1
|
Shrestha P, Rotatori S, Madden-Hennessey K, Mohammed C, Yang CH, Urbani J, Pettinelli J, Liu X, Zhao Q. Selective expansion of target cells using the Enrich TROVO platform. Biotechniques 2023; 75:56-64. [PMID: 37551835 PMCID: PMC10476488 DOI: 10.2144/btn-2023-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Enriching target cell clones from diverse cell populations is vital for many life science applications. We have developed a novel method to rapidly and efficiently purify specific clonal cell populations from a larger, heterogeneous group using the Enrich TroVo system (Enrich Biosystems Inc., CT, USA). This system takes advantage of microfabrication and optical technologies by utilizing small hydrogel wells to separate desired cell populations and an innovative patching technique to selectively eliminate undesired cells. This method allows the isolation and growth of desired cells with minimal impact on their viability and proliferation. We successfully isolated and expanded clonal cell populations of desired cells using two model cells. Compared with fluorescence-activated cell sorting, Enrich TroVo system offers a promising alternative for isolating of sensitive, adherent cells, that is, patient-derived cells.
Collapse
Affiliation(s)
- Prem Shrestha
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Stephen Rotatori
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | | | - Christina Mohammed
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Chi-han Yang
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Jordan Urbani
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Joseph Pettinelli
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Xueqi Liu
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| | - Qi Zhao
- Enrich Biosystems Inc., 21 Business Park Drive, Suite 4, Branford, CT 06405, USA
| |
Collapse
|
2
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Abstract
One of the hallmarks of the vertebrate adaptive immune system is the prolific expansion of individual cell clones that encounter their cognate antigen. More recently, however, there is growing evidence for the clonal expansion of innate lymphocytes, particularly in the context of pathogen challenge. Clonal expansion not only serves to amplify the number of specific lymphocytes to mount a robust protective response to the pathogen at hand but also results in selection and differentiation of the responding lymphocytes to generate a multitude of cell fates. Here, we summarize the evidence for clonal expansion in innate lymphocytes, which has primarily been observed in natural killer (NK) cells responding to cytomegalovirus infection, and consider the requirements for such a response in NK cells in light of those for T cells. Furthermore, we discuss multiple aspects of heterogeneity that both contribute to and result from the fundamental immunological process of clonal expansion, highlighting the parallels between innate and adaptive lymphocytes, with a particular focus on NK cells and CD8+ T cells.
Collapse
|
4
|
Li S, Wilamowski J, Teraguchi S, van Eerden FJ, Rozewicki J, Davila A, Xu Z, Katoh K, Standley DM. Structural Modeling of Lymphocyte Receptors and Their Antigens. Methods Mol Biol 2019; 2048:207-229. [PMID: 31396940 DOI: 10.1007/978-1-4939-9728-2_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structural modeling plays a key role in protein function prediction on a genome-wide scale. For B and T lymphocyte receptors, the critical functional question is: which antigens and epitopes are targeted? With emerging B cell receptor (BCR) and T cell receptor (TCR) sequencing methods improving in both breadth and depth, there is a growing need for methods that can help answer this question. Since lymphocyte-antigen recognition depends on complementarity, structural modeling is likely to play an important role in understanding antigen specificity and affinity. In the case of BCRs, such modeling methods have a long history in the study and design of antibodies. However, for TCRs there are relatively few publicly available modeling tools, and, to our knowledge, none that incorporate interaction between TCRs and peptide-MHC (pMHC) complexes. Here, we provide a web-based tool, ImmuneScape ( https://sysimm.org/immune-scape/ ), to carry out TCR-pMHC modeling as a first step toward structure-based function prediction.
Collapse
Affiliation(s)
- Songling Li
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jan Wilamowski
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shunsuke Teraguchi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - John Rozewicki
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ana Davila
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Zichang Xu
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazutaka Katoh
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daron M Standley
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan. .,Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Gabel M, Regoes RR, Graw F. More or less-On the influence of labelling strategies to infer cell population dynamics. PLoS One 2017; 12:e0185523. [PMID: 29045427 PMCID: PMC5646766 DOI: 10.1371/journal.pone.0185523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/14/2017] [Indexed: 11/18/2022] Open
Abstract
The adoptive transfer of labelled cell populations has been an essential tool to determine and quantify cellular dynamics. The experimental methods to label and track cells over time range from fluorescent dyes over congenic markers towards single-cell labelling techniques, such as genetic barcodes. While these methods have been widely used to quantify cell differentiation and division dynamics, the extent to which the applied labelling strategy actually affects the quantification of the dynamics has not been determined so far. This is especially important in situations where measurements can only be obtained at a single time point, as e.g. due to organ harvest. To this end, we studied the appropriateness of various labelling strategies as characterised by the number of different labels and the initial number of cells per label to quantify cellular dynamics. We simulated adoptive transfer experiments in systems of various complexity that assumed either homoeostatic cellular turnover or cell expansion dynamics involving various steps of cell differentiation and proliferation. Re-sampling cells at a single time point, we determined the ability of different labelling strategies to recover the underlying kinetics. Our results indicate that cell transition and expansion rates are differently affected by experimental shortcomings, such as loss of cells during transfer or sampling, dependent on the labelling strategy used. Furthermore, uniformly distributed labels in the transferred population generally lead to more robust and less biased results than non-equal label sizes. In addition, our analysis indicates that certain labelling approaches incorporate a systematic bias for the identification of complex cell expansion dynamics.
Collapse
Affiliation(s)
- Michael Gabel
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, 69120 Heidelberg, Germany
- * E-mail: (MG); (FG)
| | - Roland R. Regoes
- Institute for Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Frederik Graw
- Center for Modelling and Simulation in the Biosciences, BioQuant-Center, Heidelberg University, 69120 Heidelberg, Germany
- * E-mail: (MG); (FG)
| |
Collapse
|
6
|
Fan X, Rudensky AY. Hallmarks of Tissue-Resident Lymphocytes. Cell 2016; 164:1198-1211. [PMID: 26967286 DOI: 10.1016/j.cell.2016.02.048] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Indexed: 01/20/2023]
Abstract
Although they are classically viewed as continuously recirculating through the lymphoid organs and blood, lymphocytes also establish residency in non-lymphoid tissues, most prominently at barrier sites, including the mucosal surfaces and skin. These specialized tissue-resident lymphocyte subsets span the innate-adaptive continuum and include innate lymphoid cells (ILCs), unconventional T cells (e.g., NKT, MAIT, γδ T cells, and CD8αα(+) IELs), and tissue-resident memory T (T(RM)) cells. Although these diverse cell types differ in the particulars of their biology, they nonetheless exhibit important shared features, including a role in the preservation of tissue integrity and function during homeostasis, infection, and non-infectious perturbations. In this Review, we discuss the hallmarks of tissue-resident innate, innate-like, and adaptive lymphocytes, as well as their potential functions in non-lymphoid organs.
Collapse
Affiliation(s)
- Xiying Fan
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA; Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, 417 East 68(th) Street, New York, NY 10065, USA.
| |
Collapse
|
7
|
Single-cell sequencing technologies: current and future. J Genet Genomics 2014; 41:513-28. [PMID: 25438696 DOI: 10.1016/j.jgg.2014.09.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/01/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022]
Abstract
Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments.
Collapse
|
8
|
Parallel single cancer cell whole genome amplification using button-valve assisted mixing in nanoliter chambers. PLoS One 2014; 9:e107958. [PMID: 25233459 PMCID: PMC4169497 DOI: 10.1371/journal.pone.0107958] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of tumor cells and their alteration during the course of the disease urges the need for real time characterization of individual tumor cells to improve the assessment of treatment options. New generations of therapies are frequently associated with specific genetic alterations driving the need to determine the genetic makeup of tumor cells. Here, we present a microfluidic device for parallel single cell whole genome amplification (pscWGA) to obtain enough copies of a single cell genome to probe for the presence of treatment targets and the frequency of its occurrence among the tumor cells. Individual cells were first captured and loaded into eight parallel amplification units. Next, cells were lysed on a chip and their DNA amplified through successive introduction of dedicated reagents while mixing actively with the help of integrated button-valves. The reaction chamber volume for scWGA 23.85 nl, and starting from 6–7 pg DNA contained in a single cell, around 8 ng of DNA was obtained after WGA, representing over 1000-fold amplification. The amplified products from individual breast cancer cells were collected from the device to either directly investigate the amplification of specific genes by qPCR or for re-amplification of the DNA to obtain sufficient material for whole genome sequencing. Our pscWGA device provides sufficient DNA from individual cells for their genetic characterization, and will undoubtedly allow for automated sample preparation for single cancer cell genomic characterization.
