1
|
Kuwahara K, Yajima S, Yamano Y, Nagatsugi F, Onizuka K. Formation of Direction-Controllable Pseudorotaxane and Catenane Using Chemically Cyclized Oligodeoxynucleotides and Their Noncovalent RNA Labeling. Bioconjug Chem 2023. [PMID: 36930464 DOI: 10.1021/acs.bioconjchem.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The formation of interlocked structures, such as rotaxane and catenane, enables noncovalent conjugations. We previously confirmed that the chemically cyclized pseudorotaxane-forming oligodeoxynucleotides (prfODNs) with double-tailed parts formed a pseudorotaxane structure with the target DNA and RNA via the slipping process. Here, we report the one-step synthesis of cyclized prfODNs from alkyne-modified ODNs, after which we investigated the properties and mechanism of the slipping process and performed noncovalent RNA labeling with prfODNs. Additionally, the catenane structure was formed by the combination of pseudorotaxane formation with a 5'-end-phosphorylated RNA and enzymatic ligation. The newly synthesized prfODN represents a new tool for achieving the noncovalent conjugation of various functional moieties to RNAs.
Collapse
Affiliation(s)
- Kazuki Kuwahara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Sayaka Yajima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuuhei Yamano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
2
|
Eyberg J, Ringenberg M, Richert C. Caging of a Strongly Pairing Fluorescent Thymidine Analog with Soft Nucleophiles. Chemistry 2023; 29:e202203289. [PMID: 36395348 PMCID: PMC10107337 DOI: 10.1002/chem.202203289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Controlling the pairing strength of nucleobases in DNA through reactions with compounds found inside the cell is a formidable challenge. Here we report how a thiazolyl substituent turns a strongly pairing ethynylpyridone C-nucleoside into a reactive residue in oligonucleotides. The thiazolyl-bearing pyridone reacts with soft nucleophiles, such as glutathione, but not with hard nucleophiles like hydroxide or carbonate. The addition products pair much more weakly with adenine in a complementary strand than the starting material, and also change their fluorescence. This makes oligonucleotides containing the new deoxynucleoside interesting for controlled release. Due to its reactivity toward N, P, S, and Se-nucleophiles, and the visual signal accompanying chemical conversion, the fluorescent nucleotide reported here may also have applications in chemical biology, sensing and diagnostics.
Collapse
Affiliation(s)
- Juri Eyberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Mark Ringenberg
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
3
|
Onizuka K, Yamano Y, Abdelhady AM, Nagatsugi F. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Org Biomol Chem 2022; 20:4699-4708. [PMID: 35622064 DOI: 10.1039/d2ob00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interstrand crosslinking and threaded structures of nucleic acids have high potential in oligonucleotide therapeutics, chemical biology, and nanotechnology. For example, properly designed crosslinking structures provide high activity and nuclease resistance for anti-miRNAs. The noncovalent labeling and modification by the threaded structures are useful as new chemical biology tools. Photoreversible crosslinking creates smart materials, such as reversible photoresponsive gels and DNA origami objects. This review introduces the creation of interstrand crosslinking and threaded structures, such as catenanes and rotaxanes, based on hybridization-specific chemical reactions and their functions and perspectives.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuuhei Yamano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Sui Z, An R, Komiyama M, Liang X. Stepwise Strategy for One-Pot Synthesis of Single-Stranded DNA Rings from Multiple Short Fragments. Chembiochem 2020; 22:1005-1011. [PMID: 33124728 DOI: 10.1002/cbic.202000738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Cyclic rings of single-stranded (ss) DNA have various unique properties, but wider applications have been hampered by their poor availability. This paper reports a convenient one-pot method in which these rings are efficiently synthesized by using T4 DNA ligase through convergent cyclization of easily available short DNA fragments. The key to the present method is to separate all the splint oligonucleotides into several sets, and add each set sequentially at an appropriate interval to the solutions containing all the short DNA fragments. Compared with simple one-pot strategies involving simultaneous addition of all the splints at the beginning of the reaction, both the selectivity and the yields of target ssDNA rings are greatly improved. This convergent method is especially useful for preparing large-sized rings that are otherwise hard to obtain. By starting from six short DNA fragments (71-82 nt), prepared by a DNA synthesizer, a ssDNA ring of 452-nt size was synthesized in 35 mol % yield and in high selectivity. Satisfactorily pure DNA rings were obtainable simply by treating the crude products with exonuclease.
