1
|
Clements RL, Kennedy EA, Song D, Campbell A, An HH, Amses KR, Miller-Ensminger T, Addison MM, Eisenlohr LC, Chou ST, Jurado KA. Human erythroid progenitors express antigen presentation machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601047. [PMID: 39005276 PMCID: PMC11244935 DOI: 10.1101/2024.06.27.601047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Early-life immune exposures can profoundly impact lifelong health. However, functional mechanisms underlying fetal immune development remain incomplete. Erythrocytes are not typically considered active immune mediators, primarily because erythroid precursors discard their organelles as they mature, thus losing the ability to alter gene expression in response to stimuli. Erythroid progenitors and precursors circulate in human fetuses and neonates. Although there is limited evidence that erythroid precursors are immunomodulatory, our understanding of the underlying mechanisms remains inadequate. To define the immunobiological role of fetal and perinatal erythroid progenitors and precursors, we analyzed single cell RNA-sequencing data and found that transcriptomics support erythroid progenitors as putative immune mediators. Unexpectedly, we discovered that human erythroid progenitors constitutively express Major Histocompatibility Complex (MHC) class II antigen processing and presentation machinery, which are hallmarks of specialized antigen presenting immune cells. Furthermore, we demonstrate that erythroid progenitors internalize and cleave foreign proteins into peptide antigens. Unlike conventional antigen presenting cells, erythroid progenitors express atypical costimulatory molecules and immunoregulatory cytokines that direct the development of regulatory T cells, which are critical for establishing maternal-fetal tolerance. Expression of MHC II in definitive erythroid progenitors begins during the second trimester, coinciding with the appearance of mature T cells in the fetus, and is absent in primitive progenitors. Lastly, we demonstrate physical and molecular interaction potential of erythroid progenitors and T cells in the fetal liver. Our findings shed light on a unique orchestrator of fetal immunity and provide insight into the mechanisms by which erythroid cells contribute to host defense.
Collapse
|
2
|
Cullum E, Perez-Betancourt Y, Shi M, Gkika E, Schneewind O, Missiakas D, Golovkina T. Deficiency in non-classical major histocompatibility class II-like molecule, H2-O confers protection against Staphylococcus aureus in mice. PLoS Pathog 2024; 20:e1012306. [PMID: 38843309 PMCID: PMC11185455 DOI: 10.1371/journal.ppat.1012306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/18/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
Staphylococcus aureus is a human-adapted pathogen that replicates by asymptomatically colonizing its host. S. aureus is also the causative agent of purulent skin and soft tissue infections as well as bloodstream infections that result in the metastatic seeding of abscess lesions in all organ tissues. Prolonged colonization, infection, disease relapse, and recurrence point to the versatile capacity of S. aureus to bypass innate and adaptive immune defenses as well as the notion that some hosts fail to generate protective immune responses. Here, we find a genetic trait that provides protection against this pathogen. Mice lacking functional H2-O, the equivalent of human HLA-DO, inoculated with a mouse-adapted strain of S. aureus, efficiently decolonize the pathogen. Further, these decolonized animals resist subsequent bloodstream challenge with methicillin-resistant S. aureus. A genetic approach demonstrates that T-cell dependent B cell responses are required to control S. aureus colonization and infection in H2-O-deficient mice. Reduced bacterial burdens in these animals correlate with increased titers and enhanced phagocytic activity of S. aureus-specific antibodies. H2-O negatively regulates the loading of high affinity peptides on major histocompatibility class II (MHC-II) molecules. Thus, we hypothesize that immune responses against S. aureus are derepressed in mice lacking H2-O because more high affinity peptides are presented by MHC-II. We speculate that loss-of-function HLA-DO alleles may similarly control S. aureus replication in humans.
Collapse
Affiliation(s)
- Emily Cullum
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
| | - Yunys Perez-Betancourt
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Miaomiao Shi
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Eirinaios Gkika
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois, United States of America
| | - Tatyana Golovkina
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Immunology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Microbiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Genetics, Genomics and System Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Welsh RA, Song N, Park CS, Peske JD, Sadegh-Nasseri S. H2-O deficiency promotes regulatory T cell differentiation and CD4 T cell hyperactivity. Front Immunol 2024; 14:1304798. [PMID: 38250071 PMCID: PMC10796743 DOI: 10.3389/fimmu.2023.1304798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Regulatory T cells (Treg) are crucial immune modulators, yet the exact mechanism of thymic Treg development remains controversial. Here, we present the first direct evidence for H2-O, an MHC class II peptide editing molecular chaperon, on selection of thymic Tregs. We identified that lack of H2-O in the thymic medulla promotes thymic Treg development and leads to an increased peripheral Treg frequency. Single-cell RNA-sequencing (scRNA-seq) analysis of splenic CD4 T cells revealed not only an enrichment of effector-like Tregs, but also activated CD4 T cells in the absence of H2-O. Our data support two concepts; a) lack of H2-O expression in the thymic medulla creates an environment permissive to Treg development and, b) that loss of H2-O drives increased basal auto-stimulation of CD4 T cells. These findings can help in better understanding of predispositions to autoimmunity and design of therapeutics for treatment of autoimmune diseases.
Collapse
|
4
|
Welsh RA, Song N, Park CS, Peske JD, Sadegh-Nasseri S. H2-O deficiency promotes regulatory T cell differentiation and CD4 T cell hyperactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553240. [PMID: 37645777 PMCID: PMC10462011 DOI: 10.1101/2023.08.14.553240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Regulatory T cells (Treg) are crucial immune modulators, yet the exact mechanism of thymic Treg development remains controversial. Here, we present the first direct evidence for H2-O, an MHC class II peptide editing molecular chaperon, on selection of thymic Tregs. We provide evidence that lack of H2-O in the thymic medulla promotes thymic Treg development and leads to an increased peripheral Treg frequency. Single-cell RNA-sequencing (scRNA-seq) analysis of splenic CD4 T cells revealed not only of an enrichment of effector-like Tregs but also of activated CD4 T cells in the absence of H2-O. Our data support two concepts; a) lack of H2-O expression in the thymic medulla creates an environment permissive to Treg development and, b) that loss of H2-O drives increased basal auto-stimulation of CD4 T cells. These findings can help in better understanding of predispositions to autoimmunity and design of therapeutics for treatment of autoimmune diseases.
Collapse
|
5
|
Santambrogio L. Molecular Determinants Regulating the Plasticity of the MHC Class II Immunopeptidome. Front Immunol 2022; 13:878271. [PMID: 35651601 PMCID: PMC9148998 DOI: 10.3389/fimmu.2022.878271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, advancement in the analysis of the MHC class II (MHC-II) ligandome in several mouse and human haplotypes has increased our understanding of the molecular components that regulate the range and selection of the MHC-II presented peptides, from MHC class II molecule polymorphisms to the recognition of different conformers, functional differences in endosomal processing along the endocytic tract, and the interplay between the MHC class II chaperones DM and DO. The sum of all these variables contributes, qualitatively and quantitatively, to the composition of the MHC II ligandome, altogether ensuring that the immunopeptidome landscape is highly sensitive to any changes in the composition of the intra- and extracellular proteome for a comprehensive survey of the microenvironment for MHC II presentation to CD4 T cells.