Collapse
|
9
|
Satija R, Shalek AK. Heterogeneity in immune responses: from populations to single cells. Trends Immunol 2014; 35:219-29. [PMID: 24746883 DOI: 10.1016/j.it.2014.03.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
Abstract
The mammalian immune system is tasked with protecting the host against a broad range of threats. Understanding how immune populations leverage cellular diversity to achieve this breadth and flexibility, particularly during dynamic processes such as differentiation and antigenic response, is a core challenge that is well suited for single cell analysis. Recent years have witnessed transformative and intersecting advances in nanofabrication and genomics that enable deep profiling of individual cells, affording exciting opportunities to study heterogeneity in the immune response at an unprecedented scope. In light of these advances, here we review recent work exploring how immune populations generate and leverage cellular heterogeneity at multiple molecular and phenotypic levels. Additionally, we highlight opportunities for single cell technologies to shed light on the causes and consequences of heterogeneity in the immune system.
Collapse
Affiliation(s)
- Rahul Satija
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | - Alex K Shalek
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Massilamany C, Gangaplara A, Jia T, Elowsky C, Kang G, Riethoven JJ, Li Q, Zhou Y, Reddy J. Direct staining with major histocompatibility complex class II dextramers permits detection of antigen-specific, autoreactive CD4 T cells in situ. PLoS One 2014; 9:e87519. [PMID: 24475302 PMCID: PMC3903673 DOI: 10.1371/journal.pone.0087519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/23/2013] [Indexed: 11/18/2022] Open
Abstract
We report here the utility of major histocompatibility complex (MHC) class II dextramers for in situ detection of self-reactive CD4 T cells in two target organs, the brain and heart. We optimized the conditions for in situ detection of antigen-specific CD4 T cells using brain sections obtained from SJL mice immunized with myelin proteolipid protein (PLP) 139–151; the sections were costained with IAs/PLP 139–151 (specific) or Theiler's murine encephalomyelitis virus (TMEV) 70–86 (control) dextramers and anti-CD4. Analysis of sections by laser scanning confocal microscope revealed detection of cells positive for PLP 139–151 but not for TMEV 70–86 dextramers to be colocalized with CD4-expressing T cells, indicating that the staining was specific to PLP 139–151 dextramers. Further, we devised a method to reliably enumerate the frequencies of antigen-specific T cells by counting the number of dextramer+ CD4+ T cells in the ‘Z’ serial images acquired sequentially. We next extended these observations to detect cardiac myosin-specific T cells in autoimmune myocarditis induced in A/J mice by immunizing with cardiac myosin heavy chain-α (Myhc) 334–352. Heart sections prepared from immunized mice were costained with Myhc 334–352 (specific) or bovine ribonuclease 43–56 (control) dextramers together with anti-CD4; the sections showed the infiltrations of Myhc-specific CD4 T cells. The data suggest that MHC class II dextramers are useful tools for enumerating the frequencies of antigen-specific CD4 T cells in situ by direct staining without having to amplify the fluorescent signals, an approach commonly employed with conventional MHC tetramers.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ting Jia
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Christian Elowsky
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Guobin Kang
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
11
|
Reproducible selection of high avidity CD8+ T-cell clones following secondary acute virus infection. Proc Natl Acad Sci U S A 2014; 111:1485-90. [PMID: 24474775 DOI: 10.1073/pnas.1323736111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recall of memory CD8(+) cytotoxic T lymphocytes (CTLs), elicited by prior virus infection or vaccination, is critical for immune protection. The extent to which this arises as a consequence of stochastic clonal expansion vs. active selection of particular clones remains unclear. Using a parallel adoptive transfer protocol in combination with single cell analysis to define the complementarity determining region (CDR) 3α and CDR3β regions of individual T-cell receptor (TCR) heterodimers, we characterized the antigen-driven recall of the same memory CTL population in three individual recipients. This high-resolution analysis showed reproducible enrichment (or diminution) of particular TCR clonotypes across all challenged animals. These changes in clonal composition were TCRα- and β chain-dependent and were directly related to the avidity of the TCR for the virus-derived peptide (p) + major histocompatibility complex class I molecule. Despite this shift in clonotype representation indicative of differential selection, there was no evidence of overall repertoire narrowing, suggesting a strategy to optimize CTL responses while safeguarding TCR diversity.
Collapse
|
12
|
Rudd BD, Venturi V, Smith NL, Nzingha K, Goldberg EL, Li G, Nikolich-Zugich J, Davenport MP. Acute neonatal infections 'lock-in' a suboptimal CD8+ T cell repertoire with impaired recall responses. PLoS Pathog 2013; 9:e1003572. [PMID: 24068921 PMCID: PMC3771883 DOI: 10.1371/journal.ppat.1003572] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/07/2013] [Indexed: 11/28/2022] Open
Abstract
Microbial infection during various stages of human development produces widely different clinical outcomes, yet the links between age-related changes in the immune compartment and functional immunity remain unclear. The ability of the immune system to respond to specific antigens and mediate protection in early life is closely correlated with the level of diversification of lymphocyte antigen receptors. We have previously shown that the neonatal primary CD8+ T cell response to replication competent virus is significantly constricted compared to the adult response. In the present study, we have analyzed the subsequent formation of neonatal memory CD8+ T cells and their response to secondary infectious challenge. In particular, we asked whether the less diverse CD8+ T cell clonotypes that are elicited by neonatal vaccination with replication competent virus are ‘locked-in’ to the adult memory T cell, and thus may compromise the strength of adult immunity. Here we report that neonatal memory CD8+ T cells mediate poor recall responses compared to adults and are comprised of a repertoire of lower avidity T cells. During a later infectious challenge the neonatal memory CD8+ T cells compete poorly with the fully diverse repertoire of naïve adult CD8+ T cells and are outgrown by the adult primary response. This has important implications for the timing of vaccination in early life. Newborns typically have a heightened sensitivity to infectious diseases, the reasons for which are not yet well understood. One contributing factor is the limited diversity of lymphocyte receptors early in life to recognize antigen and control infection. We have previously shown that antigen-specific CD8+ T cell repertoires are significantly constricted in neonates compared with adults. In this study, we addressed the question of whether the developmental stage of the host at the time of vaccination influences the composition of the memory CD8+ T cell repertoire and its ability to mount a robust response to subsequent infections. We observed that the antigen-specific T cell repertoires elicited in the context of an acute neonatal infection, that are less diverse and comprised of lower-avidity T cells, are partially ‘locked-in’ to the adult memory T cell repertoire. However, in the face of a secondary infectious challenge, naïve adult T cells outcompete the lower avidity neonatal memory T cells and raise the diversity of the overall CD8+ T cell response. These results have potential implications for the design of vaccines to be administered in early life.