Collapse
Affiliation(s)
- Zhe Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, P. R. China
| |
Collapse
|
5
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Acevedo-Jake A, Ball AT, Galli M, Kukwikila M, Denis M, Singleton DG, Tavassoli A, Goldup SM. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. J Am Chem Soc 2020; 142:5985-5990. [PMID: 32155338 PMCID: PMC8016193 DOI: 10.1021/jacs.0c01670] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/22/2022]
Abstract
We present a simple strategy for the synthesis of main chain oligonucleotide rotaxanes with precise control over the position of the macrocycle. The novel DNA-based rotaxanes were analyzed to assess the effect of the mechanical bond on their properties.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Andrew T. Ball
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Marzia Galli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mikiembo Kukwikila
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mathieu Denis
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Daniel G. Singleton
- ATDBio
Ltd, School of Chemistry, University of
Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Ali Tavassoli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Stephen M. Goldup
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
7
|
Onizuka K, Miyashita T, Chikuni T, Ozawa M, Abe H, Nagatsugi F. Structural optimization of pseudorotaxane-forming oligonucleotides for efficient and stable complex formation. Nucleic Acids Res 2019; 46:8710-8719. [PMID: 30260454 PMCID: PMC6158610 DOI: 10.1093/nar/gky744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/06/2018] [Indexed: 01/15/2023] Open
Abstract
Interlocked structures, such as rotaxane and catenane, combine both static and dynamic properties. To expand their unique properties into the chemical biology field, a spontaneous formation method of the interlocked structures with the target would be ideal. We have previously developed a pseudorotaxane-forming oligo DNA (prfODN) to spontaneously form topological DNA/RNA architectures. In this study, we report the structural optimization of prfODNs for the efficient and stable complex formation. The optimized prfODNs efficiently formed pseudorotaxane structures with a DNA or RNA target, and the yield for the RNA target reached 85% in 5 min. In addition, the optimized prfODNs could form the pseudorotaxane structure with a smaller ring size and the structure significantly increased the kinetic stability. Furthermore, the catenane structure was successfully formed with the optimized prfODNs to provide the conclusive evidence for the formation of the threaded structure. This information will be valuable for developing new chemical methods using functional nucleic acids for antisense oligo nucleotides and DNA/RNA nanotechnology.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takuya Miyashita
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomoko Chikuni
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mamiko Ozawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
8
|
Valero J, Lohmann F, Famulok M. Interlocked DNA topologies for nanotechnology. Curr Opin Biotechnol 2017; 48:159-167. [PMID: 28505598 DOI: 10.1016/j.copbio.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 11/19/2022]
Abstract
Interlocked molecular architectures are well known in supramolecular chemistry and are widely used for various applications like sensors, molecular machines and logic gates. The use of DNA for constructing these interlocked structures has increased significantly within the current decade. Because of Watson-Crick base pairing rules, DNA is an excellent material for the self-assembly of well-defined interlocked nanoarchitectures. These DNA nanostructures exhibit sufficient stability, good solubility in aqueous media, biocompatibility, and can be easily combined with other biomolecules in bio-hybrid nano-assemblies. Therefore, the study of novel DNA-based interlocked systems is of interest for nanotechnology, synthetic biology, supramolecular chemistry, biotechnology, and for sensing purposes. Here we summarize recent developments and applications of interlocked supramolecular architectures made of DNA. Examples illustrating that these systems can be precisely controlled by switching on and off the molecular motion of its mechanically trapped components are discussed. Introducing different triggers into such systems creates molecular assemblies capable of performing logic gate operations and/or catalytic activity control. Interlocked DNA-based nanostructures thus represent promising frameworks for building increasingly complex and dynamic nanomachines with highly controllable functionality.
