1
|
Snoeck HW. Direct megakaryopoiesis. Curr Opin Hematol 2025; 32:213-220. [PMID: 40197720 DOI: 10.1097/moh.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Megakaryocytes are large, polyploid cells that produce platelets and originate from hematopoietic stem cells (HSCs) in the bone marrow. While in the classical paradigm, megakaryocytes are generated in a stepwise fashion through increasingly committed progenitor stages, studies using in-vivo barcoding, transplantation, and in-vitro culture have suggested that, in addition, a more direct pathway existed. The relevance of this direct pathway and its functional and phenotypic characteristics were unclear, however. RECENT FINDINGS Recent publications using fate-mapping and single-cell transplantation now unequivocally demonstrate the existence of a direct megakaryocyte differentiation pathway, provide molecular characterization, and indicate distinct roles and regulation of both pathways. The direct pathway originates from a separate subset of 'top' HSCs, is enhanced by hematopoietic stress, inflammation and aging, bypasses multipotential progenitors, may be more active in myeloproliferative neoplasms, and generates phenotypically distinct megakaryocyte progenitors and more reactive platelets. SUMMARY Novel insights into the direct megakaryocyte differentiation pathway provide a deeper understanding of HSC biology, hematological recovery after myeloablation, and aging of the hematopoietic system, and suggest that this pathway may contribute to the increase in thrombotic incidents with age and in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons
- Division of Pulmonary Medicine, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Lu L, Liu C, Chen L, Zhang X, Su Y, Chou Z, Liang Y, Song Y. Understanding erythroid physiology and pathology in humanized mice: A closer look. Br J Haematol 2025; 206:1272-1284. [PMID: 40007143 PMCID: PMC12078861 DOI: 10.1111/bjh.20023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Erythropoiesis, the process of red blood cell (RBC) development from haematopoietic stem cells, is crucial in haematology research due to its intricate regulation and implications in various pathologies such as anaemia and haemoglobinopathies. Humanized mice, created by introducing human cells or tissues into immunodeficient mice, offer a promising avenue in vivo approach. However, challenges persist in fully replicating human erythropoiesis in these models, particularly in generating mature human RBCs capable of sustained circulation. This review discusses the differences between human and mouse erythropoiesis, recent progress made using refined humanized mouse models for studying human erythropoiesis and erythropoietic disorders, the challenges that impede a faithful mimicking of human phenotypes in these mice and recommendations for future research improvements. Despite progress being made, enhancing the translational potential of humanized mouse models for human erythropoiesis research remains a priority.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chenfei Liu
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lezong Chen
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xumiao Zhang
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yinglin Su
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhenzhen Chou
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuanbin Song
- State Key Laboratory of Oncology in South China, Department of Hematologic Oncology, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
3
|
Kapadia CD, Williams N, Dawson KJ, Watson C, Yousefzadeh MJ, Le D, Nyamondo K, Kodavali S, Cagan A, Waldvogel S, Zhang X, De La Fuente J, Leongamornlert D, Mitchell E, Florez MA, Sosnowski K, Aguilar R, Martell A, Guzman A, Harrison D, Niedernhofer LJ, King KY, Campbell PJ, Blundell J, Goodell MA, Nangalia J. Clonal dynamics and somatic evolution of haematopoiesis in mouse. Nature 2025; 641:681-689. [PMID: 40044850 PMCID: PMC12074984 DOI: 10.1038/s41586-025-08625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/10/2025] [Indexed: 03/12/2025]
Abstract
Haematopoietic stem cells maintain blood production throughout life1. Although extensively characterized using the laboratory mouse, little is known about clonal selection and population dynamics of the haematopoietic stem cell pool during murine ageing. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1,845 single-cell-derived colonies. Mouse stem cells and progenitors accrue approximately 45 somatic mutations per year, a rate only approximately threefold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns show that stem and multipotent progenitor cell pools are established during embryogenesis, after which they independently self-renew in parallel over life, evenly contributing to differentiated progenitors and peripheral blood. The stem cell pool grows steadily over the mouse lifespan to about 70,000 cells, self-renewing about every 6 weeks. Aged mice did not display the profound loss of clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing showed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations, exhibiting a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
Collapse
Affiliation(s)
- Chiraag D Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Kevin J Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Caroline Watson
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Columbia Center for Translational Immunology, Columbia Center for Human Longevity, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Duy Le
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Sreeya Kodavali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Genetics, Pathology & Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoyan Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Josephine De La Fuente
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Marcus A Florez
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Krzysztof Sosnowski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Rogelio Aguilar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Alejandra Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anna Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katherine Y King
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Jamie Blundell
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret A Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
MacAldaz ME, Shu J, Edin G, Hale M, Eaves CJ. Hematopoietic stem cells in human fetal liver selectively express CD49f. Exp Hematol 2025:104788. [PMID: 40311859 DOI: 10.1016/j.exphem.2025.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
Identification of phenotypes of human hematopoietic cells that display long-term mature cell outputs in vitro and repopulating capability in immunodeficient mice has been important to anticipating the therapeutic potential of fresh harvests of bone marrow or cord blood before or after their physical or genetic manipulation. However, characterizing their key properties and strategies for their isolation from multiple sources at increasing cell purities and elucidating the mechanisms that regulate their ability to sustain mature blood cell production continues to be of major interest. Previous studies have shown that fetal and adult human cells with long-term blood cell output potential are highly enriched in their respective glycosylphosphatidylinositol (GPI)-anchored surface protein GPI80+ and CD49f+ subsets of a developmentally preserved CD45+CD34+CD38-CD45RA-CD90+ population. The so-called "GPI80" hematopoietic cells found in first-trimester human fetal liver are of particular interest because of their very high regenerative capability compared with their adult or even neonatal (cord blood) "CD49f" counterparts. Here, it was hypothesized that high regenerative activity of the GPI80+ cells could be further enriched within a CD49f+ subset. We now demonstrated that coexpression of CD49f within the GPI80+ population identifies a subset with reduced short-term myeloid colony-forming activity in semisolid medium and greater progeny outputs in both 12-week growth factor-supplemented stromal cocultures and in transplanted immunodeficient mice. These findings demonstrated that CD49f is a pervasive marker of human hematopoietic stem cells (HSCs) throughout ontogeny and aging.