Collapse
MESH Headings
- Aging
- Animals
- Animals, Newborn
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- DNA, Recombinant/metabolism
- Herpes Simplex/immunology
- Herpes Simplex/prevention & control
- Herpes Simplex/virology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Immune System/growth & development
- Immune System/immunology
- Immune System/pathology
- Immunologic Deficiency Syndromes/etiology
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/metabolism
- Immunologic Deficiency Syndromes/pathology
- Immunologic Memory
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Listeria monocytogenes/metabolism
- Listeria monocytogenes/pathogenicity
- Listeriosis/immunology
- Listeriosis/microbiology
- Listeriosis/physiopathology
- Listeriosis/prevention & control
- Mice, Inbred Strains
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Specific Pathogen-Free Organisms
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/immunology
- Vaccinia/immunology
- Vaccinia/prevention & control
- Vaccinia/virology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Vaccinia virus/metabolism
- Virulence
Collapse
Affiliation(s)
- Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (BDR); (JNZ); (MPD)
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Kito Nzingha
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America
| | - Emily L. Goldberg
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, and the BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Gang Li
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, and the BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, and the BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (BDR); (JNZ); (MPD)
| | - Miles P. Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
- * E-mail: (BDR); (JNZ); (MPD)
| |
Collapse
|
13
|
La Gruta NL, Thomas PG. Interrogating the relationship between naïve and immune antiviral T cell repertoires. Curr Opin Virol 2013; 3:447-51. [PMID: 23849601 DOI: 10.1016/j.coviro.2013.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
Abstract
Understanding how naïve virus-specific CD8+ T cells influence the type of immune response generated after virus infection is critical for the development of enhanced therapeutic and vaccination strategies to exploit CD8+ T cell-mediated immunity. Recent technological advances in T cell isolation and T receptor sequencing have allowed for greater understanding of the basic structure of immune T cell repertoires, the diversity of responses within and between individuals, and changes in repertoires over time and in response to infection conditions. In this review, we discuss the current understanding of how T cell repertoires contribute to potent antiviral responses. Additionally we compare the state of the art in receptor sequencing, highlighting the advantages and disadvantages of the three most common approaches: next-generation sequencing, template-switch anchored RT-PCR, and multiplex single cell PCR. Finally, we describe how TCR sequencing has delineated the relationship between naïve and immune T cell repertoires.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC 3010, Australia.
| | | |
Collapse
|
14
|
Blainey PC. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 2013; 37:407-27. [PMID: 23298390 PMCID: PMC3878092 DOI: 10.1111/1574-6976.12015] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 01/08/2023] Open
Abstract
Interest in the expanding catalog of uncultivated microorganisms, increasing recognition of heterogeneity among seemingly similar cells, and technological advances in whole-genome amplification and single-cell manipulation are driving considerable progress in single-cell genomics. Here, the spectrum of applications for single-cell genomics, key advances in the development of the field, and emerging methodology for single-cell genome sequencing are reviewed by example with attention to the diversity of approaches and their unique characteristics. Experimental strategies transcending specific methodologies are identified and organized as a road map for future studies in single-cell genomics of environmental microorganisms. Over the next decade, increasingly powerful tools for single-cell genome sequencing and analysis will play key roles in accessing the genomes of uncultivated organisms, determining the basis of microbial community functions, and fundamental aspects of microbial population biology.
Collapse
|
15
|
Ecological analysis of antigen-specific CTL repertoires defines the relationship between naive and immune T-cell populations. Proc Natl Acad Sci U S A 2013; 110:1839-44. [PMID: 23319654 DOI: 10.1073/pnas.1222149110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecology is typically thought of as the study of interactions organisms have with each other and their environment and is focused on the distribution and abundance of organisms both within and between environments. On a molecular level, the capacity to probe analogous questions in the field of T-cell immunology is imperative as we acquire substantial datasets both on epitope-specific T-cell populations through high-resolution analyses of T-cell receptor (TCR) use and on global T-cell populations analyzed via high-throughput DNA sequencing. Here, we present the innovative application of existing statistical measures (used typically in the field of ecology), together with unique statistical analyses, to comprehensively assess how the naïve epitope-specific CD8(+) cytotoxic T lymphocyte (CTL) repertoire translates to that found following an influenza-virus-specific immune response. Such interrogation of our extensive, cumulated TCR CDR3β sequence datasets, derived from both naïve and immune CD8(+) T-cell populations specific for four different influenza-derived epitopes (D(b)NP(366), influenza nucleoprotein amino acid residues 366-374; D(b)PA(224), influenza acid polymerase amino acid residues 224-233; D(b)PB1-F2(62), influenza polymerase B 1 reading frame 2 amino acid residues 62-70; K(b)NS2(114), and influenza nonstructural protein 2 amino acid residues 114-121), demonstrates that epitope-specific TCR use in an antiviral immune response is the consequence of a complex interplay between the intrinsic characteristics of the naïve cytotoxic T lymphocyte precursor pool and extrinsic (likely antigen driven) influences, the contribution of which varies in an epitope-specific fashion.
Collapse
|
16
|
Abstract
Advances in whole genome amplification and next-generation sequencing methods have enabled genomic analyses of single cells, and these techniques are now beginning to be used to detect genomic lesions in individual cancer cells. Previous approaches have been unable to resolve genomic differences in complex mixtures of cells, such as heterogeneous tumors, despite the importance of characterizing such tumors for cancer treatment. Sequencing of single cells is likely to improve several aspects of medicine, including the early detection of rare tumor cells, monitoring of circulating tumor cells (CTCs), measuring intratumor heterogeneity, and guiding chemotherapy. In this review we discuss the challenges and technical aspects of single-cell sequencing, with a strong focus on genomic copy number, and discuss how this information can be used to diagnose and treat cancer patients.
Collapse
|
17
|
|
18
|
Dash P, McClaren JL, Oguin TH, Rothwell W, Todd B, Morris MY, Becksfort J, Reynolds C, Brown SA, Doherty PC, Thomas PG. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. J Clin Invest 2011; 121:288-95. [PMID: 21135507 PMCID: PMC3007160 DOI: 10.1172/jci44752] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/20/2010] [Indexed: 11/17/2022] Open
Abstract
Characterizing the TCRα and TCRβ chains expressed by T cells responding to a given pathogen or underlying autoimmunity helps in the development of vaccines and immunotherapies, respectively. However, our understanding of complementary TCRα and TCRβ chain utilization is very limited for pathogen- and autoantigen-induced immunity. To address this problem, we have developed a multiplex nested RT-PCR method for the simultaneous amplification of transcripts encoding the TCRα and TCRβ chains from single cells. This multiplex method circumvented the lack of antibodies specific for variable regions of mouse TCRα chains and the need for prior knowledge of variable region usage in the TCRβ chain, resulting in a comprehensive, unbiased TCR repertoire analysis with paired coexpression of TCRα and TCRβ chains with single-cell resolution. Using CD8+ CTLs specific for an influenza epitope recovered directly from the pneumonic lungs of mice, this technique determined that 25% of such effectors expressed a dominant, nonproductively rearranged Tcra transcript. T cells with these out-of-frame Tcra mRNAs also expressed an alternate, in-frame Tcra, whereas approximately 10% of T cells had 2 productive Tcra transcripts. The proportion of cells with biallelic transcription increased over the course of a response, a finding that has implications for immune memory and autoimmunity. This technique may have broad applications in mouse models of human disease.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Antigens, Viral/immunology
- Complementarity Determining Regions
- Epitopes/immunology
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Orthomyxoviridae/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- T-Lymphocytes, Cytotoxic/immunology
- Transcription, Genetic
Collapse
Affiliation(s)
- Pradyot Dash
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer L. McClaren
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas H. Oguin
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - William Rothwell
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Brandon Todd
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa Y. Morris
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jared Becksfort
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Cory Reynolds
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Scott A. Brown
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter C. Doherty
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul G. Thomas
- St Jude Children’s Research Hospital, Memphis, Tennessee, USA.
Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination. J Biomed Biotechnol 2010; 2011:452606. [PMID: 21113290 PMCID: PMC2989374 DOI: 10.1155/2011/452606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Collapse
|
20
|
|
21
|
Gerlach C, van Heijst JWJ, Swart E, Sie D, Armstrong N, Kerkhoven RM, Zehn D, Bevan MJ, Schepers K, Schumacher TNM. One naive T cell, multiple fates in CD8+ T cell differentiation. ACTA ACUST UNITED AC 2010; 207:1235-46. [PMID: 20479114 PMCID: PMC2882844 DOI: 10.1084/jem.20091175] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The mechanism by which the immune system produces effector and memory T cells is largely unclear. To allow a large-scale assessment of the development of single naive T cells into different subsets, we have developed a technology that introduces unique genetic tags (barcodes) into naive T cells. By comparing the barcodes present in antigen-specific effector and memory T cell populations in systemic and local infection models, at different anatomical sites, and for TCR–pMHC interactions of different avidities, we demonstrate that under all conditions tested, individual naive T cells yield both effector and memory CD8+ T cell progeny. This indicates that effector and memory fate decisions are not determined by the nature of the priming antigen-presenting cell or the time of T cell priming. Instead, for both low and high avidity T cells, individual naive T cells have multiple fates and can differentiate into effector and memory T cell subsets.
Collapse
Affiliation(s)
- Carmen Gerlach
- Division of Immunology, Central Microarray Facility, and Bioinformatics and Statistics Group, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jenkins MK, Chu HH, McLachlan JB, Moon JJ. On the composition of the preimmune repertoire of T cells specific for Peptide-major histocompatibility complex ligands. Annu Rev Immunol 2010; 28:275-94. [PMID: 20307209 DOI: 10.1146/annurev-immunol-030409-101253] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Millions of T cells are produced in the thymus, each expressing a unique alpha/beta T cell receptor (TCR) capable of binding to a foreign peptide in the binding groove of a host major histocompatibility complex (MHC) molecule. T cell-mediated immunity to infection is due to the proliferation and differentiation of rare clones in the preimmune repertoire that by chance express TCRs specific for peptide-MHC (pMHC) ligands derived from the microorganism. Here we review recent findings that have altered our understanding of how the preimmune repertoire is established. Recent structural studies indicate that a germline-encoded tendency of TCRs to bind MHC molecules contributes to the MHC bias of T cell repertoires. It has also become clear that the preimmune repertoire contains functionally heterogeneous subsets including recent thymic emigrants, mature naive phenotype cells, memory phenotype cells, and natural regulatory T cells. In addition, sensitive new detection methods have revealed that the repertoire of naive phenotype T cells consists of distinct pMHC-specific populations that consistently vary in size in different individuals. The implications of these new findings for the clonal selection theory, self-tolerance, and immunodominance are discussed.
Collapse
Affiliation(s)
- Marc K Jenkins
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Immune memory responses to previously encountered pathogens can sometimes alter the immune response to and the course of infection of an unrelated pathogen by a process known as heterologous immunity. This response can lead to enhanced or diminished protective immunity and altered immunopathology. Here, we discuss the nature of T-cell cross-reactivity and describe matrices of epitopes from different viruses eliciting cross-reactive CD8(+) T-cell responses. We examine the parameters of heterologous immunity mediated by these cross-reactive T cells during viral infections in mice and humans. We show that heterologous immunity can disrupt T-cell memory pools, alter the complexity of the T-cell repertoire, change patterns of T-cell immunodominance, lead to the selection of viral epitope-escape variants, alter the pathogenesis of viral infections, and, by virtue of the private specificity of T-cell repertoires within individuals, contribute to dramatic variations in viral disease. We propose that heterologous immunity is an important factor in resistance to and variations of human viral infections and that issues of heterologous immunity should be considered in the design of vaccines.
Collapse
Affiliation(s)
- Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
24
|
Rudd BD, Venturi V, Smithey MJ, Way SS, Davenport MP, Nikolich-Zugich J. Diversity of the CD8+ T cell repertoire elicited against an immunodominant epitope does not depend on the context of infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2958-2965. [PMID: 20164421 PMCID: PMC4161216 DOI: 10.4049/jimmunol.0903493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The diversity of the pathogen-specific T cell repertoire is believed to be important in allowing recognition of different pathogen epitopes and their variants and thereby reducing the opportunities for mutation-driven pathogen escape. However, the extent to which the TCR repertoire can be manipulated by different vaccine strategies so as to obtain broad diversity and optimal protection is incompletely understood. We have investigated the influence of the infectious/inflammatory context on the TCR diversity of the CD8(+) T cell response specific for the immunodominant epitope in C57BL/6 mice, derived from glycoprotein B of HSV-1. To that effect, we compared TCR V segment utilization, CDR3 length, and sequence diversity of the response to natural HSV-1 infection with those elicited by either Listeria monocytogenes or vaccinia virus expressing the immunodominant epitope in C57BL/6 mice. We demonstrate that although the type of infection in which the epitope was encountered can influence the magnitude of the CD8(+) T cell responses, TCR beta-chain repertoires did not significantly differ among the three infections. These results suggest that widely different live vaccine vectors may have little impact upon the diversity of the induced CTL response, which has important implications for the design of live CTL vaccine strategies against acute and chronic infections.
Collapse
Affiliation(s)
- Brian D. Rudd
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| | - Vanessa Venturi
- Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Megan J. Smithey
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| | - Sing Sing Way
- Department of Pediatrics, Center for Infectious Disease and Microbiology Translational Research, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| |
Collapse
|
25
|
Kedzierska K, Valkenburg SA, Guillonneau C, Hubert FX, Cukalac T, Curtis JM, Stambas J, Scott HS, Kedzierski L, Venturi V, Davenport MP. Diversity and clonotypic composition of influenza-specific CD8+ TCR repertoires remain unaltered in the absence of Aire. Eur J Immunol 2010; 40:849-58. [PMID: 19950188 DOI: 10.1002/eji.200939918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TCR repertoire diversity is important for the protective efficacy of CD8(+) T cells, limiting viral escape and cross-reactivity between unrelated epitopes. The exact mechanism for selection of restricted versus diverse TCR repertoires is far from clear, although one thought is that the epitopes resembling self-peptides might select a limited array of TCR due to the deletion of autoreactive TCR. The molecule Aire promotes the expression of tissue-specific Ag on thymic medullary epithelial cells and the deletion of autoreactive cells, and in the absence of Aire autoreactive cells persist. However, the contribution of Aire-dependent peptides to the selection of the Ag-specific TCR repertoire remains unknown. In this study, we dissect restricted (D(b)NP(366)%(+)CD8(+)) and diverse (D(b)PA(224)%(+)CD8(+), K(d)NP(147)%(+)CD8(+)) TCR repertoires responding to three influenza-derived peptides in Aire-deficient mice on both B6 and BALB/c backgrounds. Our study shows that the number, qualitative characteristics and TCR repertoires of all influenza-specific, D(b)NP(366)%(+)CD8(+), D(b)PA(224)%(+)CD8(+) and K(d)NP(147)%(+)CD8(+) T cells are not significantly altered in the absence of Aire. This provides the first demonstration that the selection of an Ag-specific T-cell repertoire is not significantly perturbed in the absence of Aire.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Greenaway HY, Kurniawan M, Price DA, Douek DC, Davenport MP, Venturi V. Extraction and characterization of the rhesus macaque T-cell receptor beta-chain genes. Immunol Cell Biol 2009; 87:546-53. [PMID: 19506572 PMCID: PMC2756323 DOI: 10.1038/icb.2009.38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rhesus macaque models have been instrumental in the development and testing of vaccines before human studies and have provided fundamental insights into the determinants of immune efficacy in a variety of infectious diseases. However, the characterization of antigen-specific T-cell receptor (TCR) repertoires during adaptive immune responses in these models has earlier relied on human TCR gene assignments. Here, we extracted and characterized TCR beta-chain (TRB) genes from the recently sequenced rhesus macaque genome that are homologous to the human TRB genes. Comparison of the rhesus macaque TRB genes with the human TRB genes showed an average best match similarity of 92.9%. Furthermore, we confirmed the usage of most rhesus macaque TRB genes by expressed TCRbeta sequences within epitope-specific TCR repertoires. This primary description of the rhesus macaque TRB genes will provide a standardized nomenclature and enable better characterization of TCR usage in studies that use this species.