Collapse
Affiliation(s)
- Julián Valero
- Life and Medical Sciences (LIMES) Institute, Chemical Biology and Medicinal Chemistry Unit, c/o Kekulé Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; Center of Advanced European Studies and Research (CASEAR), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Finn Lohmann
- Life and Medical Sciences (LIMES) Institute, Chemical Biology and Medicinal Chemistry Unit, c/o Kekulé Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Michael Famulok
- Life and Medical Sciences (LIMES) Institute, Chemical Biology and Medicinal Chemistry Unit, c/o Kekulé Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; Center of Advanced European Studies and Research (CASEAR), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
9
|
Kuhn H, Demidov VV, Frank-Kamenetskii MD. An earring for the double helix: assembly of topological links comprising duplex DNA and a circular oligodeoxynucleotide. J Biomol Struct Dyn 2016; 17 Suppl 1:221-5. [PMID: 22607428 DOI: 10.1080/07391102.2000.10506625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract Novel DNA nanostructures, locked pseudorotaxane and locked catenane were assembled through topological linkage of a double-stranded target to a circular oligodeoxyribonucleotide (cODN)(+). The formation of these supramolecular complexes occurs with remarkable sequence specificity and is accomplished via local opening of duplex DNA by a pair of homopyrimidine bis-PNAs. The obtained cODN label, resembling an earring, forms a true topological link with the linear or closed circular (cc) target DNA and occupies a fixed position along the double helix. The PNA directed assembly described here introduces PNA oligomers into the repertoire of DNA nanotechnological tools.
Collapse
Affiliation(s)
- H Kuhn
- a Center for Advanced Biotechnology, Department of Biomedical Engineering , Boston University , 36 Cummington St. , Boston , MA , 02215
| | | | | |
Collapse
|
10
|
Onizuka K, Nagatsugi F, Ito Y, Abe H. Automatic pseudorotaxane formation targeting on nucleic acids using a pair of reactive oligodeoxynucleotides. J Am Chem Soc 2014; 136:7201-4. [PMID: 24807826 DOI: 10.1021/ja5018283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report a novel method to form a pseudorotaxane architecture using only a pair of reactive oligodeoxyribonucleotides (ODNs), which we designed and synthesized, and then performed the pseudorotaxane formation reaction with both DNA and RNA oligonucleotides. The reaction proceeded smoothly without any extra reagents at 37 °C and pH 7.2, leading to the formation of a stable complex on a denaturing polyacrylamide gel. Interestingly, the pseudorotaxane was formed with the cyclized ODN reversibly by the slipping process. This new pseudorotaxane formation represents a promising method for developing new DNA nanotechnologies and antisense oligonucleotides.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Nano Medical Engineering Laboratory, RIKEN , 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
11
|
Single strand DNA catenane synthesis using the formation of G-quadruplex structure. Bioorg Med Chem 2012; 20:2030-4. [DOI: 10.1016/j.bmc.2012.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/21/2022]
|
12
|
de Almagro MC, Mencia N, Noé V, Ciudad CJ. Coding polypurine hairpins cause target-induced cell death in breast cancer cells. Hum Gene Ther 2011; 22:451-63. [PMID: 20942657 DOI: 10.1089/hum.2010.