Collapse
Affiliation(s)
- Margarita E MacAldaz
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Jeremy Shu
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Glenn Edin
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Margaret Hale
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Watt SM, Roubelakis MG. Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges. Int J Mol Sci 2025; 26:671. [PMID: 39859383 PMCID: PMC11766050 DOI: 10.3390/ijms26020671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (1011-1012) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.5 million hematopoietic cell transplants (HCTs) globally, making this the most successful regenerative therapy to date. We will commence this review by briefly highlighting selected key achievements (from 1868 to the end of the 20th century) that have contributed to this accomplishment. Much of our knowledge of hematopoiesis is based on small animal models that, despite their enormous importance, do not always recapitulate human hematopoiesis. Given this, we will critically review the progress and challenges faced in identifying adult human HSCs and tracing their lineage differentiation trajectories, referring to murine studies as needed. Moving forward and given that human hematopoiesis is dynamic and can readily adjust to a variety of stressors, we will then discuss recent research advances contributing to understanding (i) which HSPCs maintain daily steady state human hematopoiesis, (ii) where these are located, and (iii) which mechanisms come into play when homeostatic hematopoiesis switches to stress-induced or emergency hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Maria G. Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece;
- Cell and Gene Therapy Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| |
Collapse
|
6
|
Xia J, Lan L, You C, Tang L, Chen T, Yang Y, Lin L, Sun J. Interleukin-1β modulates lymphoid differentiation of Flt3-positive multipotent progenitors after transplantation. Cell Rep 2024; 43:114890. [PMID: 39425929 DOI: 10.1016/j.celrep.2024.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloablative pre-conditioning facilitates the differentiation of transplanted hematopoietic stem and progenitor cells (HSPCs). However, the factors in the stress environment that regulate HSPC behavior remain elusive. Here, we investigated the mechanisms that shaped the cell fates of transplanted murine multipotent progenitors (MPPs) expressing the Fms-related receptor tyrosine kinase 3 gene (Flt3). Using lineage tracing, clonal analysis, and single-cell RNA sequencing (RNA-seq), we showed that the myeloablative environment increased lymphoid priming of Flt3+ MPPs and that their efficient B cell output required intact interleukin 1 (IL-1) signaling. The Flt3+ MPPs with short-term exposure to IL-1β underwent a myeloid-biased to lymphoid-biased cell fate switch and produced more lymphoid-biased progeny with a stronger B lymphopoiesis capacity in vitro. Correspondingly, a brief exposure to IL-1β facilitated the B cell output of transplanted Flt3+ MPPs in vivo. Together, our study demonstrated an unrecognized function of IL-1β in promoting B lymphopoiesis and highlighted a latent effect of IL-1β in regulating MPP cell fate dynamics.
Collapse
Affiliation(s)
- Jing Xia
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lisi Lan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyu You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunqiao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jianlong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
7
|
Kapadia CD, Williams N, Dawson KJ, Watson C, Yousefzadeh MJ, Le D, Nyamondo K, Cagan A, Waldvogel S, De La Fuente J, Leongamornlert D, Mitchell E, Florez MA, Aguilar R, Martell A, Guzman A, Harrison D, Niedernhofer LJ, King KY, Campbell PJ, Blundell J, Goodell MA, Nangalia J. Clonal dynamics and somatic evolution of haematopoiesis in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613129. [PMID: 39345649 PMCID: PMC11429886 DOI: 10.1101/2024.09.17.613129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Haematopoietic stem cells maintain blood production throughout life. While extensively characterised using the laboratory mouse, little is known about how the population is sustained and evolves with age. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1845 single cell-derived colonies, and used phylogenetic analysis to infer the ontogeny and population dynamics of the stem cell pool. Mouse stem cells and progenitors accrue ~45 somatic mutations per year, a rate only about 2-fold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns reveal that stem and multipotent progenitor cell pools are both established during embryogenesis, after which they independently self-renew in parallel over life. The stem cell pool grows steadily over the mouse lifespan to approximately 70,000 cells, self-renewing about every six weeks. Aged mice did not display the profound loss of stem cell clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing revealed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations and exhibited a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
Collapse
Affiliation(s)
- Chiraag D. Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Kevin J. Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Caroline Watson
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Columbia Center for Translational Immunology, Columbia Center for Human Longevity, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Duy Le
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Genetics, Pathology & Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Josephine De La Fuente
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Marcus A. Florez
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Rogelio Aguilar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Alejandra Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Anna Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katherine Y. King
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | | | - Jamie Blundell
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret A. Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Stonehouse OJ, Biben C, Weber TS, Garnham A, Fennell KA, Farley A, Terreaux AF, Alexander WS, Dawson MA, Naik SH, Taoudi S. Clonal analysis of fetal hematopoietic stem/progenitor cells reveals how post-transplantation capabilities are distributed. Stem Cell Reports 2024; 19:1189-1204. [PMID: 39094562 PMCID: PMC11368694 DOI: 10.1016/j.stemcr.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
It has been proposed that adult hematopoiesis is sustained by multipotent progenitors (MPPs) specified during embryogenesis. Adult-like hematopoietic stem cell (HSC) and MPP immunophenotypes are present in the fetus, but knowledge of their functional capacity is incomplete. We found that fetal MPP populations were functionally similar to adult cells, albeit with some differences in lymphoid output. Clonal assessment revealed that lineage biases arose from differences in patterns of single-/bi-lineage differentiation. Long-term (LT)- and short-term (ST)-HSC populations were distinguished from MPPs according to capacity for clonal multilineage differentiation. We discovered that a large cohort of long-term repopulating units (LT-RUs) resides within the ST-HSC population; a significant portion of these were labeled using Flt3-cre. This finding has two implications: (1) use of the CD150+ LT-HSC immunophenotype alone will significantly underestimate the size and diversity of the LT-RU pool and (2) LT-RUs in the ST-HSC population have the attributes required to persist into adulthood.