Collapse
Affiliation(s)
- Laura Santambrogio
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Laura Santambrogio,
| |
Collapse
|
6
|
Olsson N, Jiang W, Adler LN, Mellins ED, Elias JE. Tuning DO:DM ratios modulates MHC class II immunopeptidomes. Mol Cell Proteomics 2022; 21:100204. [DOI: 10.1016/j.mcpro.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022] Open
|
7
|
Regulation of the BCR signalosome by the class II peptide editor, H2-M, affects the development and repertoire of innate-like B cells. Cell Rep 2022; 38:110200. [DOI: 10.1016/j.celrep.2021.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
|
8
|
Lee J, Cullum E, Stoltz K, Bachmann N, Strong Z, Millick DD, Denzin LK, Chang A, Tarakanova V, Chervonsky AV, Golovkina T. Mouse Homologue of Human HLA-DO Does Not Preempt Autoimmunity but Controls Murine Gammaherpesvirus MHV68. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2944-2951. [PMID: 34810225 PMCID: PMC9124240 DOI: 10.4049/jimmunol.2100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
H2-O (human HLA-DO) is a relatively conserved nonclassical MHC class II (MHCII)-like molecule. H2-O interaction with human HLA-DM edits the repertoire of peptides presented to TCRs by MHCII. It was long hypothesized that human HLA-DM inhibition by H2-O provides protection from autoimmunity by preventing binding of the high-affinity self-peptides to MHCII. The available evidence supporting this hypothesis, however, was inconclusive. A possibility still remained that the effect of H2-O deficiency on autoimmunity could be better revealed by using H2-O-deficient mice that were already genetically predisposed to autoimmunity. In this study, we generated and used autoimmunity-prone mouse models for systemic lupus erythematosus and organ-specific autoimmunity (type 1 diabetes and multiple sclerosis) to definitively test whether H2-O prevents autoimmune pathology. Whereas our data failed to support any significance of H2-O in protection from autoimmunity, we found that it was critical for controlling a γ-herpesvirus, MHV68. Thus, we propose that H2-O editing of the MHCII peptide repertoire may have evolved as a safeguard against specific highly prevalent viral pathogens.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, the University of Chicago, Chicago, IL
| | - Emily Cullum
- Committee on Immunology, the University of Chicago, Chicago, IL
| | - Kyle Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Niklas Bachmann
- Department of Microbiology, the University of Chicago, Chicago, IL
| | - Zoe Strong
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Danielle D Millick
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
| | - Lisa K Denzin
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ; and
| | - Anthony Chang
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Vera Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Alexander V Chervonsky
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Pathology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| | - Tatyana Golovkina
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Microbiology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Cullum E, Graves AM, Tarakanova VL, Denzin LK, Golovkina T. MHC Class II Presentation Is Affected by Polymorphism in the H2-Ob Gene and Additional Loci. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:5-14. [PMID: 34135064 PMCID: PMC8674376 DOI: 10.4049/jimmunol.2100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Pathogen-derived peptides are loaded on MHC class II (MHCII) and presented to CD4+ T cells for their activation. Peptide loading of MHCII occurs in specialized endosomal compartments and is controlled by the nonclassical MHCII molecules H2-M and H2-O, which are both constitutive αβ heterodimers. H2-M catalyzes MHCII peptide loading, whereas H2-O modulates H2-M activity by acting as an MHCII mimic. Recently, we discovered that the H2-Ob allele inherited by retrovirus-resistant I/LnJ mice results in nonfunctional H2-O. I/LnJ H2-O binds to but does not inhibit H2-M. Compared with H2-Oβ from virus-susceptible mice, H2-Oβ from I/LnJ mice has four unique amino acid substitutions, three in the Ig domain and one in the cytoplasmic tail. In this study we show that the three amino acids in the Ig domain of I/LnJ Oβ are critical for the H2-O inhibitory activity of H2-M. Unexpectedly, we found that MHCII presentation was significantly different in Ag-presenting cells from two closely related mouse strains, B6J and B6N, which carry identical alleles of MHCII, H2-O, and H2-M. Using a positional cloning approach, we have identified two loci, polymorphic between B6J and B6N, that mediate the difference in MHCII presentation. Collectively, these studies reveal extra complexity in MHCII/H2-M/H-2O interactions that likely involve yet to be identified modulators of the pathway.
Collapse
Affiliation(s)
- Emily Cullum
- Committee on Immunology, University of Chicago, Chicago, IL
| | - Austin M Graves
- Graduate School of Biomedical Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Lisa K Denzin
- Department of Microbiology and Immunology, Cancer Center, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | - Tatyana Golovkina
- Committee on Immunology, University of Chicago, Chicago, IL;
- Committee on Microbiology, University of Chicago, Chicago, IL; and
- Department of Microbiology, University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Partnering for the major histocompatibility complex class II and antigenic determinant requires flexibility and chaperons. Curr Opin Immunol 2021; 70:112-121. [PMID: 34146954 DOI: 10.1016/j.coi.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Cytotoxic, or helper T cells recognize antigen via T cell receptors (TCRs) that can see their target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. For MHC class II epitope selection from exogenous pathogens or self-antigens, participation of several accessory proteins, molecular chaperons, processing enzymes within multiple vesicular compartments is necessary. A major contributing factor is the MHC class II structure itself that uniquely offers a dynamic and flexible groove essential for epitope selection. In this review, I have taken a historical perspective focusing on the flexibility of the MHC II molecules as the driving force in determinant selection and interactions with the accessory molecules in antigen processing, HLA-DM and HLA-DO.
Collapse
|
11
|
Welsh RA, Song N, Sadegh-Nasseri S. How Does B Cell Antigen Presentation Affect Memory CD4 T Cell Differentiation and Longevity? Front Immunol 2021; 12:677036. [PMID: 34177919 PMCID: PMC8224923 DOI: 10.3389/fimmu.2021.677036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells are the antigen presenting cells that process antigens effectively and prime the immune system, a characteristic that have gained them the spotlights in recent years. B cell antigen presentation, although less prominent, deserves equal attention. B cells select antigen experienced CD4 T cells to become memory and initiate an orchestrated genetic program that maintains memory CD4 T cells for life of the individual. Over years of research, we have demonstrated that low levels of antigens captured by B cells during the resolution of an infection render antigen experienced CD4 T cells into a quiescent/resting state. Our studies suggest that in the absence of antigen, the resting state associated with low-energy utilization and proliferation can help memory CD4 T cells to survive nearly throughout the lifetime of mice. In this review we would discuss the primary findings from our lab as well as others that highlight our understanding of B cell antigen presentation and the contributions of the MHC Class II accessory molecules to this outcome. We propose that the quiescence induced by the low levels of antigen presentation might be a mechanism necessary to regulate long-term survival of CD4 memory T cells and to prevent cross-reactivity to autoantigens, hence autoimmunity.
Collapse
Affiliation(s)
- Robin A Welsh
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Nianbin Song
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 2021; 54:721-736.e10. [PMID: 33725478 DOI: 10.1016/j.immuni.2021.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/30/2020] [Accepted: 02/24/2021] [Indexed: 01/11/2023]
Abstract
Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.