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polypurine reverse-Hoogsteen hairpins (PPRHs) are double-stranded DNA molecules formed by two polypurine stretches linked by a pentathymidine loop, with intramolecular reverse-Hoogsteen bonds that allow a hairpin structure. PPRHs bind to polypyrimidine targets by Watson-Crick bonds maintaining simultaneously a hairpin structure due to intramolecular Hoogsteen bonds. Previously, we described the ability of Template-PPRHs to decrease mRNA levels because these PPRHs target the template DNA strand interfering with the transcription process. Now, we designed Coding-PPRHs, a new type of PPRHs that directly target the pre-mRNA. The dihydrofolate reductase (dhfr) gene was selected as a target in breast cancer therapy. These PPRHs caused a high degree of cytotoxicity and a decrease in DHFR mRNA and protein levels, but by a different mechanism of action than Template-PPRHs. Coding-PPRHs interfere with the splicing process by competing with U2 auxiliary factor 65 for binding to the polypyrimidine target sequence, leading to a lower amount of mature mRNA. These new PPRHs showed high specificity as no off-target effects were found. The application of these molecules as therapeutic tools was tested in breast cancer cells resistant to methotrexate, obtaining a noticeable cytotoxicity even though the dhfr locus was amplified. Coding-PPRHs can be considered as new molecules to decrease gene expression at the mRNA level and an alternative to other antisense molecules.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Arslan P, Jyo A, Ihara T. Reversible circularization of an anthracene-modified DNA conjugate through bimolecular triplex formation and its analytical application. Org Biomol Chem 2010; 8:4843-8. [PMID: 20734012 DOI: 10.1039/c0ob00282h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared an oligodeoxyribonucleotide conjugate (5-3ant(2)18) carrying two anthracenes, each of which was tethered to both ends of the conjugate through hexamethylene linker chains. The conjugate has a mirror repeat of two heptamer sequences, such that it forms a bimolecular triplex with the single stranded target, forming a two-fold U-shaped conformation. The conformation of the conjugate in its triplex structure could be frozen instantaneously by circularization through photodimerization of the anthracenes. Compared with the duplex formation of linear probes with relevant sequences, bimolecular triplex formation of 5-3ant(2)18 shows a unique feature in its target recognition; it binds the target tightly, yet still retains high sequence selectivity. Circularization of 5-3ant(2)18 by UV photoirradiation was verified as the probe reaction for a DNA assay. The probe reaction could be performed in a few seconds over a wide range of temperatures, at least between 0 and 25 °C. In addition, the reaction could be regarded as a reversible method for the preparation of circular DNA that shows higher affinity for the target.
Collapse
Affiliation(s)
- Pelin Arslan
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | | | | |
Collapse
|
14
|
Ackermann D, Schmidt TL, Hannam JS, Purohit CS, Heckel A, Famulok M. A double-stranded DNA rotaxane. NATURE NANOTECHNOLOGY 2010; 5:436-442. [PMID: 20400967 DOI: 10.1038/nnano.2010.65] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/08/2010] [Indexed: 05/29/2023]
Abstract
Mechanically interlocked molecules such as rotaxanes and catenanes have potential as components of molecular machinery. Rotaxanes consist of a dumb-bell-shaped molecule encircled by a macrocycle that can move unhindered along the axle, trapped by bulky stoppers. Previously, rotaxanes have been made from a variety of molecules, but not from DNA. Here, we report the design, assembly and characterization of rotaxanes in which both the dumb-bell-shaped molecule and the macrocycle are made of double-stranded DNA, and in which the axle of the dumb-bell is threaded through the macrocycle by base pairing. The assembly involves the formation of pseudorotaxanes, in which the macrocycle and the axle are locked together by hybridization. Ligation of stopper modules to the axle leads to the characteristic dumb-bell topology. When an oligonucleotide is added to release the macrocycle from the axle, the pseudorotaxanes are either converted to mechanically stable rotaxanes, or they disassemble by means of a slippage mechanism to yield a dumb-bell and a free macrocycle. Our DNA rotaxanes allow the fields of mechanically interlocked molecules and DNA nanotechnology to be combined, thus opening new possibilities for research into molecular machines and synthetic biology.