Collapse
Affiliation(s)
- Olivia J Stonehouse
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia; Lowy Cancer Research Centre, UNSW, Sydney, New South Wales, Australia
| | - Christine Biben
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Tom S Weber
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Alexandra Garnham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Katie A Fennell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alison Farley
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Antoine F Terreaux
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Dawson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; The University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shalin H Naik
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia
| | - Samir Taoudi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; The University of Melbourne, Melbourne, Victoria, Australia; School of Cellular and Molecular Medicine, University of Bristol, Bristol, England, UK.
| |
Collapse
|
9
|
Zhu AZ, Ma Z, Wolff EV, Lin Z, Gao ZJ, Li X, Du W. HES1 is required for mouse fetal hematopoiesis. Stem Cell Res Ther 2024; 15:235. [PMID: 39075526 PMCID: PMC11287931 DOI: 10.1186/s13287-024-03836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/06/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoiesis in mammal is a complex and highly regulated process in which hematopoietic stem cells (HSCs) give rise to all types of differentiated blood cells. Previous studies have shown that hairy and enhancer of split (HES) repressors are essential regulators of adult HSC development downstream of Notch signaling. METHODS In this study, we investigated the role of HES1, a member of HES family, in fetal hematopoiesis using an embryonic hematopoietic specific Hes1 conditional knockout mouse model by using phenotypic flow cytometry, histopathology analysis, and functional in vitro colony forming unit (CFU) assay and in vivo bone marrow transplant (BMT) assay. RESULTS We found that loss of Hes1 in early embryonic stage leads to smaller embryos and fetal livers, decreases hematopoietic stem progenitor cell (HSPC) pool, results in defective multi-lineage differentiation. Functionally, fetal hematopoietic cells deficient for Hes1 exhibit reduced in vitro progenitor activity and compromised in vivo repopulation capacity in the transplanted recipients. Further analysis shows that fetal hematopoiesis defects in Hes1fl/flFlt3Cre embryos are resulted from decreased proliferation and elevated apoptosis, associated with de-repressed HES1 targets, p27 and PTEN in Hes1-KO fetal HSPCs. Finally, pharmacological inhibition of p27 or PTEN improves fetal HSPCs function both in vitro and in vivo. CONCLUSION Together, our findings reveal a previously unappreciated role for HES1 in regulating fetal hematopoiesis, and provide new insight into the differences between fetal and adult HSC maintenance.
Collapse
Affiliation(s)
- Anthony Z Zhu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zhilin Ma
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Emily V Wolff
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Zichen Lin
- Master of Science in Medical Science, Boston University School of Medicine Graduate Master Program, Boston, MA, USA
| | - Zhenxia J Gao
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Xue Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, 5117 Center Ave, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Hosseini I, Fleisher B, Getz J, Decalf J, Kwong M, Ovacik M, Bainbridge TW, Moussion C, Rao GK, Gadkar K, Kamath AV, Ramanujan S. A Minimal PBPK/PD Model with Expansion-Enhanced Target-Mediated Drug Disposition to Support a First-in-Human Clinical Study Design for a FLT3L-Fc Molecule. Pharmaceutics 2024; 16:660. [PMID: 38794321 PMCID: PMC11125320 DOI: 10.3390/pharmaceutics16050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
FLT3L-Fc is a half-life extended, effectorless Fc-fusion of the native human FLT3-ligand. In cynomolgus monkeys, treatment with FLT3L-Fc leads to a complex pharmacokinetic/pharmacodynamic (PK/PD) relationship, with observed nonlinear PK and expansion of different immune cell types across different dose levels. A minimal physiologically based PK/PD model with expansion-enhanced target-mediated drug disposition (TMDD) was developed to integrate the molecule's mechanism of action, as well as the complex preclinical and clinical PK/PD data, to support the preclinical-to-clinical translation of FLT3L-Fc. In addition to the preclinical PK data of FLT3L-Fc in cynomolgus monkeys, clinical PK and PD data from other FLT3-agonist molecules (GS-3583 and CDX-301) were used to inform the model and project the expansion profiles of conventional DC1s (cDC1s) and total DCs in peripheral blood. This work constitutes an essential part of our model-informed drug development (MIDD) strategy for clinical development of FLT3L-Fc by projecting PK/PD in healthy volunteers, determining the first-in-human (FIH) dose, and informing the efficacious dose in clinical settings. Model-generated results were incorporated in regulatory filings to support the rationale for the FIH dose selection.
Collapse
|
11
|
Wang S, Han J, Huang J, Islam K, Shi Y, Zhou Y, Kim D, Zhou J, Lian Z, Liu Y, Huang J. Deep learning-based predictive classification of functional subpopulations of hematopoietic stem cells and multipotent progenitors. Stem Cell Res Ther 2024; 15:74. [PMID: 38475857 PMCID: PMC10935795 DOI: 10.1186/s13287-024-03682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) play a pivotal role in maintaining lifelong hematopoiesis. The distinction between stem cells and other progenitors, as well as the assessment of their functions, has long been a central focus in stem cell research. In recent years, deep learning has emerged as a powerful tool for cell image analysis and classification/prediction. METHODS In this study, we explored the feasibility of employing deep learning techniques to differentiate murine HSCs and MPPs based solely on their morphology, as observed through light microscopy (DIC) images. RESULTS After rigorous training and validation using extensive image datasets, we successfully developed a three-class classifier, referred to as the LSM model, capable of reliably distinguishing long-term HSCs, short-term HSCs, and MPPs. The LSM model extracts intrinsic morphological features unique to different cell types, irrespective of the methods used for cell identification and isolation, such as surface markers or intracellular GFP markers. Furthermore, employing the same deep learning framework, we created a two-class classifier that effectively discriminates between aged HSCs and young HSCs. This discovery is particularly significant as both cell types share identical surface markers yet serve distinct functions. This classifier holds the potential to offer a novel, rapid, and efficient means of assessing the functional states of HSCs, thus obviating the need for time-consuming transplantation experiments. CONCLUSION Our study represents the pioneering use of deep learning to differentiate HSCs and MPPs under steady-state conditions. This novel and robust deep learning-based platform will provide a basis for the future development of a new generation stem cell identification and separation system. It may also provide new insight into the molecular mechanisms underlying stem cell self-renewal.