Collapse
Affiliation(s)
- Hui Yee Greenaway
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington NSW 2052, Australia
| | - Monica Kurniawan
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington NSW 2052, Australia
| | - David A Price
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Human Immunology Section, Vaccine Research Center, NIAID/NIH, Bethesda MD 20892, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, NIAID/NIH, Bethesda MD 20892, USA
| | - Miles P Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington NSW 2052, Australia
| | - Vanessa Venturi
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington NSW 2052, Australia
| |
Collapse
|
27
|
Cukalac T, Moffat JM, Venturi V, Davenport MP, Doherty PC, Turner SJ, Stambas J. Narrowed TCR diversity for immunised mice challenged with recombinant influenza A-HIV Env(311-320) virus. Vaccine 2009; 27:6755-61. [PMID: 19744584 DOI: 10.1016/j.vaccine.2009.08.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 11/25/2022]
Abstract
Understanding CD8+ T cell responses generated by live virus vectors is critical for the rational design of next generation HIV CTL-based vaccines. We used recombinant influenza viruses expressing the HIV Env(311-320) peptide in the neuraminidase stalk to study response magnitude, cytokine production and repertoire diversity for the elicited CD8+ D(d)Env(311) CTL set. The insertion of the CD8+ D(d)Env(311) epitope into the NA stalk resulted in a decrease in viral fitness that was reflected in lower lung viral titres. While not affecting the magnitude of endogenous primary influenza-specific responses, the introduction of the D(d)Env(311) CD8+ T cell epitope altered the hierarchy of responses following secondary challenge. The CD8+ K(d)NP(147) response increased 9-fold in the spleen following secondary infection whereas the CD8+ D(d)Env(311) response increased 15-fold in the spleen. Moreover, this study is the first to describe narrowing of CD8+ TCR repertoire diversity in the context of an evolving secondary immune response against influenza A virus. Analysis of Vbeta bias for CD8+ D(d)Env(311) T cell responses showed a narrowing of CD8+ Vbeta8.1/8.2 D(d)Env(311) TCR repertoire diversity. This work further emphasizes the importance of understanding vaccine-induced CD8+ T cell responses.
Collapse
Affiliation(s)
- Tania Cukalac
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Naumov YN, Naumova EN, Yassai MB, Kota K, Welsh RM, Selin LK. Multiple glycines in TCR alpha-chains determine clonally diverse nature of human T cell memory to influenza A virus. THE JOURNAL OF IMMUNOLOGY 2008; 181:7407-19. [PMID: 18981164 DOI: 10.4049/jimmunol.181.10.7407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detailed assessment of how the structural properties of T cell receptors affect clonal repertoires of Ag-specific cells is a prerequisite for a better understanding of human antiviral immunity. Herein we examine the alpha TCR repertoires of CD8 T cells reactive against the influenza A viral epitope M1(58-66), restricted by HLA-A2.1. Using molecular cloning, we systematically studied the impact of alpha-chain usage in the formation of T cell memory and revealed that M1(58-66)-specific, clonally diverse VB19 T cells express alpha-chains encoded by multiple AV genes with different CDR3 sizes. A unique feature of these alpha TCRs was the presence of CDR3 fitting to an AGA(G(n))GG-like amino acid motif. This pattern was consistent over time and among different individuals. Further molecular assessment of human CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes led to the conclusion that the poly-Gly/Ala runs in CDR3alpha were a property of immune, but not naive, repertoires and could be attributed to influenza exposure. Repertoires of T cell memory are discussed in the context of clonal diversity, where poly-Gly/Ala runs in the CDR3 of alpha- and beta-chains might provide high levels of TCR flexibility during Ag recognition while gene-encoded CDR1 and CDR2 contribute to the fine specificity of the TCR-peptide MHC interaction.
Collapse
Affiliation(s)
- Yuri N Naumov
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Salha MD, Cheynier R, Halwani R, McGrath H, Langaee TY, Yassine Diab B, Fournier J, Parenteau M, Edgar J, Ko D, Sherring A, Bogdanovic D, Sekaly RP, Rud EW. Persistence of restricted CD4 T cell expansions in SIV-infected macaques resistant to SHIV89.6P superinfection. Virology 2008; 377:239-47. [PMID: 18570962 DOI: 10.1016/j.virol.2008.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/29/2008] [Accepted: 04/24/2008] [Indexed: 12/11/2022]
Abstract
Attempts to evaluate the protective effect of live attenuated SIV vaccine strains have yielded variable results depending on the route of immunization, the level of attenuation, the level of divergence between the vaccine candidate and the challenge. The protective mechanisms induced by these vaccines are still not well understood. In an effort to address whether the diversity of the CD4+ T cell repertoire in cynomolgus macaques plays a role in the immunological protection following SIVmacC8 infection, we have performed a longitudinal follow-up of the CD4 repertoire by heteroduplex tracking assay in macaques mock-infected or infected with either the attenuated SIVmacC8 or its homologous SIVmacJ5 and challenged with simian-human immunodeficiency virus (SHIV89.6P). Viral load and CD4 absolute counts were determined in these animals and the presence of SHIV89.6P virus in challenged animals was evaluated by PCR and serology. In all macaques that were protected against the challenging virus, we demonstrated a reduced diversity in the CD4+ TRBV repertoire and a few dominant CD4+ T cell clones during early primary infection. In contrast, CD4 TRBV repertoire in unprotected macaques remained highly diverse. Moreover, some of the CD4 T cell clones that were expanded during primary SIV infection re-emerged after challenge suggesting their role in protection against the challenging virus. These results underline the importance of maintaining the CD4 T cell repertoire developed during acute infection and point to the restriction of the CD4 response to the vaccine as a correlate of protection.
Collapse
Affiliation(s)
- M-D Salha
- Department of Microbiology and Immunology, McGill University, Montreal, Canada PQ H3A 2B4
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kedzierska K, Venturi V, Valkenburg SA, Davenport MP, Turner SJ, Doherty PC. Homogenization of TCR repertoires within secondary CD62Lhigh and CD62Llow virus-specific CD8+ T cell populations. THE JOURNAL OF IMMUNOLOGY 2008; 180:7938-47. [PMID: 18523257 DOI: 10.4049/jimmunol.180.12.7938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza virus-specific CD8(+) T cell clonotypes generated and maintained in C57BL/6J mice after respiratory challenge were found previously to distribute unequally between the CD62L(low) "effector" (T(EM)) and CD62L(high) "central" (T(CM)) memory subsets. Defined by the CDR3beta sequence, most of the prominent TCRs were represented in both the CD62L(high) and CD62L(low) subsets, but there was also a substantial number of diverse, but generally small, CD62L(high)-only clonotypes. The question asked here is how secondary challenge influences both the diversity and the continuity of TCR representation in the T(CM) and T(EM) subsets generated following primary exposure. The experiments use single-cell RT-PCR to correlate clonotypic composition with CD62L phenotype for secondary influenza-specific CD8(+) T cell responses directed at the prominent D(b)NP(366) and D(b)PA(224) epitopes. In both the acute and long-term memory phases of the recall responses to these epitopes, we found evidence of a convergence of TCR repertoire expression for the CD62L(low) and CD62L(high) populations. In fact, unlike the primary response, there were no significant differences in clonotypic diversity between the CD62L(low) and CD62L(high) subsets. This "TCR homogenization" for the CD62L(high) and CD62L(low) CD8(+) populations recalled after secondary challenge indicates common origin, most likely from the high prevalence populations in the CD62L(high) central memory set. Our study thus provides key insights into the TCR diversity spectrum for CD62L(high) and CD62L(low) T cells generated from a normal, unmanipulated T cell repertoire following secondary challenge. A better understanding of TCR selection and maintenance has implications for improved vaccine and immunotherapy protocols.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Connelley T, MacHugh ND, Burrells A, Morrison WI. Dissection of the clonal composition of bovine alphabeta T cell responses using T cell receptor Vbeta subfamily-specific PCR and heteroduplex analysis. J Immunol Methods 2008; 335:28-40. [PMID: 18436232 DOI: 10.1016/j.jim.2008.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/14/2008] [Accepted: 02/22/2008] [Indexed: 11/26/2022]
Abstract
Although techniques that permit analysis of the clonal composition of T cell populations have been used extensively to provide a better understanding of the mechanisms that influence efficacy of T cell responses in humans and mice, such methods are lacking for other animal species. In this paper we report the establishment and validation of a panel of Vbeta subfamily-specific semi-nested PCR assays, and a CDR3beta heteroduplex technique for analysing the clonal diversity of bovine alphabeta T cell responses. Development of these methods was based on available sequence data for 48 functional Vbeta genes classified within 17 subfamilies. These techniques were used to determine the clonal composition of parasite-reactive CD8(+) T cells obtained from two animals immunised with the protozoan parasite Theileria parva. Analyses of uncloned T cell lines as well as large panels of cloned T cells derived from each of these lines confirmed the specificity and sensitivity of the assays. Specific PCR products were obtained from 96% of the T cell clones examined, indicating that the currently identified Vbeta genes represent most of the functional Vbeta subfamilies in cattle. Heteroduplex analyses, coupled with sequencing of PCR products, identified over 20 clonal expansions within each of the T cell lines, distributed over a large number of Vbeta subfamilies, although a limited number of clonotypes numerically dominated the response in both animals. The development and validation of these methods provides for the first time a generic set of molecular tools that can be used to perform detailed analysis of the TCR diversity and clonal composition of bovine T cell responses.