Collapse
Affiliation(s)
- Damian Ackermann
- LIMES Institute, Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
15
|
de Almagro MC, Coma S, Noé V, Ciudad CJ. Polypurine hairpins directed against the template strand of DNA knock down the expression of mammalian genes. J Biol Chem 2009; 284:11579-89. [PMID: 19261618 DOI: 10.1074/jbc.m900981200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed whether polypurine hairpins (PPRHs) had the ability to knock down gene expression. These hairpins are formed by two antiparallel purine domains linked by a loop that allows the formation of Hoogsteen bonds between both domains and Watson-Crick bonds with the target polypyrimidine sequence, forming triplex structures. To set up the experimental conditions, the human dhfr gene was used as a model. The PPRHs were designed toward the template strand of DNA. The transfection of the human breast cancer cell line SKBR3 with these template hairpins against the dhfr gene produced higher than 90% of cell mortality. Template PPRHs produced a decrease in DHFR mRNA, protein, and its corresponding enzymatic activity. In addition, the activity of DHFR PPRHs was tested against breast cancer cells resistant to methotrexate, observing high cell mortality. Given the difficulty in finding long polypyrimidine stretches, we studied how to compensate for the presence of purine interruptions in the polypyrimidine target sequence. The stability of PPRH was measured, resulting in a surprisingly long half-life of about 5 days. Finally, to test the generality of usage, template PPRHs were employed against two important genes involved in cell proliferation, telomerase and survivin, producing 80 and 95% of cell death, respectively. Taken together our results show the ability of antiparallel purine hairpins to bind the template strand of double strand DNA and to decrease gene transcription. Thus, PPRHs can be considered as a new type of molecules to modulate gene expression.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
Liu Y, Kuzuya A, Sha R, Guillaume J, Wang R, Canary JW, Seeman NC. Coupling across a DNA helical turn yields a hybrid DNA/organic catenane doubly tailed with functional termini. J Am Chem Soc 2008; 130:10882-3. [PMID: 18661989 PMCID: PMC2712227 DOI: 10.1021/ja8041096] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the synthesis of a hybrid DNA/organic macrocycle that is prepared by formation of an amide linkage across one full turn of DNA. Formation of a catenane proved that the linkage crossed a turn rather than running along the phosphodiester backbone contour. The product, a doubly tailed catenane, contains 5'- and 3'-termini that can be functionalized further or used to incorporate the catenane structure into other DNA assemblies.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The construction of artificial triple helical structures with oligonucleotides containing non-nucleosidic phenanthrenes and pyrenes is described. The polyaromatic building blocks, which are used as connectors between the Hoogsteen strand and the Watson-Crick hairpin, lead to a significant stabilization of intramolecular triple helices. Description of the relative orientation of pyrene building blocks is rendered possible by the observation of exciton coupling in the circular dichroism spectra. In addition, the formation of heterodimeric triple helical constructs is explored. Again, the polyaromatic residues are found to have a positive effect on the stability of these structures. The results are important for the design and construction of nucleic-acid-based, triple helical architectures. Furthermore, they will help in the development of analogues of biologically important, naturally occurring triplex structures.
Collapse
Affiliation(s)
- Ivan Trkulja
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | |
Collapse
|
18
|
Escaja N, Gómez-Pinto I, Viladoms J, Rico M, Pedroso E, González C. Induced-fit recognition of DNA by small circular oligonucleotides. Chemistry 2007; 12:4035-42. [PMID: 16607659 DOI: 10.1002/chem.200600050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have investigated the molecular interaction between cyclic and linear oligonucleotides. We have found that short cyclic oligonucleotides can induce hairpinlike structures in linear DNA fragments. By using NMR and CD spectroscopy we have studied the interaction of the cyclic oligonucleotide d<pCCTTCGGT> with d<pCAGTCCCT>, as well as with its two linear analogs d(GTCCCTCA) and d(CTCAGTCC). Here we report the NMR structural study of these complexes. Recognition between these oligonucleotides occurs through formation of four intermolecular Watson-Crick base pairs. The three-dimensional structure is stabilized by two tetrads, formed by facing the minor-groove side of the Watson-Crick base pairs. Overall, the structure is similar to those observed previously in other quadruplexes formed by minor-groove alignment of Watson-Crick base pairs. However, in this case the complexes are heterodimeric and are formed by two different tetrads (G:C:A:T and G:C:G:C). These complexes represent a new model of DNA recognition by small cyclic oligonucleotides, increasing the number of potential applications of these interesting molecules.