Collapse
Affiliation(s)
- Shen Wang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Jianzhong Han
- Coriell Institute for Medical Research, Camden, NJ, USA
| | - Jingru Huang
- Shanghai Key Laboratory of Medical Epigenetics, Laboratory of Cancer Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Khayrul Islam
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Yuheng Shi
- Shanghai Key Laboratory of Medical Epigenetics, Laboratory of Cancer Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Dongwook Kim
- Coriell Institute for Medical Research, Camden, NJ, USA
| | - Jane Zhou
- Health and Human Biology, Brown University, Providence, RI, USA
| | - Zhaorui Lian
- Coriell Institute for Medical Research, Camden, NJ, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, USA.
- Cooper Medical School of Rowan University, Camden, NJ, USA.
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Guo P, Lim RC, Rajawasam K, Trinh T, Sun H, Zhang H. A methylation-phosphorylation switch controls EZH2 stability and hematopoiesis. eLife 2024; 13:e86168. [PMID: 38346162 PMCID: PMC10901513 DOI: 10.7554/elife.86168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Rebecca C Lim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Keshari Rajawasam
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Tiffany Trinh
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| |
Collapse
|
13
|
Moussion C, Delamarre L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol 2024; 71:101848. [PMID: 38035643 DOI: 10.1016/j.smim.2023.101848] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in shaping adaptive immunity. DCs have a unique ability to sample their environment, capture and process exogenous antigens into peptides that are then loaded onto major histocompatibility complex class I molecules for presentation to CD8+ T cells. This process, called cross-presentation, is essential for initiating and regulating CD8+ T cell responses against tumors and intracellular pathogens. In this review, we will discuss the role of DCs in cancer immunity, the molecular mechanisms underlying antigen cross-presentation by DCs, the immunosuppressive factors that limit the efficiency of this process in cancer, and approaches to overcome DC dysfunction and therapeutically promote antitumoral immunity.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
14
|
Filippi MD. The multifaceted role of mitochondria in HSC fate decisions: energy and beyond. Exp Hematol 2023; 128:19-29. [PMID: 37832715 PMCID: PMC11487575 DOI: 10.1016/j.exphem.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into all-mature blood cell lineages. The fate decisions to generate progeny that retain stemness properties or that commit to differentiation is a fundamental process to maintain tissue homeostasis and must be tightly regulated to prevent HSC overgrowth or exhaustion. HSC fate decisions are inherently coupled to cell division. The transition from quiescence to activation is accompanied by major metabolic and mitochondrial changes that are important for cell cycle entry and for balanced decisions between self-renewal and differentiation. In this review, we discuss the current understanding of the role of mitochondrial metabolism in HSC transition from quiescence to activation and fate decisions.
Collapse
Affiliation(s)
- Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
15
|
Wang S, Han J, Huang J, Islam K, Shi Y, Zhou Y, Kim D, Zhou J, Lian Z, Liu Y, Huang J. Deep learning-based predictive classification of functional subpopulations of hematopoietic stem cells and multipotent progenitors. RESEARCH SQUARE 2023:rs.3.rs-3332530. [PMID: 38014055 PMCID: PMC10680918 DOI: 10.21203/rs.3.rs-3332530/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) play a pivotal role in maintaining lifelong hematopoiesis. The distinction between stem cells and other progenitors, as well as the assessment of their functions, has long been a central focus in stem cell research. In recent years, deep learning has emerged as a powerful tool for cell image analysis and classification/prediction. Methods In this study, we explored the feasibility of employing deep learning techniques to differentiate murine HSCs and MPPs based solely on their morphology, as observed through light microscopy (DIC) images. Results After rigorous training and validation using extensive image datasets, we successfully developed a three-class classifier, referred to as the LSM model, capable of reliably distinguishing long-term HSCs (LT-HSCs), short-term HSCs (ST-HSCs), and MPPs. The LSM model extracts intrinsic morphological features unique to different cell types, irrespective of the methods used for cell identification and isolation, such as surface markers or intracellular GFP markers. Furthermore, employing the same deep learning framework, we created a two-class classifier that effectively discriminates between aged HSCs and young HSCs. This discovery is particularly significant as both cell types share identical surface markers yet serve distinct functions. This classifier holds the potential to offer a novel, rapid, and efficient means of assessing the functional states of HSCs, thus obviating the need for time-consuming transplantation experiments. Conclusion Our study represents the pioneering use of deep learning to differentiate HSCs and MPPs under steady-state conditions. With ongoing advancements in model algorithms and their integration into various imaging systems, deep learning stands poised to become an invaluable tool, significantly impacting stem cell research.