Collapse
Affiliation(s)
- T Connelley
- Division of Veterinary Clinical Studies, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, UK.
| | | | | | | |
Collapse
|
32
|
Radcliffe JN, Roddick JS, Stevenson FK, Thirdborough SM. Prolonged Antigen Expression following DNA Vaccination Impairs Effector CD8+ T Cell Function and Memory Development. THE JOURNAL OF IMMUNOLOGY 2007; 179:8313-21. [DOI: 10.4049/jimmunol.179.12.8313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Venturi V, Kedzierska K, Tanaka MM, Turner SJ, Doherty PC, Davenport MP. Method for assessing the similarity between subsets of the T cell receptor repertoire. J Immunol Methods 2007; 329:67-80. [PMID: 18001765 DOI: 10.1016/j.jim.2007.09.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 02/04/2023]
Abstract
The CD8+ T cell response is important in the control of many viral and other infections. There have been many studies aimed at better understanding the influence of T cell receptor diversity on immune responses and the evolution of the T cell receptor repertoire over time and through the various stages of immune responses to infection. In recent years, there has been an increase in both the number of studies using T cell receptor data and the volume of T cell receptor data generated per study. Appropriate analytical tools are required to analyse this data. We present a robust approach to assessing the similarity between samples of the T cell receptor repertoire, which we demonstrate on published data of subsets of the influenza A virus D(b)NP366(-) and D(b)PA224(-)specific CD8+ T cell responses in mice sorted on the expression of CD62L, which is a marker distinguishing central and effector memory cells.
Collapse
Affiliation(s)
- Vanessa Venturi
- Department of Haematology, Prince of Wales Hospital, Kensington NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Kedzierska K, La Gruta NL, Stambas J, Turner SJ, Doherty PC. Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. Mol Immunol 2007; 45:607-18. [PMID: 17719639 PMCID: PMC2237887 DOI: 10.1016/j.molimm.2006.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/15/2006] [Indexed: 02/03/2023]
Abstract
Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRbeta chains. Such skewing is also observed, though less commonly, in TCRalpha chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVbeta and/or TCRValpha CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of "high" versus "low" avidity, or "central" versus "effector" memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, USA
- To whom reprint requests should be addressed. E-mail:
| |
Collapse
|
35
|
Venturi V, Kedzierska K, Turner SJ, Doherty PC, Davenport MP. Methods for comparing the diversity of samples of the T cell receptor repertoire. J Immunol Methods 2007; 321:182-95. [PMID: 17337271 DOI: 10.1016/j.jim.2007.01.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/19/2007] [Accepted: 01/21/2007] [Indexed: 12/01/2022]
Abstract
Analysis of T cell receptor (TCR) data has become a crucial element in many studies aimed at better understanding the evolution of the T cell repertoire and the role of TCR diversity in immune responses. In this paper we focus on comparing the diversity between samples of the TCR repertoire. We discuss some of the limitations and potential problems inherent in some of the more popular approaches to comparing samples of the TCR repertoire and we suggest alternate methods that both avoid these problems and enrich the analysis of TCR data. Examples from published studies of the CD8(+) T cell responses to the influenza A virus D(b)NP(366) and D(b)PA(224) epitopes in mice are used to demonstrate the implementation of these methods. One example involves a comparison between the central and effector memory T cell subsets, defined on the basis of CD62L expression, and the other examines changes in the TCR repertoire over time.
Collapse
Affiliation(s)
- Vanessa Venturi
- Department of Haematology, Prince of Wales Hospital and, Centre for Vascular Research, University of New South Wales, Kensington NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
36
|
Turner SJ, Doherty PC, McCluskey J, Rossjohn J. Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol 2006; 6:883-94. [PMID: 17110956 DOI: 10.1038/nri1977] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antigen-specific T-cell responses induced by infection, transplantation, autoimmunity or hypersensitivity are characterized by cells expressing biased profiles of T-cell receptors (TCRs) that are selected from a diverse, naive repertoire. Here, we review the evidence for these TCR biases, focusing on crystallographic analysis of the structural constraints that determine the binding of a TCR to its ligand and the persistence of certain TCRs in an immune repertoire. We discuss the ways in which diversity in a selected TCR repertoire can contribute to protective immunity and the implications of this for vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
37
|
Intlekofer AM, Wherry EJ, Reiner SL. Not-so-great expectations: re-assessing the essence of T-cell memory. Immunol Rev 2006; 211:203-13. [PMID: 16824129 DOI: 10.1111/j.0105-2896.2006.00396.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We are often taught that secondary, or memory, responses by lymphocytes are more vigorous than primary responses. An expectation commonly associated with this notion is that the initial encounter with a pathogen should result in immunity to re-infection. Although this outcome is sometimes the case, it is not universally true. In this review, we propose a unified model of T-cell memory to explain the apparent successes and failures of eliciting vaccine-like protection from prior encounters with pathogens. We speculate that memory T cells arise as an invariant consequence of clonal selection during an immune response. The quality of memory T cells, however, seems to vary in the degree to which they have acquired effector characteristics and, thus, their ability to confer immunity to re-infection. Although not all memory T cells possess the embellished attributes of fully developed effector cells, they all seem to share the rudimentary quality of preserving an antigen specificity that has proven itself useful. We suggest that the ability to maintain the integrity of the T-cell repertoire, more than establishing immunity to re-infection, may represent the fundamental form of memory for the adaptive immune system.
Collapse
Affiliation(s)
- Andrew M Intlekofer
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
38
|
Abstract
In response to infection, antigen-specific CD8+ T cells undergo massive expansion in numbers, acquire effector mechanisms, and disseminate throughout the body. The expansion phase is followed by a contraction (death) phase, where 90-95% of antigen-specific CD8+ T cells are eliminated. The remaining antigen-specific CD8+ T cells form the initial memory pool, which can be stably maintained for life. In this review, we discuss evidence that early events after infection 'program' CD8+ T cells to expand, contract, and generate memory in a fashion that is largely insensitive to the duration of infection or antigen display. Recent data demonstrate, despite numerical stability, that memory CD8+ T-cell populations undergo phenotypic and functional changes with time after immunization. However, the early suggestion that specific markers can be used to identify memory CD8+ T cells has not been supported by recent studies. Thus, we argue that specific functional characteristics, such as the ability to persist and undergo vigorous secondary expansion leading to elevated memory cell numbers, remain the best markers of 'good' memory cells. Finally, we discuss experimental approaches to manipulate and accelerate generation of CD8+ T cells with memory characteristics, and how these systems can inform both basic and applied immunology.