Collapse
Affiliation(s)
- Núria Escaja
- Departament de Química Orgànica, Universitat de Barcelona, Martí I Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The synthesis and properties of triple-helical hybrids containing non-nucleosidic polyaromatic building blocks are described. Clamp-type oligonucleotides containing a non-nucleosidic pyrene linker form stable triple helices with a polypurine target strand containing a terminal pyrene or phenanthrene moiety. Stacking interactions between the unnatural building blocks enhance triplex stability and lead to strong excimer or exciplex formation, which is monitored by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Ivan Trkulja
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | |
Collapse
|
20
|
Trkulja I, Biner SM, Langenegger SM, Häner R. A Molecular Probe for the Detection of Homopurine Sequences. Chembiochem 2007; 8:25-7. [PMID: 17121403 DOI: 10.1002/cbic.200600378] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivan Trkulja
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
21
|
Abstract
We report on a sequence-specific double-stranded DNA labelling strategy in which a stem-loop triplex forming oligonucleotide (TFO) is able to encircle its DNA target. Ligation of this TFO to either a short hairpin oligonucleotide or a long double-stranded DNA fragment leads to the formation of a topological complex. This process requires the hybridization of both extremities of the TFO to each other on a few base pairs. The effects of different factors on the formation of these complexes have been investigated. Efficient complex formation was observed using both GT or TC TFOs. The stem-loop structure enhances the specificity of the complex. The topologically linked TFO remains associated with its target even under conditions that do not favour triple-helix formation. This approach is sufficiently sensitive for detection of a 20-bp target sequence at the subfemtomolar level. This study provides new insights into the mechanics and properties of stem-loop TFOs and their complexes with double-stranded DNA targets. It emphasizes the interest of such molecules in the development of new tools for the specific labelling of short DNA sequences.
Collapse
Affiliation(s)
- Bénédicte Géron-Landre
- Laboratoire Régulation et Dynamique des Génomes, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris Cedex, France
| | | | | |
Collapse
|
22
|
Potaman VN. Applications of triple-stranded nucleic acid structures to DNA purification, detection and analysis. Expert Rev Mol Diagn 2003; 3:481-96. [PMID: 12877387 DOI: 10.1586/14737159.3.4.481] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Regions of double-stranded (duplex) DNA with purine bases predominantly in one strand and pyrimidine bases in the other may bind oligonucleotides of an appropriate sequence to form triple-stranded (triplex) structures. Oligonucleotide analogs and mimics, such as peptide nucleic acid, may also form stable complexes with duplex DNA. Triplex formation enables the specific targeting of duplex domains. The principles of triplex structures and recent developments in the gene therapeutic and biotechnological applications are briefly reviewed. Adaptations of triplex methodology to molecular diagnostics (DNA purification, detection and analysis) are reviewed in greater detail.
Collapse
Affiliation(s)
- Vladimir N Potaman
- Institute of Biosciences & Technology, Texas A&M University Health Sciences Center, Houston 77030-3303, USA.
| |
Collapse
|
23
|
Abstract
Concatenation of hybridization probe with DNA target is crucial for highly localized detection of targeted sequences and might also be used in various gene-therapy applications. Several approaches based on the attachment of a circular oligonucleotide to designated DNA sites have been proposed. Recently, earring-like probes provide a true topological linkage between a probe and the target, thus allowing the DNA labeling by essentially immobile tags. The latest development in this direction takes advantage of oligonucleotide uptake by supercoiled DNA and is an important step forward.