Collapse
|
13
|
Álvaro-Benito M, Freund C. Revisiting nonclassical HLA II functions in antigen presentation: Peptide editing and its modulation. HLA 2020; 96:415-429. [PMID: 32767512 DOI: 10.1111/tan.14007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
The nonclassical major histocompatibility complex of class II molecules (ncMHCII) HLA-DM (DM) and HLA-DO (DO) feature essential functions for the selection of the peptides that are displayed by classical MHCII proteins (MHCII) for CD4+ Th cell surveillance. Thus, although the binding groove of classical MHCII dictates the main features of the peptides displayed, ncMHCII function defines the preferential loading of peptides from specific cellular compartments and the extent to which they are presented. DM acts as a chaperone for classical MHCII molecules facilitating peptide exchange and thereby favoring the binding of peptide-MHCII complexes of high kinetic stability mostly in late endosomal compartments. DO on the other hand binds to DM blocking its peptide-editing function in B cells and thymic epithelial cells, limiting DM activity in these cellular subsets. DM and DO distinct expression patterns therefore define specific antigen presentation profiles that select unique peptide pools for each set of antigen presenting cell. We have come a long way understanding the mechanistic underpinnings of such distinct editing profiles and start to grasp the implications for ncMHCII biological function. DM acts as filter for the selection of immunodominant, pathogen-derived epitopes while DO blocks DM activity under certain physiological conditions to promote tolerance to self. Interestingly, recent findings have shown that the unexplored and neglected ncMHCII genetic diversity modulates retroviral infection in mouse, and affects human ncMHCII function. This review aims at highlighting the importance of ncMHCII function for CD4+ Th cell responses while integrating and evaluating what could be the impact of distinct editing profiles because of natural genetic variations.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
14
|
Welsh RA, Sadegh-Nasseri S. The love and hate relationship of HLA-DM/DO in the selection of immunodominant epitopes. Curr Opin Immunol 2020; 64:117-123. [PMID: 32599219 DOI: 10.1016/j.coi.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Successful activation of CD4 T cells is centered around the ability of antigen presenting cells to successfully process, select Class II immunodominant epitopes from exogenous antigens and to present it to cognate T cells. To achieve this, newly synthesized MHC-II molecules are transferred to a specialized compartment which contain both exogenous antigens and the Class II processing machinery. Here in a process known as 'editing,' the Class II accessory molecule DM (HLA-DM human; murine H2-M) facilitates the loading and selection of exogenous peptides to MHC class II molecules thereby assuring proper selection of immunodominant epitopes. A second Class II accessory molecule, DO (HLA-DO human; murine H2-O), mainly present in B cells and thymic epithelium also contributes to the selection of immunodominant epitopes. Yet, despite a wealth of mechanistic insights into how DM functions, understanding the contributions of DO to epitope selection has proven to be highly challenging. In this review, we have attempted to discuss published in vitro and in vivo data during the past three years with insights into the biology of DO.
Collapse
Affiliation(s)
- Robin A Welsh
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
15
|
MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4 + T cells. Proc Natl Acad Sci U S A 2020; 117:13659-13669. [PMID: 32482872 DOI: 10.1073/pnas.2003170117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T cell maturation and activation depend upon T cell receptor (TCR) interactions with a wide variety of antigenic peptides displayed in a given major histocompatibility complex (MHC) context. Complementarity-determining region 3 (CDR3) is the most variable part of the TCRα and -β chains, which govern interactions with peptide-MHC complexes. However, it remains unclear how the CDR3 landscape is shaped by individual MHC context during thymic selection of naïve T cells. We established two mouse strains carrying distinct allelic variants of H2-A and analyzed thymic and peripheral production and TCR repertoires of naïve conventional CD4+ T (Tconv) and naïve regulatory CD4+ T (Treg) cells. Compared with tuberculosis-resistant C57BL/6 (H2-Ab) mice, the tuberculosis-susceptible H2-Aj mice had fewer CD4+ T cells of both subsets in the thymus. In the periphery, this deficiency was only apparent for Tconv and was compensated for by peripheral reconstitution for Treg We show that H2-Aj favors selection of a narrower and more convergent repertoire with more hydrophobic and strongly interacting amino acid residues in the middle of CDR3α and CDR3β, suggesting more stringent selection against a narrower peptide-MHC-II context. H2-Aj and H2-Ab mice have prominent reciprocal differences in CDR3α and CDR3β features, probably reflecting distinct modes of TCR fitting to MHC-II variants. These data reveal the mechanics and extent of how MHC-II shapes the naïve CD4+ T cell CDR3 landscape, which essentially defines adaptive response to infections and self-antigens.
Collapse
|
16
|
Synergy between B cell receptor/antigen uptake and MHCII peptide editing relies on HLA-DO tuning. Sci Rep 2019; 9:13877. [PMID: 31554902 PMCID: PMC6761166 DOI: 10.1038/s41598-019-50455-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
B cell receptors and surface-displayed peptide/MHCII complexes constitute two key components of the B-cell machinery to sense signals and communicate with other cell types during antigen-triggered activation. However, critical pathways synergizing antigen-BCR interaction and antigenic peptide-MHCII presentation remain elusive. Here, we report the discovery of factors involved in establishing such synergy. We applied a single-cell measure coupled with super-resolution microscopy to investigate the integrated function of two lysosomal regulators for peptide loading, HLA-DM and HLA-DO. In model cell lines and human tonsillar B cells, we found that tunable DM/DO stoichiometry governs DMfree activity for exchange of placeholder CLIP peptides with high affinity MHCII ligands. Compared to their naïve counterparts, memory B cells with less DMfree concentrate a higher proportion of CLIP/MHCII in lysosomal compartments. Upon activation mediated by high affinity BCR, DO tuning is synchronized with antigen internalization and rapidly potentiates DMfree activity to optimize antigen presentation for T-cell recruitment.
Collapse
|
17
|
Nanaware PP, Jurewicz MM, Leszyk JD, Shaffer SA, Stern LJ. HLA-DO Modulates the Diversity of the MHC-II Self-peptidome. Mol Cell Proteomics 2019; 18:490-503. [PMID: 30573663 PMCID: PMC6398211 DOI: 10.1074/mcp.ra118.000956] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
Presentation of antigenic peptides on MHC-II molecules is essential for tolerance to self and for initiation of immune responses against foreign antigens. DO (HLA-DO in humans, H2-O in mice) is a nonclassical MHC-II protein that has been implicated in control of autoimmunity and regulation of neutralizing antibody responses to viruses. These effects likely are related to a role of DO in selecting MHC-II epitopes, but previous studies examining the effect of DO on presentation of selected CD4 T cell epitopes have been contradictory. To understand how DO modulates MHC-II antigen presentation, we characterized the full spectrum of peptides presented by MHC-II molecules expressed by DO-sufficient and DO-deficient antigen-presenting cells in vivo and in vitro using quantitative mass spectrometry approaches. We found that DO controlled the diversity of the presented peptide repertoire, with a subset of peptides presented only when DO was expressed. Antigen-presenting cells express another nonclassical MHC-II protein, DM, which acts as a peptide editor by preferentially catalyzing the exchange of less stable MHC-II peptide complexes, and which is inhibited when bound to DO. Peptides presented uniquely in the presence of DO were sensitive to DM-mediated exchange, suggesting that decreased DM editing was responsible for the increased diversity. DO-deficient mice mounted CD4 T cell responses against wild-type antigen-presenting cells, but not vice versa, indicating that DO-dependent alterations in the MHC-II peptidome could be recognized by circulating T cells. These data suggest that cell-specific and regulated expression of HLA-DO serves to fine-tune MHC-II peptidomes, in order to enhance self-tolerance to a wide spectrum of epitopes while allowing focused presentation of immunodominant epitopes during an immune response.
