. Methods Enzymol 2009; 459:437-55. [PMID: 19362650 DOI: 10.1016/s0076-6879(09)04618-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A(1) are formed by different Streptomyces strains and are potent inhibitors of bacterial gyrase. Their biosynthetic gene clusters have been analyzed in detail by genetic and biochemical investigations. Heterologous expression of these gene clusters by site-specific integration into the genome of the fully sequenced host Streptomyces coelicolor A3(2) readily results in an accumulation of the antibiotics in yields similar to the wildtype strains. In recent years, the aminocoumarins have developed into a model system for the generation of new antibiotics by genetic methods. Prior to heterologous expression in S. coelicolor, cosmids containing the complete biosynthetic clusters can be manipulated in Escherichia coli by lambda RED-mediated recombination, creating single or multiple gene replacements or gene deletions. Thereby, mutant strains are generated which are blocked in the synthesis of certain intermediates or in specific tailoring reactions. For instance, mutasynthetic experiments can subsequently be carried out to generate aminocoumarin antibiotics that contain modified acyl moieties attached to the aminocoumarin core, and chemoenzymatic synthesis can be employed for the acylation of the deoxysugar moiety of structural analogues of the aminocoumarin antibiotics. Metabolic engineering-the combination of gene deletions and foreign gene expression via replicative expression vectors-can be used to generate further structural variants of these antibiotics. These methods can be combined, allowing the generation of a wide variety of new compounds. This chapter may provide general pointers for the use of genetic methods in the generation of new antibiotics.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmazeutische Biologie, Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Heide L, Westrich L, Anderle C, Gust B, Kammerer B, Piel J. Use of a Halogenase of Hormaomycin Biosynthesis for Formation of New Clorobiocin Analogues with 5-Chloropyrrole Moieties. Chembiochem 2008; 9:1992-9. [DOI: 10.1002/cbic.200800186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Cadel-Six S, Dauga C, Castets AM, Rippka R, Bouchier C, Tandeau de Marsac N, Welker M. Halogenase genes in nonribosomal peptide synthetase gene clusters of Microcystis (cyanobacteria): sporadic distribution and evolution. Mol Biol Evol 2008; 25:2031-41. [PMID: 18614525 PMCID: PMC2515870 DOI: 10.1093/molbev/msn150] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteria of the genus Microcystis are known to produce secondary metabolites of large structural diversity by nonribosomal peptide synthetase (NRPS) pathways. For a number of such compounds, halogenated congeners have been reported along with nonhalogenated ones. In the present study, chlorinated cyanopeptolin- and/or aeruginosin-type peptides were detected by mass spectrometry in 17 out of 28 axenic strains of Microcystis. In these strains, a halogenase gene was identified between 2 genes coding for NRPS modules in respective gene clusters, whereas it was consistently absent when the strains produced only nonchlorinated corresponding congeners. Nucleotide sequences were obtained for 12 complete halogenase genes and 14 intermodule regions of gene clusters lacking a halogenase gene or containing only fragments of it. When a halogenase gene was found absent, a specific, identical excision pattern was observed for both synthetase gene clusters in most strains. A phylogenetic analysis including other bacterial halogenases showed that the NRPS-related halogenases of Microcystis form a monophyletic group divided into 2 subgroups, corresponding to either the cyanopeptolin or the aeruginosin peptide synthetases. The distribution of these peptide synthetase gene clusters, among the tested Microcystis strains, was found in relative agreement with their phylogeny reconstructed from 16S-23S rDNA intergenic spacer sequences, whereas the distribution of the associated halogenase genes appears to be sporadic. The presented data suggest that in cyanobacteria these prevalent halogenase genes originated from an ancient horizontal gene transfer followed by duplication in the cyanobacterial lineage. We propose an evolutionary scenario implying repeated gene losses to explain the distribution of halogenase genes in 2 NRPS gene clusters that subsequently defines the seemingly erratic production of halogenated and nonhalogenated aeruginosins and cyanopeptolins among Microcystis strains.
Collapse
Affiliation(s)
- Sabrina Cadel-Six
- Institut Pasteur, Unité des Cyanobactéries, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2172, Paris, France
| | | | | | | | | | | | | |
Collapse
|