Collapse
Affiliation(s)
- Shen Wang
- Lehigh University Department of Mechanical Engineering and Mechanics
| | | | | | - Khayrul Islam
- Lehigh University Department of Mechanical Engineering and Mechanics
| | - Yuheng Shi
- Shanghai Medical College of Fudan University: Fudan University School of Basic Medical Sciences
| | | | | | | | | | | | | |
Collapse
|
16
|
Ravalet N, Guermouche H, Hirsch P, Picou F, Foucault A, Gallay N, Martignoles JA, Beaud J, Suner L, Deswarte C, Lachot S, Rault E, Largeaud L, Gissot V, Béné MC, Gyan E, Delhommeau F, Herault O. Modulation of bone marrow and peripheral blood cytokine levels by age and clonal hematopoiesis in healthy individuals. Clin Immunol 2023; 255:109730. [PMID: 37562724 DOI: 10.1016/j.clim.2023.109730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Aging is associated with bone marrow (BM) inflammaging and, in some individuals, with the onset of clonal hematopoiesis (CH) of indeterminate potential. In this study conducted on 94 strictly healthy volunteers (18 to 80 yo), we measured BM and peripheral blood (PB) plasma levels of 49 hematopoietic and inflammatory cytokines. With aging, 7 cytokines increased in BM (FLT3L, CXCL9, HGF, FGF-2, CCL27, IL-16, IL-18) and 8 decreased (G-CSF, TNF, IL-2, IL-15, IL-17A, CCL7, IL-4, IL-10). In PB, 10 cytokines increased with age (CXCL9, FLT3L, CCL27, CXCL10, HGF, CCL11, IL-16, IL-6, IL-1 beta, CCL2). CH was associated with higher BM levels of MIF and IL-1 beta, lower BM levels of IL-9 and IL-5 and higher PB levels of IL-15, VEGF-A, IL-2, CXCL8, CXCL1 and G-CSF. These reference values provide a useful tool to investigate anomalies related to inflammaging and potentially leading to the onset of age-related myeloid malignancies or inflammatory conditions.
Collapse
Affiliation(s)
- Noémie Ravalet
- CNRS EMR 7001 LNOx "Leukemic niche and redox metabolism", EA7501 GICC, Tours, France; Tours University Hospital, Department of Biological Hematology, Tours, France
| | - Hélène Guermouche
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Pierre Hirsch
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Frédéric Picou
- CNRS EMR 7001 LNOx "Leukemic niche and redox metabolism", EA7501 GICC, Tours, France; Tours University Hospital, Department of Biological Hematology, Tours, France
| | - Amélie Foucault
- CNRS EMR 7001 LNOx "Leukemic niche and redox metabolism", EA7501 GICC, Tours, France; Tours University Hospital, Department of Biological Hematology, Tours, France
| | - Nathalie Gallay
- CNRS EMR 7001 LNOx "Leukemic niche and redox metabolism", EA7501 GICC, Tours, France; Tours University Hospital, Department of Biological Hematology, Tours, France
| | - Jean-Alain Martignoles
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Jenny Beaud
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Ludovic Suner
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Caroline Deswarte
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Sébastien Lachot
- Tours University Hospital, Department of Biological Hematology, Tours, France
| | - Emmanuelle Rault
- Tours University Hospital, Department of Biological Hematology, Tours, France
| | - Laëtitia Largeaud
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Valérie Gissot
- INSERM CIC 1415, Tours University Hospital, Tours, France
| | - Marie-Christine Béné
- Nantes University Hospital, Hematology Biology and INSERM CRCI2NA, Nantes, France; FHU GOAL "Grand Ouest Against Leukemia", Angers, France
| | - Emmanuel Gyan
- CNRS EMR 7001 LNOx "Leukemic niche and redox metabolism", EA7501 GICC, Tours, France; Tours University Hospital, Department of Hematology and Cell Therapy, Tours, France
| | - François Delhommeau
- Sorbonne University, INSERM, Saint-Antoine Research Center, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France; OPALE Carnot Institute, Paris, France; CNRS GDR3697 Micronit "Microenvironment of tumor niches", Tours, France.
| | - Olivier Herault
- CNRS EMR 7001 LNOx "Leukemic niche and redox metabolism", EA7501 GICC, Tours, France; Tours University Hospital, Department of Biological Hematology, Tours, France; FHU GOAL "Grand Ouest Against Leukemia", Angers, France; OPALE Carnot Institute, Paris, France; CNRS GDR3697 Micronit "Microenvironment of tumor niches", Tours, France.
| |
Collapse
|
17
|
Pizzato HA, Wang Y, Wolfgang MJ, Finck BN, Patti GJ, Bhattacharya D. Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and emergency myelopoiesis. J Exp Med 2023; 220:e20221373. [PMID: 37249600 PMCID: PMC10227646 DOI: 10.1084/jem.20221373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
To define the metabolic requirements of hematopoiesis, we examined blood lineages in mice conditionally deficient in genes required for long-chain fatty acid oxidation (Cpt2), glutaminolysis (Gls), or mitochondrial pyruvate import (Mpc2). Genetic ablation of Cpt2 or Gls minimally impacted most blood lineages. In contrast, deletion of Mpc2 led to a sharp decline in mature myeloid cells and a slower reduction in T cells, whereas other hematopoietic lineages were unaffected. Yet MPC2-deficient monocytes and neutrophils rapidly recovered due to a transient and specific increase in myeloid progenitor proliferation. Competitive bone marrow chimera and stable isotope tracing experiments demonstrated that this proliferative burst was progenitor intrinsic and accompanied by a metabolic switch to glutaminolysis. Myeloid recovery after loss of MPC2 or cyclophosphamide treatment was delayed in the absence of GLS. Reciprocally, MPC2 was not required for myeloid recovery after cyclophosphamide treatment. Thus, mitochondrial pyruvate metabolism maintains myelopoiesis under steady-state conditions, while glutaminolysis in progenitors promotes emergency myelopoiesis.