Collapse
Affiliation(s)
- Padma P Nanaware
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Mollie M Jurewicz
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - John D Leszyk
- §Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
| | - Scott A Shaffer
- §Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
- ¶Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Lawrence J Stern
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
- ¶Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
18
|
Welsh R, Song N, Sadegh-Nasseri S. What to do with HLA-DO/H-2O two decades later? Immunogenetics 2019; 71:189-196. [PMID: 30683973 PMCID: PMC6377320 DOI: 10.1007/s00251-018-01097-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
The main objective of antigen processing is to orchestrate the selection of immunodominant epitopes for recognition by CD4 T cells. To achieve this, MHC class II molecules have evolved with a flexible peptide-binding groove in need of a bound peptide. Newly synthesized MHC-II molecules bind a class II invariant chain (Ii) upon synthesis and are shuttled to a specialized compartment, where they encounter exogenous antigens. Ii serves multiple functions, one of which is to maintain the shape of the MHC-II groove so that it can readily bind exogenous antigens upon dissociation of the Ii peptide in MHC- II compartment. MIIC contains processing enzymes, one or both accessory molecules, HLA-DM/H2-M (DM) and HLA-DO/H2-O (DO), and optimal denaturing conditions. In a process known as "editing," DM facilitates the dissociation of the invariant chain peptide, CLIP, for exchange with exogenous antigens. Despite the availability of mechanistic insights into DM functions, understanding how DO contributes to epitope selection has proven to be more challenging. The current dogma assumes that DO inhibits DM, whereas an opposing model suggests that DO fine-tunes the epitope selection process. Understanding which of these, or potentially other models of DO function is important, as DO variants have been linked to autoimmunity, cancer, and the generation of broadly neutralizing antibodies to viruses. This review therefore attempts to evaluate experimental evidence in support of these hypotheses, with an emphasis on the less discussed model, and to explore intriguing questions about the importance of DO in biology.
Collapse
Affiliation(s)
- Robin Welsh
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Nianbin Song
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Wennhold K, Shimabukuro-Vornhagen A, von Bergwelt-Baildon M. B Cell-Based Cancer Immunotherapy. Transfus Med Hemother 2019; 46:36-46. [PMID: 31244580 PMCID: PMC6558332 DOI: 10.1159/000496166] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
B cells are not only producers of antibodies, but also contribute to immune regulation or act as potent antigen-presenting cells. The potential of B cells for cellular therapy is still largely underestimated, despite their multiple diverse effector functions. The CD40L/CD40 signaling pathway is the most potent activator of antigen presentation capacity in B lymphocytes. CD40-activated B cells are potent antigen-presenting cells that induce specific T-cell responses in vitro and in vivo. In preclinical cancer models in mice and dogs, CD40-activated B cell-based cancer immunotherapy was able to induce effective antitumor immunity. So far, there have been only few early-stage clinical studies involving B cell-based cancer vaccines. These trials indicate that B cell-based immunotherapy is generally safe and associated with little toxicity. Furthermore, these studies suggest that B-cell immunotherapy can elicit antitumor T-cell responses. Alongside the recent advances in cellular therapies in general, major obstacles for generation of good manufacturing practice-manufactured B-cell immunotherapies have been overcome. Thus, a first clinical trial involving CD40-activated B cells might be in reach.
Collapse
Affiliation(s)
- Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Michael von Bergwelt-Baildon
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Gene Center Munich, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
21
|
Sadegh-Nasseri S, Kim A. Selection of immunodominant epitopes during antigen processing is hierarchical. Mol Immunol 2018; 113:115-119. [PMID: 30146122 DOI: 10.1016/j.molimm.2018.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
MHC II proteins present processed antigens to CD4 + T cells through a complex set of events and players that include chaperons and accessory molecules. Antigen processing machinery is optimized for the selection of the best fitting peptides, called 'immunodominant epitopes', in the MHC II groove to which, specific CD4 + T cells respond and differentiate into memory T cells. However, due to the complexity of antigen processing, understanding the parameters that lead to immunodominance has proved difficult. Moreover, immunodominance of epitopes vary, depending on multiple factors that include; simultaneous processing of multiple proteins, involvement of multiple alleles of MHC II that can bind to the same antigen, or competition among several suitable epitopes on a single protein antigen. The current dogma assumes that once an antigenic determinant is selected under a specific condition, it would emerge immunodominant wherever it is placed. Here we will discuss some established parameters that contribute to immunodominance as well as some new findings, which demonstrate that slight changes to antigen structure can cause a complete shift in epitope selection during antigen processing and distort the natural immunodominant epitope.
Collapse
Affiliation(s)
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Alvaro-Benito M, Morrison E, Wieczorek M, Sticht J, Freund C. Human leukocyte Antigen-DM polymorphisms in autoimmune diseases. Open Biol 2017; 6:rsob.160165. [PMID: 27534821 PMCID: PMC5008016 DOI: 10.1098/rsob.160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
Classical MHC class II (MHCII) proteins present peptides for CD4+ T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.
Collapse
Affiliation(s)
- Miguel Alvaro-Benito
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eliot Morrison
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marek Wieczorek
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jana Sticht
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Protein Biochemistry Group, Institute for Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Denzin LK, Khan AA, Virdis F, Wilks J, Kane M, Beilinson HA, Dikiy S, Case LK, Roopenian D, Witkowski M, Chervonsky AV, Golovkina TV. Neutralizing Antibody Responses to Viral Infections Are Linked to the Non-classical MHC Class II Gene H2-Ob. Immunity 2017; 47:310-322.e7. [PMID: 28813660 PMCID: PMC5568092 DOI: 10.1016/j.immuni.2017.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/23/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Select humans and animals control persistent viral infections via adaptive immune responses that include production of neutralizing antibodies. The precise genetic basis for the control remains enigmatic. Here, we report positional cloning of the gene responsible for production of retrovirus-neutralizing antibodies in mice of the I/LnJ strain. It encodes the beta subunit of the non-classical major histocompatibility complex class II (MHC-II)-like molecule H2-O, a negative regulator of antigen presentation. The recessive and functionally null I/LnJ H2-Ob allele supported the production of virus-neutralizing antibodies independently of the classical MHC haplotype. Subsequent bioinformatics and functional analyses of the human H2-Ob homolog, HLA-DOB, revealed both loss- and gain-of-function alleles, which could affect the ability of their carriers to control infections with human hepatitis B (HBV) and C (HCV) viruses. Thus, understanding of the previously unappreciated role of H2-O (HLA-DO) in immunity to infections may suggest new approaches in achieving neutralizing immunity to viruses.
Collapse
Affiliation(s)
- Lisa K Denzin
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Aly A Khan
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Francesca Virdis
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | - Jessica Wilks
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Melissa Kane
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Helen A Beilinson
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Stanislav Dikiy
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Laure K Case
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Michele Witkowski
- Child Health Institute of NJ, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | | - Tatyana V Golovkina
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Kelly A, Trowsdale J. Introduction: MHC/KIR and governance of specificity. Immunogenetics 2017; 69:481-488. [PMID: 28695288 PMCID: PMC5537316 DOI: 10.1007/s00251-017-0986-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/02/2022]
Abstract
The MHC controls specificity, to ensure that appropriate immune responses are mounted to invading pathogens whilst maintaining tolerance to the host. It encodes molecules that act as sentinels, providing a snapshot of the health of the interior and exterior of the cell for immune surveillance. To maintain the ability to respond appropriately to any disease requires a delicate balance of expression and function, and many subtleties of the system have been described at the gene, individual and population level. The main players are the highly polymorphic classical MHC class I and class II molecules, as well as some non-classical loci of both types. Transporter associated with antigen processing (TAP) peptide transporters, proteasome components and Tapasin, encoded within the MHC, are also involved in selection of peptide for presentation. The plethora of mechanisms microorganisms use to subvert immune recognition, through blocking these antigen processing and presentation pathways, attests to the importance of HLA in resistance to infection. There is continued interest in MHC genetics in its own right, as well as in relation to KIR, to transplantation, infection, autoimmunity and reproduction. Also of topical interest, cancer immunotherapy through checkpoint inhibition depends on highly specific recognition of cancer peptide antigen and continued expression of HLA molecules. Here, we briefly introduce some background to the MHC/KIR axis in man. This special issue of immunogenetics expands on these topics, in humans and other model species.