Collapse
Affiliation(s)
- Vadim V Demidov
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Kuhn H, Demidov VV, Frank-Kamenetskii MD. Rolling-circle amplification under topological constraints. Nucleic Acids Res 2002; 30:574-80. [PMID: 11788721 PMCID: PMC99838 DOI: 10.1093/nar/30.2.574] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2001] [Revised: 11/21/2001] [Accepted: 11/21/2001] [Indexed: 11/12/2022] Open
Abstract
We have performed rolling-circle amplification (RCA) reactions on three DNA templates that differ distinctly in their topology: an unlinked DNA circle, a linked DNA circle within a pseudorotaxane-type structure and a linked DNA circle within a catenane. In the linked templates, the single-stranded circle (dubbed earring probe) is threaded, with the aid of two peptide nucleic acid openers, between the two strands of double-stranded DNA (dsDNA). We have found that the RCA efficiency of amplification was essentially unaffected when the linked templates were employed. By showing that the DNA catenane remains intact after RCA reactions, we prove that certain DNA polymerases can carry out the replicative synthesis under topological constraints allowing detection of several hundred copies of a dsDNA marker without DNA denaturation. Our finding may have practical implications in the area of DNA diagnostics.
Collapse
MESH Headings
- Base Sequence
- DNA, Circular/biosynthesis
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Single-Stranded/biosynthesis
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA-Directed DNA Polymerase/metabolism
- Electrophoresis, Agar Gel
- Electrophoresis, Polyacrylamide Gel
- Kinetics
- Models, Genetic
- Models, Molecular
- Nucleic Acid Amplification Techniques/methods
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- Polymerase Chain Reaction
- Sensitivity and Specificity
- Templates, Genetic
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
25
|
Abstract
A concise survey of the emerging PD-loop technology is presented, which outlines several exemplary methods with robust DNA diagnostic potential: duplex DNA capture, topological DNA labeling, nondenaturing DNA sequencing and hybridization of molecular beacons to double-stranded DNA. Advantages of these new PNA-based assays over existing techniques for sequence-specific detection and manipulation of DNA duplexes are discussed. Future prospects for the further development of PD-loop technology are highlighted.
Collapse
Affiliation(s)
- V V Demidov
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| |
Collapse
|
26
|
|
27
|
Roulon T, Hélène C, Escudé C. A Ligand-Modulated Padlock Oligonucleotide for Supercoiled Plasmids. Angew Chem Int Ed Engl 2001; 40:1523-1526. [DOI: 10.1002/1521-3773(20010417)40:8<1523::aid-anie1523>3.0.co;2-a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2000] [Indexed: 11/11/2022]
|
28
|
Biet E, Maurisse R, Dutreix M. Stimulation of RecA-mediated D-loop formation by oligonucleotide-directed triple-helix formation: guided homologous recombination (GOREC). Biochemistry 2001; 40:1779-86. [PMID: 11327840 DOI: 10.1021/bi001605a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligonucleotide-directed triple helix formation provides an elegant rational basis for gene-specific DNA targeting and has been widely used to interfere with gene expression ("antigene" strategies) and as a molecular tool for biological studies. Various strategies have been developed to introduce sequence modifications in genomes. However, the low efficiency of the overall process in eucaryotic cells impairs efficient recovery of recombinant genomes. Since one limiting step in homologous recombination is the targeting to the homologous sequence, we have tested the contribution of an oligonucleotide-directed triple helix formation on the RecA-dependent association of an oligonucleotide and its homologous target on duplex DNA (D-loop formation). For this study, the recombinant ssDNA fragment was noncovalently associated to a triple helix-forming oligonucleotide. The physicochemical and biochemical characteristics of the triple helix and D-loop structures formed by the complex molecules in the presence or in the absence of RecA protein were determined. We have demonstrated that the triple helix-forming oligonucleotide increases the efficiency of D-loop formation and the RecA protein speeds up also the triple helix formation. The so-called "GOREC" (for guided homologous recombination) approach can be developed as a novel tool to improve the efficiency of directed mutagenesis and gene alteration in living organisms.