Collapse
Affiliation(s)
- Hannah A. Pizzato
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Yahui Wang
- Department of Chemistry, Washington University, Saint Louis, MO, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian N. Finck
- Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University, Saint Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University, Saint Louis, MO, USA
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Treichel S, Filippi MD. Linking cell cycle to hematopoietic stem cell fate decisions. Front Cell Dev Biol 2023; 11:1231735. [PMID: 37645247 PMCID: PMC10461445 DOI: 10.3389/fcell.2023.1231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into any blood cell lineages. In order to balance the maintenance of the stem cell pool with supporting mature blood cell production, the fate decisions to self-renew or to commit to differentiation must be tightly controlled, as dysregulation of this process can lead to bone marrow failure or leukemogenesis. The contribution of the cell cycle to cell fate decisions has been well established in numerous types of stem cells, including pluripotent stem cells. Cell cycle length is an integral component of hematopoietic stem cell fate. Hematopoietic stem cells must remain quiescent to prevent premature replicative exhaustion. Yet, hematopoietic stem cells must be activated into cycle in order to produce daughter cells that will either retain stem cell properties or commit to differentiation. How the cell cycle contributes to hematopoietic stem cell fate decisions is emerging from recent studies. Hematopoietic stem cell functions can be stratified based on cell cycle kinetics and divisional history, suggesting a link between Hematopoietic stem cells activity and cell cycle length. Hematopoietic stem cell fate decisions are also regulated by asymmetric cell divisions and recent studies have implicated metabolic and organelle activity in regulating hematopoietic stem cell fate. In this review, we discuss the current understanding of the mechanisms underlying hematopoietic stem cell fate decisions and how they are linked to the cell cycle.
Collapse
Affiliation(s)
- Sydney Treichel
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Molecular and Development Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Schippel N, Sharma S. Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. Exp Hematol 2023; 123:1-17. [PMID: 37172755 PMCID: PMC10330572 DOI: 10.1016/j.exphem.2023.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Erythropoiesis, the development of erythrocytes from hematopoietic stem cells, occurs through four phases: erythroid progenitor (EP) development, early erythropoiesis, terminal erythroid differentiation (TED), and maturation. According to the classical model that is based on immunophenotypic profiles of cell populations, each of these phases comprises multiple differentiation states that arise in a hierarchical manner. After segregation of lymphoid potential, erythroid priming begins during progenitor development and progresses through progenitor cell types that have multilineage potential. Complete separation of the erythroid lineage is achieved during early erythropoiesis with the formation of unipotent EPs: burst-forming unit-erythroid and colony-forming unit-erythroid. These erythroid-committed progenitors undergo TED and maturation, which involves expulsion of the nucleus and remodeling to form functional biconcave, hemoglobin-filled erythrocytes. In the last decade or so, many studies employing advanced techniques such as single-cell RNA-sequencing (scRNA-seq) as well as the conventional methods, including colony-forming cell assays and immunophenotyping, have revealed heterogeneity within the stem, progenitor, and erythroblast stages, and uncovered alternate paths for segregation of erythroid lineage potential. In this review, we provide an in-depth account of immunophenotypic profiles of all cell types within erythropoiesis, highlight studies that demonstrate heterogeneous erythroid stages, and describe deviations to the classical model of erythropoiesis. Overall, although scRNA-seq approaches have provided new insights, flow cytometry remains relevant and is the primary method for validation of novel immunophenotypes.
Collapse
Affiliation(s)
- Natascha Schippel
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ.
| |
Collapse
|
21
|
Mah SY, Vanyai HK, Yang Y, Voss AK, Thomas T. The chromatin reader protein ING5 is required for normal hematopoietic cell numbers in the fetal liver. Front Immunol 2023; 14:1119750. [PMID: 37275850 PMCID: PMC10232820 DOI: 10.3389/fimmu.2023.1119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.
Collapse
Affiliation(s)
- Sophia Y.Y. Mah
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah K. Vanyai
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Yuqing Yang
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K. Voss
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tim Thomas
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Konturek-Ciesla A, Dhapola P, Zhang Q, Säwén P, Wan H, Karlsson G, Bryder D. Temporal multimodal single-cell profiling of native hematopoiesis illuminates altered differentiation trajectories with age. Cell Rep 2023; 42:112304. [PMID: 36961818 DOI: 10.1016/j.celrep.2023.112304] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
Aging negatively affects hematopoiesis, with consequences for immunity and acquired blood cell disorders. Although impairments in hematopoietic stem cell (HSC) function contribute to this, the in vivo dynamics of such changes remain obscure. Here, we integrate extensive longitudinal functional assessments of HSC-specific lineage tracing with single-cell transcriptome and epitope profiling. In contrast to recent suggestions from single-cell RNA sequencing alone, our data favor a defined structure of HSC/progenitor differentiation that deviates substantially from HSC-derived hematopoiesis following transplantation. Native age-dependent attrition in HSC differentiation manifests as drastically reduced lymphoid output through an early lymphoid-primed progenitor (MPP Ly-I). While in vitro activation fails to rescue lymphoid differentiation from most aged HSCs, robust lymphopoiesis can be achieved by culturing elevated numbers of candidate HSCs. Therefore, our data position rare chronologically aged HSC clones, fully competent at producing lymphoid offspring, as a prime target for approaches aimed to improve lymphopoiesis in the elderly.