Collapse
Affiliation(s)
- Adrian Kelly
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, CB21QP, UK.
| |
Collapse
|
25
|
Abstract
Unlike B cells, CD8-positive and CD4-positive T cells of the adaptive immune system do not recognize intact foreign proteins but instead recognize polypeptide fragments of potential antigens. These antigenic peptides are expressed on the surface of antigen presenting cells bound to MHC class I and MHC class II proteins. Here, we review the basics of antigen acquisition by antigen presenting cells, antigen proteolysis into polypeptide fragments, antigenic peptide binding to MHC proteins, and surface display of both MHC class I-peptide and MHC class II-peptide complexes.
Collapse
|
26
|
Mettu RR, Charles T, Landry SJ. CD4+ T-cell epitope prediction using antigen processing constraints. J Immunol Methods 2016; 432:72-81. [PMID: 26891811 DOI: 10.1016/j.jim.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes.
Collapse
Affiliation(s)
- Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, LA, USA; Vector-Borne Infectious Diseases Research Center, Tulane University, New Orleans, LA, USA.
| | - Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
27
|
Jiang W, Strohman MJ, Somasundaram S, Ayyangar S, Hou T, Wang N, Mellins ED. pH-susceptibility of HLA-DO tunes DO/DM ratios to regulate HLA-DM catalytic activity. Sci Rep 2015; 5:17333. [PMID: 26610428 PMCID: PMC4661524 DOI: 10.1038/srep17333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/28/2015] [Indexed: 11/14/2022] Open
Abstract
The peptide-exchange catalyst, HLA-DM, and its inhibitor, HLA-DO control endosomal generation of peptide/class II major histocompatibility protein (MHC-II) complexes; these complexes traffic to the cell surface for inspection by CD4+ T cells. Some evidence suggests that pH influences DO regulation of DM function, but pH also affects the stability of polymorphic MHC-II proteins, spontaneous peptide loading, DM/MHC-II interactions and DM catalytic activity, imposing challenges on approaches to determine pH effects on DM-DO function and their mechanistic basis. Using optimized biochemical methods, we dissected pH-dependence of spontaneous and DM-DO-mediated class II peptide exchange and identified an MHC-II allele-independent relationship between pH, DO/DM ratio and efficient peptide exchange. We demonstrate that active, free DM is generated from DM-DO complexes at late endosomal/lysosomal pH due to irreversible, acid-promoted DO destruction rather than DO/DM molecular dissociation. Any soluble DM that remains in complex with DO stays inert. pH-exposure of DM-DO in cell lysates corroborates such a pH-regulated mechanism, suggesting acid-activated generation of functional DM in DO-expressing cells.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael J Strohman
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | | | - Sashi Ayyangar
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Tieying Hou
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Nan Wang
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Stanford Program in Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Sadegh-Nasseri S, Kim A. Exogenous antigens bind MHC class II first, and are processed by cathepsins later. Mol Immunol 2015; 68:81-4. [PMID: 26254987 DOI: 10.1016/j.molimm.2015.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/18/2022]
Abstract
The field of antigen processing and presentation is likely one of the most well defined areas in immunology based on decades of intense molecular and structural studies. Many molecules contributing to antigen processing and presentation have been discovered and their mechanisms of action been largely defined, yet a major question, which lies at the very core of the field has remained hard to pin down. The question is what determines immunodominance? Immunodominance is defined as a few specific epitopes being selected to represent an antigen to the immune system and provide targets for T cells. Many studies have aimed at understanding how epitopes are selected. A range of hypotheses related to the structural features of antigens, sensitivity to proteases, epitope affinity for MHC II, T cell precursor frequency, and T cell receptor affinity for peptide/MHC II have been considered. However, because of the variety of proteins and factors involved in antigen processing and enormous complexity, finding an answer has been challenging. Here we make an effort to tease out the sequence of events in antigen processing that promote selection of immunodominant epitopes for exogenous antigens.
Collapse
Affiliation(s)
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
29
|
Goldberg AC, Rizzo LV. MHC structure and function - antigen presentation. Part 2. ACTA ACUST UNITED AC 2015; 13:157-62. [PMID: 25807243 PMCID: PMC4977603 DOI: 10.1590/s1679-45082015rb3123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/27/2014] [Indexed: 01/13/2023]
Abstract
The second part of this review deals with the molecules and processes involved in the processing and presentation of the antigenic fragments to the T-cell receptor. Though the nature of the antigens presented varies, the most significant class of antigens is proteins, processed within the cell to be then recognized in the form of peptides, a mechanism that confers an extraordinary degree of precision to this mode of immune response. The efficiency and accuracy of this system is also the result of the myriad of mechanisms involved in the processing of proteins and production of peptides, in addition to the capture and recycling of alternative sources aiming to generate further diversity in the presentation to T-cells.
Collapse
|
30
|
|
31
|
Denzin LK. Inhibition of HLA-DM Mediated MHC Class II Peptide Loading by HLA-DO Promotes Self Tolerance. Front Immunol 2013; 4:465. [PMID: 24381574 PMCID: PMC3865790 DOI: 10.3389/fimmu.2013.00465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/03/2013] [Indexed: 12/05/2022] Open
Abstract
Major histocompatibility class II (MHCII) molecules are loaded with peptides derived from foreign and self-proteins within the endosomes and lysosomes of antigen presenting cells (APCs). This process is mediated by interaction of MHCII with the conserved, non-polymorphic MHCII like molecule HLA-DM (DM). DM activity is directly opposed by HLA-DO (DO), another conserved, non-polymorphic MHCII like molecule. DO is an MHCII substrate mimic. Binding of DO to DM prevents MHCII from binding to DM, thereby inhibiting peptide loading. Inhibition of DM function enables low stability MHC complexes to survive and populate the surface of APCs. As a consequence, DO promotes the display of a broader pool of low abundance self-peptides. Broadening the peptide repertoire theoretically reduces the likelihood of inadvertently acquiring a density of self-ligands that is sufficient to activate self-reactive T cells. One function of DO, therefore, is to promote T cell tolerance by shaping the visible image of self. Recent data also shows that DO influences the adaptive immune response by controlling B cell entry into the germinal center reaction. This review explores the data supporting these concepts.
Collapse
Affiliation(s)
- Lisa K Denzin
- Department of Pediatrics, Robert Wood Johnson Medical School, Child Health Institute of New Jersey, Rutgers, The State University of New Jersey , New Brunswick, NJ , USA
| |
Collapse
|
32
|
Wennhold K, Shimabukuro-Vornhagen A, Theurich S, von Bergwelt-Baildon M. CD40-activated B cells as antigen-presenting cells: the final sprint toward clinical application. Expert Rev Vaccines 2013; 12:631-7. [PMID: 23750793 DOI: 10.1586/erv.13.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Efficient antigen presentation is a prerequisite for the development of a T-cell-mediated immune response in vitro and in vivo. CD40-activated B cells (CD40B cells) are a promising alternative to dendritic cells as professional APCs for immunotherapy. CD40 activation dramatically improves antigen presentation by normal and malignant B cells, efficiently inducing naive and memory CD4(+) and CD8(+) T-cell responses. Moreover, CD40B cells do not only attract T cells by release of chemokines, but also home to secondary lymphoid organs. Furthermore, CD40B cells can be expanded exponentially over several weeks at high purity without a loss of antigen-presenting function, providing an almost unlimited source of cellular adjuvant. Vaccination with CD40B cells was shown in mice and dogs to induce a specific immune response. This article summarizes the achievements of intense research on CD40B cells over the last decade, as well as novel developments critical for a rapid translation into clinical application.