Collapse
|
39
|
Kedzierska K, La Gruta NL, Turner SJ, Doherty PC. Establishment and recall of CD8
+
T‐cell memory in a model of localized transient infection. Immunol Rev 2006; 211:133-45. [PMID: 16824123 DOI: 10.1111/j.0105-2896.2006.00386.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The influenza A virus model of localized, transient respiratory infection provides a well-defined experimental system for dissecting the induction and maintenance of CD8+ T-cell memory. This review focuses on quantitative and qualitative aspects of the prominent D(b)NP366- and D(b)PA224-specific CD8+ T-cell responses in virus-infected B6 mice. The different virus-specific effector and memory sets are compared by phenotypic [CD62L, interleukin-7 receptor-alpha (IL-7Ralpha), and IL-15Rbeta expression] and functional [interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and IL-2 production] analyses. Most clonotypes [defined by T-cell receptor (TCR) CDR3beta sequence] generated during the acute phase of infection survive into memory, with those expressing the more consensus 'canonical' TCRs being the major contributors to the recall response. The extent of clonal expansion and the size of memory CD8+ T-cell populations has been characterized for mice challenged with either wildtype or mutant viruses, where broadly equivalent D(b)NP366 and D(b)PA224 expression was achieved by disabling the peptides in their native configuration, then expressing them in the viral neuraminidase protein. Combining the clonotypic and antigen dose analyses led to a somewhat mechanistic conclusion that the magnitude of any virus-specific CD8+ T-cell response will be a direct function of antigen dose and the size of the naïve or memory CD8+ T-cell precursor pool.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, Australia
| | | | | | | |
Collapse
|
40
|
Cornberg M, Chen AT, Wilkinson LA, Brehm MA, Kim SK, Calcagno C, Ghersi D, Puzone R, Celada F, Welsh RM, Selin LK. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J Clin Invest 2006; 116:1443-56. [PMID: 16614754 PMCID: PMC1435724 DOI: 10.1172/jci27804] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 02/21/2006] [Indexed: 01/05/2023] Open
Abstract
Why some virus-specific CD8 TCR repertoires are diverse and others restricted or "oligoclonal" has been unknown. We show here that oligoclonality and extreme clonal dominance can be a consequence of T cell cross-reactivity. Lymphocytic choriomeningitis virus (LCMV) and Pichinde virus (PV) encode NP(205-212) epitopes that induce different but highly cross-reactive diverse TCR repertoires. Homologous viral challenge of immune mice only slightly skewed the repertoire and enriched for predictable TCR motifs. However, heterologous viral challenge resulted in a narrow oligoclonal repertoire with dominant clones with unpredictable TCR sequences. This shift in clonal dominance varied with the private, i.e., unique, specificity of the host's TCR repertoire and was simulated using affinity-based computer models. The skewing differences in TCR repertoire following homologous versus heterologous challenge were observed within the same private immune system in mice adoptively reconstituted with memory CD8 T cell pools from the same donor. Conditions driving oligoclonality resulted in an LCMV epitope escape variant in vivo resembling the natural Lassa virus sequence. Thus, T cell oligoclonality, including extremes in clonal dominance, may be a consequence of heterologous immunity and lead to viral escape. This has implications for the design of peptide-based vaccines, which might unintentionally prime for skewed TCR responses to cross-reactive epitopes.
Collapse
Affiliation(s)
- Markus Cornberg
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Alex T. Chen
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Lee A. Wilkinson
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Michael A. Brehm
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Sung-Kwon Kim
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Claudia Calcagno
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Dario Ghersi
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Roberto Puzone
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Franco Celada
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Raymond M. Welsh
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| | - Liisa K. Selin
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts, USA.
Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Hannover, Germany.
Department of Rheumatology, Hospital for Joint Diseases, New York, New York, USA.
Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy.
Department of Clinical Epidemiology, National Institute for Cancer Research, Genoa, Italy
| |
Collapse
|
41
|
Welsh RM. Private specificities of heterologous immunity. Curr Opin Immunol 2006; 18:331-7. [PMID: 16597500 DOI: 10.1016/j.coi.2006.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Antiviral T-cell responses between individuals that have similar major histocompatibility complex molecules share similarities in epitope hierarchies and T-cell receptor variable gene usage (public specificities), yet the T-cell receptor amino acid sequences differ between individuals (private specificities). The significance of the private specificities of these repertoires is brought about under conditions of heterologous immunity and might have important consequences in anti-viral immunity and immunopathology.
Collapse
Affiliation(s)
- Raymond M Welsh
- Department of Pathology and Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
42
|
Riedl P, Bertoletti A, Lopes R, Lemonnier F, Reimann J, Schirmbeck R. Distinct, Cross-Reactive Epitope Specificities of CD8 T Cell Responses Are Induced by Natural Hepatitis B Surface Antigen Variants of Different Hepatitis B Virus Genotypes. THE JOURNAL OF IMMUNOLOGY 2006; 176:4003-11. [PMID: 16547235 DOI: 10.4049/jimmunol.176.7.4003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the specific and cross-reactive CD8 T cell immunity to three natural variants (of different geno/serotype) of the small hepatitis B surface Ag (or S protein). The D(d)-binding variants of the S(201-209) epitope showed different immunogenicity. The loss of the consensus C-terminal (P9) anchor abrogated its immunogenicity. In contrast, a conservative (serine vs asparagine) exchange at P7 primed cross-reactive CD8 T cells that preferentially recognized the priming variant. Cross-reactive CD8 T cell responses to a variant could be primed in mice tolerant to an alternative variant of the D(d)-binding S(201-209) peptide. Loss of the C-terminal (P10) anchor in S(185-194) eliminated its immunogenicity in HLA-A*0201(A2)-transgenic mice but two conservative exchanges (leucine vs valine in P2, and leucine vs isoleucine in P6) in S(208-216) generated cross-reactive CD8 T cell responses with strong preference for the priming variant. Similar cross-reactive recognition of variant envelope epitopes were also found in S(208-216)-specific CD8 T cells from hepatitis B virus (HBV)-infected patients. Distinct CD8 T cell populations cross-reactive to natural variants of class I-restricted HBV epitopes can be primed by vaccination (of mice) or natural infection (of humans), and they may play a role in the "spontaneous remission" or the specific immunotherapy of chronic HBV infection.
Collapse
Affiliation(s)
- Petra Riedl
- Department of Internal Medicine I, University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Wlodarski MW, O'Keefe C, Howe EC, Risitano AM, Rodriguez A, Warshawsky I, Loughran TP, Maciejewski JP. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell–receptor restriction in large granular lymphocyte leukemia. Blood 2005; 106:2769-80. [PMID: 15914562 DOI: 10.1182/blood-2004-10-4045] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractT-cell large granular lymphocyte (T-LGL) leukemia is a clonal lymphoproliferation of cytotoxic T cells (CTLs) associated with cytopenias. T-LGL proliferation seems to be triggered/sustained by antigenic drive; it is likely that hematopoietic progenitors are the targets in this process. The antigen-specific portion of the T-cell receptor (TCR), the variable beta (VB)–chain complementarity-determining region 3 (CDR3), can serve as a molecular signature (clonotype) of a T-cell clone. We hypothesized that clonal CTL proliferation develops not randomly but in the context of an autoimmune response. We identified the clonotypic sequence of T-LGL clones in 60 patients, including 56 with known T-LGL and 4 with unspecified neutropenia. Our method also allowed for the measurement of clonal frequencies; a decrease in or loss of the pathogenic clonotype and restoration of the TCR repertoire was found after hematologic remission. We identified 2 patients with identical immunodominant CDR3 sequence. Moreover, we found similarity between multiple immunodominant clonotypes and codominant as well as a nonexpanded, “supporting” clonotypes. The data suggest a nonrandom clonal selection in T-LGL, possibly driven by a common antigen. In contrast, the physiologic clonal CTL repertoire is highly diverse and we were not able to detect any significant clonal sharing in 26 healthy controls.