Collapse
Affiliation(s)
- Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Qinyu Zhang
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Petter Säwén
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Medical Faculty, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
24
|
Ghelli Luserna di Rorà A, Jandoubi M, Martinelli G, Simonetti G. Targeting Proliferation Signals and the Cell Cycle Machinery in Acute Leukemias: Novel Molecules on the Horizon. Molecules 2023; 28:molecules28031224. [PMID: 36770891 PMCID: PMC9920029 DOI: 10.3390/molecules28031224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Uncontrolled proliferative signals and cell cycle dysregulation due to genomic or functional alterations are important drivers of the expansion of undifferentiated blast cells in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cells. Therefore, they are largely studied as potential therapeutic targets in the field. We here present the most recent advancements in the evaluation of novel compounds targeting cell cycle proteins or oncogenic mechanisms, including those showing an antiproliferative effect in acute leukemia, independently of the identification of a specific target. Several new kinase inhibitors have been synthesized that showed effectiveness in a nanomolar to micromolar concentration range as inhibitors of FLT3 and its mutant forms, a highly attractive therapeutic target due to its driver role in a significant fraction of AML cases. Moreover, we introduce novel molecules functioning as microtubule-depolymerizing or P53-restoring agents, G-quadruplex-stabilizing molecules and CDK2, CHK1, PI3Kδ, STAT5, BRD4 and BRPF1 inhibitors. We here discuss their mechanisms of action, including the downstream intracellular changes induced by in vitro treatment, hematopoietic toxicity, in vivo bio-availability and efficacy in murine xenograft models. The promising activity profile demonstrated by some of these candidates deserves further development towards clinical investigation.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Fondazione Pisana per Scienza ONLUS, 56017 San Giuliano Terme, Italy
| | - Mouna Jandoubi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
- Correspondence:
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli 40, 47014 Meldola, Italy
| |
Collapse
|
25
|
Patterson AM, Orschell CM, Pelus LM. Hematopoietic Stem Cell Identification Postirradiation. Methods Mol Biol 2023; 2567:127-140. [PMID: 36255699 PMCID: PMC11190781 DOI: 10.1007/978-1-0716-2679-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Radiation exposure is particularly damaging to cells of the hematopoietic system, inducing pancytopenia and bone marrow failure. The study of these processes, as well as the development of treatments to prevent hematopoietic damage or enhance recovery after radiation exposure, often require analysis of bone marrow cells early after irradiation. While flow cytometry methods are well characterized for identification and analysis of bone marrow populations in the nonirradiated setting, multiple complications arise when dealing with irradiated tissues. Among these complications is a radiation-induced loss of c-Kit, a central marker for conventional gating of primitive hematopoietic populations in mice. These include hematopoietic stem cells (HSCs), which are central to blood reconstitution and life-long bone marrow function, and are important targets of analysis in these studies. This chapter outlines techniques for HSC identification and analysis from mouse bone marrow postirradiation.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Christie M Orschell
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Louis M Pelus
- Department of Microbiology & Immunology and Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
26
|
Abstract
Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| | | | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Jacobs K, Doerdelmann C, Krietsch J, González-Acosta D, Mathis N, Kushinsky S, Guarino E, Gómez-Escolar C, Martinez D, Schmid JA, Leary PJ, Freire R, Ramiro AR, Eischen CM, Mendez J, Lopes M. Stress-triggered hematopoietic stem cell proliferation relies on PrimPol-mediated repriming. Mol Cell 2022; 82:4176-4188.e8. [PMID: 36152632 PMCID: PMC10251193 DOI: 10.1016/j.molcel.2022.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Stem cell division is linked to tumorigenesis by yet-elusive mechanisms. The hematopoietic system reacts to stress by triggering hematopoietic stem and progenitor cell (HSPC) proliferation, which can be accompanied by chromosomal breakage in activated hematopoietic stem cells (HSCs). However, whether these lesions persist in their downstream progeny and induce a canonical DNA damage response (DDR) remains unclear. Inducing HSPC proliferation by simulated viral infection, we report that the associated DNA damage is restricted to HSCs and that proliferating HSCs rewire their DDR upon endogenous and clastogen-induced damage. Combining transcriptomics, single-cell and single-molecule assays on murine bone marrow cells, we found accelerated fork progression in stimulated HSPCs, reflecting engagement of PrimPol-dependent repriming, at the expense of replication fork reversal. Ultimately, competitive bone marrow transplantation revealed the requirement of PrimPol for efficient HSC amplification and bone marrow reconstitution. Hence, fine-tuning replication fork plasticity is essential to support stem cell functionality upon proliferation stimuli.
Collapse
Affiliation(s)
- Kurt Jacobs
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cyril Doerdelmann
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel González-Acosta
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Nicolas Mathis
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Saul Kushinsky
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Estrella Guarino
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Carmen Gómez-Escolar
- B Lymphocyte Biology Laboratory, Spanish National Center for Cardiovascular Research (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Dolores Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Jonas A Schmid
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter J Leary
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Functional Genomic Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain; Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Almudena R Ramiro
- B Lymphocyte Biology Laboratory, Spanish National Center for Cardiovascular Research (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
28
|
Liu D, Dong S, Liu C, Du J, Wang S, Yu H, Li W, Chen Z, Peng R, Jiang Q, Zou M, Li F, Zhang R. CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage. Front Immunol 2022; 13:927213. [PMID: 36110845 PMCID: PMC9468934 DOI: 10.3389/fimmu.2022.927213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, Toll-like receptors (TLRs) have been extensively studied in radiation damage, but the inherent defects of high toxicity and low efficacy of most TLR ligands limit their further clinical transformation. CRX-527, as a TLR4 ligand, has rarely been reported to protect against radiation. We demonstrated that CRX-527 was safer than LPS at the same dose in vivo and had almost no toxic effect in vitro. Administration of CRX-527 improved the survival rate of total body irradiation (TBI) to 100% in wild-type mice but not in TLR4-/- mice. After TBI, hematopoietic system damage was significantly alleviated, and the recovery period was accelerated in CRX-527-treated mice. Moreover, CRX-527 induced differentiation of HSCs and the stimulation of CRX-527 significantly increased the proportion and number of LSK cells and promoted their differentiation into macrophages, activating immune defense. Furthermore, we proposed an immune defense role for hematopoietic differentiation in the protection against intestinal radiation damage, and confirmed that macrophages invaded the intestines through peripheral blood to protect them from radiation damage. Meanwhile, CRX-527 maintained intestinal function and homeostasis, promoted the regeneration of intestinal stem cells, and protected intestinal injury from lethal dose irradiation. Furthermore, After the use of mice, we found that CRX-527 had no significant protective effect on the hematopoietic and intestinal systems of irradiated TLR4-/- mice. in conclusion, CRX-527 induced differentiation of HSCs protecting the intestinal epithelium from radiation damage.