Collapse
Affiliation(s)
- Kerstin Wennhold
- Cologne Interventional Immunology, Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.
| | | | | | | |
Collapse
|
33
|
Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol 2013; 26:115-22. [PMID: 24463216 DOI: 10.1016/j.coi.2013.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Abstract
Peptide loading of class II MHC molecules in endosomal compartments is regulated by HLA-DM. HLA-DO modulates HLA-DM function, with consequences for the spectrum of MHC-bound epitopes presented at the cell surface for interaction with T cells. Here, we summarize and discuss recent progress in investigating the molecular mechanisms of action of HLA-DM and HLA-DO and in understanding their roles in immune responses. Key findings are the long-awaited structures of HLA-DM in complex with its class II substrate and with HLA-DO, and observation of a novel phenotype--autoimmunity combined with immunodeficiency--in mice lacking HLA-DO. We also highlight several areas where gaps persist in our knowledge about this pair of proteins and their molecular biology and immunobiology.
Collapse
Affiliation(s)
- Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA 94305, United States
| | - Lawrence J Stern
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
34
|
ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 2013; 5:a016873. [PMID: 24296169 DOI: 10.1101/cshperspect.a016873] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
For the initiation of adaptive immune responses, dendritic cells present antigenic peptides in association with major histocompatibility complex class II (MHCII) to naïve CD4(+) T lymphocytes. In this review, we discuss how antigen presentation is regulated through intracellular processing and trafficking of MHCII. Newly synthesized MHCII is chaperoned by the invariant chain to endosomes, where peptides from endocytosed pathogens can bind. In nonactivated dendritic cells, peptide-loaded MHCII is ubiquitinated and consequently sorted by the ESCRT machinery to intraluminal vesicles of multivesicular bodies, ultimately leading to lysosomal degradation. Ubiquitination of newly synthesized MHCII is blocked when dendritic cells are activated, now allowing its transfer to the cell surface. This mode of regulation for MHCII is a prime example of how molecular processing and sorting at multivesicular bodies can determine the expression of signaling receptors at the plasma membrane.
Collapse
Affiliation(s)
- Toine ten Broeke
- Utrecht University, Faculty of Veterinary Medicine, Department of Biochemistry and Cell Biology, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | |
Collapse
|
35
|
Poluektov YO, Kim A, Sadegh-Nasseri S. HLA-DO and Its Role in MHC Class II Antigen Presentation. Front Immunol 2013; 4:260. [PMID: 24009612 PMCID: PMC3756479 DOI: 10.3389/fimmu.2013.00260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 11/25/2022] Open
Abstract
Helper T cells are stimulated to fight infections or diseases upon recognition of peptides from antigens that are processed and presented by the proteins of Major Histocompatibility Complex (MHC) Class II molecules. Degradation of a full protein into small peptide fragments is a lengthy process consisting of many steps and chaperones. Malfunctions during any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Although much has been accomplished regarding how antigens are processed and presented to T cells, many questions still remain unanswered, preventing the design of therapeutics for direct intervention with antigen processing. Here, we review published work on the discovery and function of a MHC class II molecular chaperone, HLA-DO, in human, and its mouse analog H2-O, herein called DO. While DO was originally discovered decades ago, elucidating its function has proven challenging. DO was discovered in association with another chaperone HLA-DM (DM) but unlike DM, its distribution is more tissue specific, and its function more subtle.
Collapse
Affiliation(s)
- Yuri O Poluektov
- Graduate Program in Immunology, Johns Hopkins University , Baltimore, MD , USA
| | | | | |
Collapse
|
36
|
Poluektov YO, Kim A, Hartman IZ, Sadegh-Nasseri S. HLA-DO as the optimizer of epitope selection for MHC class II antigen presentation. PLoS One 2013; 8:e71228. [PMID: 23951115 PMCID: PMC3738515 DOI: 10.1371/journal.pone.0071228] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing.
Collapse
Affiliation(s)
- Yuri O. Poluektov
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Isamu Z. Hartman
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
HLA-DO increases bacterial superantigen binding to human MHC molecules by inhibiting dissociation of class II-associated invariant chain peptides. Hum Immunol 2013; 74:1280-7. [PMID: 23756162 DOI: 10.1016/j.humimm.2013.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 11/22/2022]
Abstract
HLA-DO (H2-O in mice) is an intracellular non-classical MHC class II molecule (MHCII). It forms a stable complex with HLA-DM (H2-M in mice) and shapes the MHC class II-associated peptide repertoire. Here, we tested the impact of HLA-DO and H2-O on the binding of superantigens (SAgs), which has been shown previously to be sensitive to the structural nature of the class II-bound peptides. We found that the binding of staphylococcal enterotoxin (SE) A and B, as well as toxic shock syndrome toxin 1 (TSST-1), was similar on the HLA-DO(+) human B cell lines 721.45 and its HLA-DO(-) counterpart. However, overexpressing HLA-DO in MHC class II(+) HeLa cells (HeLa-CIITA-DO) improved binding of SEA and TSST-1. Accordingly, knocking down HLA-DO expression using specific siRNAs decreased SEA and TSST-1 binding. We tested directly the impact of the class II-associated invariant chain peptide (CLIP), which dissociation from MHC class II molecules is inhibited by overexpressed HLA-DO. Loading of synthetic CLIP on HLA-DR(+) cells increased SEA and TSST-1 binding. Accordingly, knocking down HLA-DM had a similar effect. In mice, H2-O deficiency had no impact on SAgs binding to isolated splenocytes. Altogether, our results demonstrate that the sensitivity of SAgs to the MHCII-associated peptide has physiological basis and that the effect of HLA-DO on SEA and TSST-1 is mediated through the inhibition of CLIP release.
Collapse
|
38
|
Jahnke M, Trowsdale J, Kelly AP. Ubiquitination of HLA-DO by MARCH family E3 ligases. Eur J Immunol 2013; 43:1153-61. [PMID: 23400868 PMCID: PMC3655539 DOI: 10.1002/eji.201243043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/16/2013] [Accepted: 02/04/2013] [Indexed: 12/17/2022]
Abstract
HLA-DO (DO) is a nonclassical MHC class II (MHCII) molecule that negatively regulates the ability of HLA-DM to catalyse the removal of invariant chain-derived CLIP peptides from classical MHCII molecules. Here, we show that DO is posttranslationally modified by ubiquitination. The location of the modified lysine residue is shared with all classical MHCII beta chains, suggesting a conserved function. Three membrane-associated RING-CH (MARCH1, 8 and 9) family E3 ligases that polyubiquitinate MHCII induce similar profiles of polyubiquitination on DOβ. All three MARCH proteins also influenced trafficking of DO indirectly by a mechanism that required the DOβ encoded di-leucine and tyrosine-based endocytosis motifs. This may be the result of MARCH-induced ubiquitination of components of the endocytic machinery. MARCH9 was by far the most efficient at inducing intracellular redistribution of DO but did not target molecules for lysosomal degradation. The specificity of MARCH9 for HLA-DQ and HLA-DO suggests a need for common regulation of these two MHC-encoded molecules.