Collapse
Affiliation(s)
- E Biet
- Laboratoire de Biophysique, UMR 8646 CNRS-Muséum National d'Histoire Naturelle, INSERM U201, 43 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
29
|
Demidov VV, Kuhn H, Lavrentieva-Smolina IV, Frank-Kamenetskii MD. Peptide nucleic acid-assisted topological labeling of duplex dna. Methods 2001; 23:123-31. [PMID: 11181031 DOI: 10.1006/meth.2000.1113] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peptide nucleic acids (PNAs) are a family of synthetic polyamide mimics of nucleic acids that offer a variety of applications. Pyrimidine bis-PNAs can be used for rational design of novel interlocked DNA nanostructures, earring labels, representing locked pseudorotaxanes or locked catenanes. These structures are created through DNA ligase-mediated catenation of duplex DNA with a circularized oligonucleotide tag at a designated DNA site. The assembly is performed via formation of the PD-loop consisting of a pair of bis-PNA openers and the probe oligonucleotide. The openers locally expose one of the two strands of duplex DNA for hybridizing the probe, whose termini are complementary to the displaced DNA strand. After hybridization, they are in juxtaposition and can subsequently be linked by DNA ligase. As a result, a true topological link forms at a precise position on the DNA double helix yielding locked, earring-like label. DNA topological labeling can be done both in solution and, for longer templates, within the agarose gel plug. Accordingly, highly localized DNA detection with rolling circle amplification of hybridization signal and effective micromanipulations with DNA duplexes become possible through precise spatial positioning of various ligands on the DNA scaffold.
Collapse
Affiliation(s)
- V V Demidov
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
30
|
Fujimoto K, Matsuda S, Hayashi M, Saito I. Reversible DNA photocircularization on triple helix: effect of vinyl substituent on base stacking. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)01351-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Escudé C, Garestier T, Hélène C. Padlock oligonucleotides for duplex DNA based on sequence-specific triple helix formation. Proc Natl Acad Sci U S A 1999; 96:10603-7. [PMID: 10485872 PMCID: PMC17929 DOI: 10.1073/pnas.96.19.10603] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An oligonucleotide was circularized around double-stranded DNA thanks to triple helix formation. Short oligonucleotides are known to be able to form DNA triple helices by binding into the DNA major groove at an oligopurine.oligopyrimidine sequence. After sequence-specific recognition of a double-stranded DNA target through triple helix formation, the ends of the triplex-forming oligonucleotide were joined through the action of T4 DNA ligase, thus creating a circular DNA molecule catenated to the plasmid containing the target sequence. The labeling of the double-stranded DNA sequence has been carried out without any chemical or enzymatic modification of this sequence. These "padlock" oligonucleotides provide a tool to attach a noncovalent tag in an irreversible way to supercoiled plasmid or other double-stranded DNAs. Such a complex may find applications in the development of new techniques for duplex DNA detection or plasmid delivery methods for gene therapy.
Collapse
Affiliation(s)
- C Escudé
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Institut National de la Santé et de la Recherche Médicale Unité 201, Centre National de la Recherche Scientifique, 43, rue Cuvier, 75231 Paris, France.
| | | | | |
Collapse
|
32
|
Kuhn H, Demidov VV, Frank-Kamenetskii MD. Topologische Verbindung zwischen einer Doppelstrang-DNA und einer ringförmigen Einzelstrang-DNA. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990517)111:10<1544::aid-ange1544>3.0.co;2-o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Kool ET. Recognition of DNA, RNA, and Proteins by Circular Oligonucleotides. Acc Chem Res 1998; 31:502-510. [PMID: 19946615 DOI: 10.1021/ar9602462] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric T. Kool
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| |
Collapse
|