Collapse
|
44
|
Rufer N. Molecular tracking of antigen-specific T-cell clones during immune responses. Curr Opin Immunol 2005; 17:441-7. [PMID: 15955685 DOI: 10.1016/j.coi.2005.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/01/2005] [Indexed: 12/22/2022]
Abstract
Despite extended international efforts, the mechanisms governing T-cell receptor repertoire selection and kinetics in response to foreign or tumour antigens remain poorly characterized. A central goal of current research is to develop improved, reliable, immunological monitoring methods that measure and combine such parameters as the frequency of antigen-specific T cells and their functional capacities, as well as their clonal expansion during immune responses. Detecting and tracking defined anti-viral- and anti-tumour-specific T-cell responses ex vivo should lead to improvements in therapeutic strategies against viral infection or cancer in the future. During the past few years, highly sensitive tools have been developed to enable the molecular dissection and tracking of clonal T-cell expansion in animal models as well as in humans.
Collapse
Affiliation(s)
- Nathalie Rufer
- Swiss Institute for Experimental Cancer Research (ISREC), NCCR Molecular Oncology, 155 ch. des Boveresses, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
45
|
Danke NA, Koelle DM, Kwok WW. Persistence of Herpes Simplex Virus Type 2 VP16-Specific CD4+ T Cells. Hum Immunol 2005; 66:777-87. [PMID: 16112025 DOI: 10.1016/j.humimm.2005.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Patients with genital herpes have frequent viral reactivations. The repeated antigenic rechallenges can modulate the CD4+ memory T-cell repertoires during the course of infection. In this study, the CD4+ T-cell responses against the herpes simplex virus type 2 (HSV-2) tegument protein VP16 were studied in two HSV-2-infected subjects at two different time points that spanned a 5-year period. Although the VP16-specific T cells did exhibit variation of T-cell receptor Vbeta usages at the two time points, T cells that used identical Vbeta and CDR3 junction sequences were also observed at the two time points. These experiments demonstrate that the CD4+ T cells that are directed against HSV-2 VP16 protein in chronically infected individuals are oligoclonal and that T cells of specific clonotypes can be maintained throughout the course of the disease.
Collapse
Affiliation(s)
- Nancy A Danke
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | |
Collapse
|
46
|
Lavoie PM, Dumont AR, McGrath H, Kernaleguen AE, Sékaly RP. Delayed expansion of a restricted T cell repertoire by low-density TCR ligands. Int Immunol 2005; 17:931-41. [PMID: 15972304 DOI: 10.1093/intimm/dxh273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of TCR ligand density (i.e. the number of antigen-MHC complexes) in modulating the diversity of a T cell response selected from a pool of naive precursors remains largely undefined. By measuring early-activation markers up-regulation and proliferation following stimulation with staphylococcal enterotoxin A (SEA), we demonstrate that decreasing the ligand dose below an optimal concentration leads to the delayed activation of a restricted set of TCRVbeta-bearing T cells, with the specific, non-stochastic exclusion of some TCRVbeta+ T cells from the activated pool. Our results suggest that the failure of these TCRVbeta-bearing T cells to reach the activation threshold at sub-optimal ligand concentration is due to the inefficiency of TCR engagement, as measured by TCR internalization, and does not correlate with the relative precursor frequency in the non-immune repertoire. Moreover, even at SEA concentrations that lead to the simultaneous proliferation of all SEA-reactive T cells, we observe marked differences in the ability to secrete cytokines among the different responsive TCRVbeta-bearing T cells. Altogether, our results indicate that the development of a T cell response to a scarce display of ligand significantly narrows TCR repertoire diversity by mechanisms that involve focusing of the repertoire on the expansion of those T cells with the highest avidity of TCR engagement.
Collapse
Affiliation(s)
- Pascal M Lavoie
- Laboratoire d'Immunologie, Centre de recherche du Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, Montréal, Québec H2X 1P1, Canada
| | | | | | | | | |
Collapse
|
47
|
Turner SJ, Kedzierska K, La Gruta NL, Webby R, Doherty PC. Characterization of CD8+ T cell repertoire diversity and persistence in the influenza A virus model of localized, transient infection. Semin Immunol 2004; 16:179-84. [PMID: 15130502 DOI: 10.1016/j.smim.2004.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza virus infection of C57BL/6 mice provides a well-characterized model for the study of acute CD8(+) T cell responses and for the analysis of memory in the absence of antigen persistence. The advent of tetramer reagents and intracellular cytokine staining, coupled with techniques such as single cell RT-PCR and influenza reverse genetics, has enabled the detailed molecular dissection of different epitope-specific primary, memory and secondary immune CD8(+) T cell responses. The approach offers novel insights into the factors determining the selection of immune repertoires, and their functional consequences for CD8(+) T cell-mediated immunity.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic. 3010, Australia.
| | | | | | | | | |
Collapse
|
48
|
Maryanski JL, Aublin A, Attuil-Audenis V, Hamrouni A. Multiple T-cell clones specific for the same foreign pMHC ligand can be generated from a single, ancestral TCR-VDJbeta precursor. Immunol Res 2004; 30:231-40. [PMID: 15477663 DOI: 10.1385/ir:30:2:231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Owing to ordered, stage-specific T-cell receptor (TCR) gene rearrangements and cell division during T-cell development, small cohorts of "half-sibling" T cells sharing an ancestral TCR VDJbeta rearrangement but expressing different TCR alpha-locus rearrangements may be selected into the mature T-cell repertoire. We wondered whether different alphabetaTCRs expressed by T cells from the same ancestral VDJbeta cohort might be capable of recognizing the same foreign peptide-major histocompatibility complex complex (pMHC). By a combined flow cytometric and single-cell polymerase chain reaction (PCR) approach to analyze TCRs selected by the previously defined foreign antigen, pCW3170-179/H-2Kd, we were able to identify cohorts of half-sibling antigen-specific CD8 T cells after their expansion in immunized mice. We amplified residual DJbeta rearrangements as clonal markers to confirm that the shared VDJbeta sequences represent ancestral rearrangements rather than identical but independent ones. An intriguing explanation of our findings would be that only a very limited repertoire of TCR alpha-chains is selected to pair with a given TCR beta-chain during T-cell development.
Collapse
Affiliation(s)
- Janet L Maryanski
- INSERM U503, IFR 128 BioSciences Lyon-Gerland, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France.
| | | | | | | |
Collapse
|
49
|
Abstract
The purpose of immunological memory is to protect the host from reinfection, to control persistent infections, and, through maternal antibody, to protect the host's immunologically immature offspring from primary infections. Immunological memory is an exclusive property of the acquired immune system, where in the presence of CD4 T cell help, T cells and B cells clonally expand and differentiate to provide effector systems that protect the host from pathogens. Here we describe how T and B cell memory is generated in response to virus infections and how these cells respond when the host is infected again by similar or different viruses.
Collapse
Affiliation(s)
- Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | |
Collapse
|
50
|
Chao DL, Davenport MP, Forrest S, Perelson AS. A stochastic model of cytotoxic T cell responses. J Theor Biol 2004; 228:227-40. [PMID: 15094017 DOI: 10.1016/j.jtbi.2003.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 12/31/2003] [Indexed: 10/26/2022]
Abstract
We have constructed a stochastic stage-structured model of the cytotoxic T lymphocyte (CTL) response to antigen and the maintenance of immunological memory. The model follows the dynamics of a viral infection and the stimulation, proliferation, and differentiation of naïve CD8(+) T cells into effector CTL, which can eliminate virally infected cells. The model is capable of following the dynamics of multiple T cell clones, each with a T cell receptor represented by a digit string. MHC-viral peptide complexes are also represented by strings and a string match rule is used to compute the affinity of a T cell receptor for a viral epitope. The avidities of interactions are also computed by taking into consideration the density of MHC-viral peptides on the surface of an infected cell. Lastly, the model allows the probability of T cell stimulation to depend on avidity but also incorporates the notion of an antigen-independent programmed proliferative response. We compare the model to experimental data on the cytotoxic T cell response to lymphocytic choriomeningitis virus infections.
Collapse
Affiliation(s)
- Dennis L Chao
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|