Collapse
Affiliation(s)
- Martin Jahnke
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
39
|
DOα⁻β⁺ expression in favor of HLA-DR engagement in exosomes. Immunobiology 2013; 218:1019-25. [PMID: 23462321 DOI: 10.1016/j.imbio.2012.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/24/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
Abstract
The expression of DOβ and not DOα, in addition to the high intracellular DR, low DM levels and absence of surface DR expression in K562 and HL-60 cells introduce alternative regulatory pathways in DR trafficking and consequently the antigen presentation process. The present study attempted to define the naturally occurring DOα negative state and explain the role of DOβ in the intracellular DR accumulation in K562 and HL-60 cells. Despite the absence of DOα, the DOβ chain was detected in the endosomal compartments. The lack of DOα was found to be partially responsible for the absence of DR from the cell membrane since stable K562-DOα transfectants allowed expression of membrane DR. This expression could be significantly increased upon DM induction by IFN-γ, indicating that DM was another limiting factor for the migration of DR to the cell surface of K562 and HL-60 cells. Furthermore, intracellular DR co-localized with the exosome specific marker CD9, while culture supernatants were shown to contain exosome-engaged and exosome free DR activity as evaluated by SDS-page followed by western blot, ELISA and transmission electron microscopy analysis. These findings indicated that in DOα⁻β⁺ cells, DR molecules were programmed to secretion rather than surface expression. The presented results provide novel regulatory processes as to DR trafficking, avoiding expression to the cell surface.
Collapse
|
40
|
Painter CA, Stern LJ. Conformational variation in structures of classical and non-classical MHCII proteins and functional implications. Immunol Rev 2013; 250:144-57. [PMID: 23046127 DOI: 10.1111/imr.12003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent structural characterizations of classical and non-classical major histocompatibility complex class II (MHCII) proteins have provided a view into the dynamic nature of the MHCII-peptide binding groove and the role that structural changes play in peptide loading processes. Although there have been numerous reports of crystal structures for MHCII-peptide complexes, a detailed analysis comparing all the structures has not been reported, and subtle conformational variations present in these structures may not have been fully appreciated. We compared the 91 MHCII crystal structures reported in the PDB to date, including an HLA-DR mutant particularly susceptible to DM-mediated peptide exchange, and reviewed experimental and computational studies of the effect of peptide binding on MHCII structure. These studies provide evidence for conformational lability in and around the α-subunit 3-10 helix at residues α48-51, a region known to be critical for HLA-DM-mediated peptide exchange. A biophysical study of MHC-peptide hydrogen bond strengths and a recent structure of the non-classical MHCII protein HLA-DO reveal changes in the same region. Conformational variability was observed also in the vicinity of a kink in the β-subunit helical region near residue β66 and in the orientation and loop conformation in the β2 Ig domain. Here, we provide an overview of the regions within classical and non-classical MHCII proteins that display conformational changes and the potential role that these changes may have in the peptide loading/exchange process.
Collapse
Affiliation(s)
- Corrie A Painter
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | | |
Collapse
|
41
|
Li B, Ze Y, Sun Q, Zhang T, Sang X, Cui Y, Wang X, Gui S, Tan D, Zhu M, Zhao X, Sheng L, Wang L, Hong F, Tang M. Molecular mechanisms of nanosized titanium dioxide-induced pulmonary injury in mice. PLoS One 2013; 8:e55563. [PMID: 23409001 PMCID: PMC3567101 DOI: 10.1371/journal.pone.0055563] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/27/2012] [Indexed: 12/23/2022] Open
Abstract
The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans.
Collapse
Affiliation(s)
- Bing Li
- Medical College of Soochow University, Suzhou, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou, China
| | - Qingqing Sun
- Medical College of Soochow University, Suzhou, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
| | - Xuezi Sang
- Medical College of Soochow University, Suzhou, China
| | - Yaling Cui
- Medical College of Soochow University, Suzhou, China
| | - Xiaochun Wang
- Medical College of Soochow University, Suzhou, China
| | - Suxin Gui
- Medical College of Soochow University, Suzhou, China
| | - Danlin Tan
- Medical College of Soochow University, Suzhou, China
| | - Min Zhu
- Medical College of Soochow University, Suzhou, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou, China
| | - Ling Wang
- Medical College of Soochow University, Suzhou, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
| |
Collapse
|
42
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
43
|
HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat Struct Mol Biol 2012; 20:90-8. [PMID: 23222639 PMCID: PMC3537886 DOI: 10.1038/nsmb.2460] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/25/2012] [Indexed: 12/03/2022]
Abstract
MHCII proteins bind peptide antigens in endosomal compartments of antigen-presenting cells. The non-classical MHCII protein HLA-DM chaperones peptide-free MHCII against inactivation and catalyzes peptide exchange on loaded MHCII. Another non-classical MHCII protein, HLA-DO, binds HLA-DM and influences the repertoire of peptides presented by MHCII proteins. However, the mechanism by which HLA-DO functions is unclear. Here we use x-ray crystallography, enzyme kinetics and mutagenesis approaches to investigate human HLA-DO structure and function. In complex with HLA-DM, HLA-DO adopts a classical MHCII structure, with alterations near the alpha subunit 310 helix. HLA-DO binds to HLA-DM at the same sites implicated in MHCII interaction, and kinetic analysis demonstrates that HLA-DO acts as a competitive inhibitor. These results show that HLA-DO inhibits HLA-DM function by acting as a substrate mimic and place constraints on possible functional roles for HLA-DO in antigen presentation.
Collapse
|
44
|
Gu Y, Jensen PE, Chen X. Immunodeficiency and autoimmunity in H2-O-deficient mice. THE JOURNAL OF IMMUNOLOGY 2012; 190:126-37. [PMID: 23209323 DOI: 10.4049/jimmunol.1200993] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DO/H2-O is a highly conserved, nonpolymorphic MHC class II-like molecule expressed in association with H2-M in thymic epithelial cells, B lymphocytes, and primary dendritic cells. The physiological function of DO remains unknown. The finding of cell maturation-dependent DO expression in B lymphocytes and dendritic cells suggests the possibility that H2-O functions to promote the presentation of exogenous Ag by attenuating presentation of endogenous self-peptides. In the current study, we report that H2-O(-/-) mice spontaneously develop high titers of IgG2a/c antinuclear Abs (ANAs) with specificity for dsDNA, ssDNA, and histones. Reconstitution of RAG1(-)(/)(-) mice with T and B cells from H2-O(-)(/)(-) or wild-type mice demonstrated that production of ANAs requires participation of CD4(+) T cells from H2-O(-)(/)(-) mice. Bone marrow chimeras demonstrated that loss of H2-O expression in thymic epithelial cells did not induce ANAs, and that lack of H2-O expression in bone marrow-derived cells was sufficient to induce the autoimmune phenotype. Despite production of high titers of autoantibodies, H2-O(-/-) mice exhibit a delayed generation of humoral immunity to model Ags (OVA and keyhole limpet hemocyanin), affecting all major T-dependent Ig classes, including IgG2a/c. Ag presentation experiments demonstrated that presentation of exogenous Ag by H2-O(-/-) APC was inefficient as compared with wild-type APC. Thus, H2-O promotes immunity toward exogenous Ags while inhibiting autoimmunity. We suggest that H2-O, through spatially or temporally inhibiting H2-M, may enhance presentation of exogenous Ag by limiting newly generated MHC class II molecules from forming stable complexes with endogenous self-peptides.
Collapse
Affiliation(s)
- Yapeng Gu
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
45
|
Endogenous HLA class II epitopes that are immunogenic in vivo show distinct behavior toward HLA-DM and its natural inhibitor HLA-DO. Blood 2012; 120:3246-55. [DOI: 10.1182/blood-2011-12-399311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CD4+ T cells play a central role in adaptive immunity. The acknowledgment of their cytolytic effector function and the finding that endogenous antigens can enter the HLA class II processing pathway make CD4+ T cells promising tools for immunotherapy. Expression of HLA class II and endogenous antigen, however, does not always correlate with T-cell recognition. We therefore investigated processing and presentation of endogenous HLA class II epitopes that induced CD4+ T cells during in vivo immune responses. We demonstrate that the peptide editor HLA-DM allowed antigen presentation of some (DM-resistant antigens) but abolished surface expression of other natural HLA class II epitopes (DM-sensitive antigens). DM sensitivity was shown to be epitope specific, mediated via interaction between HLA-DM and the HLA-DR restriction molecule, and reversible by HLA-DO. Because of the restricted expression of HLA-DO, presentation of DM-sensitive antigens was limited to professional antigen-presenting cells, whereas DM-resistant epitopes were expressed on all HLA class II–expressing cells. In conclusion, our data provide novel insights into the presentation of endogenous HLA class II epitopes and identify intracellular antigen processing and presentation as a critical factor for CD4+ T-cell recognition. This opens perspectives to exploit selective processing capacities as a new approach for targeted immunotherapy.
Collapse
|
46
|
Abstract
HLA-DO (DO) is a nonclassic class II heterodimer that inhibits the action of the class II peptide exchange catalyst, HLA-DM (DM), and influences DM localization within late endosomes and exosomes. In addition, DM acts as a chaperone for DO and is required for its egress from the endoplasmic reticulum (ER). These reciprocal functions are based on direct DO/DM binding, but the topology of DO/DM complexes is not known, in part, because of technical limitations stemming from DO instability. We generated two variants of recombinant soluble DO with increased stability [zippered DOαP11A (szDOv) and chimeric sDO-Fc] and confirmed their conformational integrity and ability to inhibit DM. Notably, we found that our constructs, as well as wild-type sDO, are inhibitory in the full pH range where DM is active (4.7 to ∼6.0). To probe the nature of DO/DM complexes, we used intermolecular fluorescence resonance energy transfer (FRET) and mutagenesis and identified a lateral surface spanning the α1 and α2 domains of szDO as the apparent binding site for sDM. We also analyzed several sDM mutants for binding to szDOv and susceptibility to DO inhibition. Results of these assays identified a region of DM important for interaction with DO. Collectively, our data define a putative binding surface and an overall orientation of the szDOv/sDM complex and have implications for the mechanism of DO inhibition of DM.
Collapse
|
47
|
Schulze MSED, Wucherpfennig KW. The mechanism of HLA-DM induced peptide exchange in the MHC class II antigen presentation pathway. Curr Opin Immunol 2011; 24:105-11. [PMID: 22138314 DOI: 10.1016/j.coi.2011.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/13/2011] [Indexed: 12/13/2022]
Abstract
HLA-DM serves a critical function in the loading and editing of peptides on MHC class II (MHCII) molecules. Recent data showed that the interaction cycle between MHCII molecules and HLA-DM is dependent on the occupancy state of the peptide binding groove. Empty MHCII molecules form stable complexes with HLA-DM, which are disrupted by binding of high-affinity peptide. Interestingly, MHCII molecules with fully engaged peptides cannot interact with HLA-DM, and prior dissociation of the peptide N-terminus from the groove is required for HLA-DM binding. There are significant similarities to the peptide loading process for MHC class I molecules, even though it is executed by a distinct set of proteins in a different cellular compartment.
Collapse
Affiliation(s)
- Monika-Sarah E D Schulze
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
48
|
Porter GW, Yi W, Denzin LK. TLR agonists downregulate H2-O in CD8alpha- dendritic cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:4151-60. [PMID: 21918198 DOI: 10.4049/jimmunol.1003137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide loading of MHC class II (MHCII) molecules is catalyzed by the nonclassical MHCII-related molecule H2-M. H2-O, another MHCII-like molecule, associates with H2-M and modulates H2-M function. The MHCII presentation pathway is tightly regulated in dendritic cells (DCs), yet how the key modulators of MHCII presentation, H2-M and H2-O, are affected in different DC subsets in response to maturation is unknown. In this study, we show that H2-O is markedly downregulated in vivo in mouse CD8α(-) DCs in response to a broad array of TLR agonists. In contrast, CD8α(+) DCs only modestly downregulated H2-O in response to TLR agonists. H2-M levels were slightly downmodulated in both CD8α(-) and CD8α(+) DCs. As a consequence, H2-M/H2-O ratios significantly increased for CD8α(-) but not for CD8α(+) DCs. The TLR-mediated downregulation was DC specific, as B cells did not show significant H2-O and H2-M downregulation. TLR4 signaling was required to mediate DC H2-O downregulation in response to LPS. Finally, our studies showed that the mechanism of H2-O downregulation was likely due to direct protein degradation of H2-O as well as downregulation of H2-O mRNA levels. The differential H2-O and H2-M modulation after DC maturation supports the proposed roles of CD8α(-) DCs in initiating CD4-restricted immune responses by optimal MHCII presentation and of CD8α(+) DCs in promoting immune tolerance via presentation of low levels of MHCII-peptide.
Collapse
Affiliation(s)
- Gavin W Porter
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
49
|
Sundström M, Lejon K. The prolonged and enhanced immune response in the non-obese diabetic mouse is dependent on genes in the Idd1/24, Idd12 and Idd18 regions. J Autoimmun 2010; 35:375-82. [DOI: 10.1016/j.jaut.2010.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
50
|
H2-O, a MHC class II-like protein, sets a threshold for B-cell entry into germinal centers. Proc Natl Acad Sci U S A 2010; 107:16607-12. [PMID: 20807742 DOI: 10.1073/pnas.1004664107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon antigen (Ag) encounter, B cells require T-cell help to enter the germinal center (GC). They obtain this help by presenting Ag-derived peptides on MHC class II (MHCII) for recognition by the T-cell receptor (TCR) of CD4(+) T cells. Peptides are loaded onto MHCII in endosomal compartments in a process catalyzed by the MHCII-like protein H2-M (HLA-DM in humans). This process is modulated by another MHCII-like protein, H2-O (HLA-DO in humans). H2-O is a biochemical inhibitor of peptide loading onto MHCII; however, on the cellular level, it has been shown to have varying effects on Ag presentation. Thus, the function of H2-O in the adaptive immune response remains unclear. Here, we examine the effect of H2-O expression on the ability of Ag-specific B cells to enter the GC. We show that when Ag specific WT and H2-O(-/-) B cells are placed in direct competition, H2-O(-/-) B cells preferentially populate the GC. This advantage is confined to Ag-specific B cells and is due to their superior ability to obtain Ag-specific T-cell help when T-cell help is limiting. Overall, our work shows that H2-O expression reduces the ability of B cells to gain T-cell help and participate in the GC reaction.
Collapse
|