Collapse
Affiliation(s)
- Dongshu Liu
- Postgraduate Training Base of the People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Jinzhou Medical University, Beijing, China
| | - Suhe Dong
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Cong Liu
- Naval Medical University, Shanghai, China
| | - Jicong Du
- Naval Medical University, Shanghai, China
| | - Sinian Wang
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Huijie Yu
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Wei Li
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhongmin Chen
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Renjun Peng
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Qisheng Jiang
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Mengying Zou
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Fengsheng Li
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| | - Rong Zhang
- Postgraduate Training Base of the People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Jinzhou Medical University, Beijing, China
- People's Liberation Army (PLA) of China Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
29
|
Pankow A, Sun XH. The divergence between T cell and innate lymphoid cell fates controlled by E and Id proteins. Front Immunol 2022; 13:960444. [PMID: 36032069 PMCID: PMC9399370 DOI: 10.3389/fimmu.2022.960444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
T cells develop in the thymus from lymphoid primed multipotent progenitors or common lymphoid progenitors into αβ and γδ subsets. The basic helix-loop-helix transcription factors, E proteins, play pivotal roles at multiple stages from T cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also regulate T cell development while promoting ILC differentiation. Recent findings suggest that the thymus can also produce innate lymphoid cells (ILCs). In this review, we present current findings that suggest the balance between E and Id proteins is likely to be critical for controlling the bifurcation of T cell and ILC fates at early stages of T cell development.
Collapse
Affiliation(s)
- Aneta Pankow
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
30
|
Zhou C, Uluisik R, Rowley JW, David C, Jones CL, Scharer CD, Noetzli L, Fisher MH, Kirkpatrick GD, Bark K, Boss JM, Henry CJ, Pietras EM, Di Paola J, Porter CC. Germline ETV6 mutation promotes inflammation and disrupts lymphoid development of early hematopoietic progenitors. Exp Hematol 2022; 112-113:24-34. [PMID: 35803545 PMCID: PMC9885892 DOI: 10.1016/j.exphem.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/10/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023]
Abstract
Germline mutations in ETV6 are associated with a syndrome of thrombocytopenia and leukemia predisposition, and ETV6 is among the most commonly mutated genes in leukemias, especially childhood B-cell acute lymphoblastic leukemia. However, the mechanisms underlying disease caused by ETV6 dysfunction are poorly understood. To address these gaps in knowledge, using CRISPR/Cas9, we developed a mouse model of the most common recurrent, disease-causing germline mutation in ETV6. We found defects in hematopoiesis related primarily to abnormalities of the multipotent progenitor population 4 (MPP4) subset of hematopoietic progenitor cells and evidence of sterile inflammation. Expression of ETV6 in Ba/F3 cells altered the expression of several cytokines, some of which were also detected at higher levels in the bone marrow of the mice with Etv6 mutation. Among these, interleukin-18 and interleukin-13 abrogated B-cell development of sorted MPP4 cells, but not common lymphoid progenitors, suggesting that inflammation contributes to abnormal hematopoiesis by impairing lymphoid development. These data, along with those from humans, support a model in which ETV6 dysfunction promotes inflammation, which adversely affects thrombopoiesis and promotes leukemogenesis.
Collapse
Affiliation(s)
- Chengjing Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Rizvan Uluisik
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Jesse W Rowley
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | - Camille David
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | | | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA
| | | | - Marlie H Fisher
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO
| | | | - Katrina Bark
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeremy M Boss
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA
| | - Curtis J Henry
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Eric M Pietras
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Jorge Di Paola
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA.
| |
Collapse
|
31
|
Flt3 Signaling in B Lymphocyte Development and Humoral Immunity. Int J Mol Sci 2022; 23:ijms23137289. [PMID: 35806293 PMCID: PMC9267047 DOI: 10.3390/ijms23137289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The Class III receptor tyrosine kinase Flt3 and its ligand, the Flt3-ligand (FL), play an integral role in regulating the proliferation, differentiation, and survival of multipotent hematopoietic and lymphoid progenitors from which B cell precursors derive in bone marrow (BM). More recently, essential roles for Flt3 signaling in the regulation of peripheral B cell development and affinity maturation have come to light. Experimental findings derived from a multitude of mouse models have reinforced the importance of molecular and cellular regulation of Flt3 and FL in lymphohematopoiesis and adaptive immunity. Here, we provide a comprehensive review of the current state of the knowledge regarding molecular and cellular regulation of Flt3/FL and the roles of Flt3 signaling in hematopoietic stem cell (HSC) activation, lymphoid development, BM B lymphopoiesis, and peripheral B cell development. Cumulatively, the literature has reinforced the importance of Flt3 signaling in B cell development and function. However, it has also identified gaps in the knowledge regarding Flt3-dependent developmental-stage specific gene regulatory circuits essential for steady-state B lymphopoiesis that will be the focus of future studies.
Collapse
|
32
|
Refining the migration and engraftment of short-term and long-term HSCs by enhancing homing-specific adhesion mechanisms. Blood Adv 2022; 6:4373-4391. [PMID: 35764498 DOI: 10.1182/bloodadvances.2022007465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
In contrast to the short-term(ST)-CD34pos stem cells, studies have suggested that long-term (LT) hematopoietic stem cells (HSC) found in the CD34neg stem cell pool have trouble migrating and engrafting when introduced intravenously. We set out to fully elucidate the adhesion mechanisms used by ST/LT-HSCs to migrate to the bone marrow in order to understand these deficiencies. Focusing on murine ST-HSCs(Flk2negCD34pos) and LT-HSCs(Flk2negCD34neg), we observed a distinctive expression pattern of bone marrow homing effectors necessary for the first step, namely sialyl Lewis-X(sLex;ligand for E-selectin), and the second step, namely CXCR4 (receptor for SDF-1). sLex expression was higher on Flk2negCD34pos ST-HSCs(>60%) compared to Flk2negCD34neg LT-HSCs(<10%), which correlated to binding to E-selectin. Higher levels of CXCR4 were observed on Flk2negCD34pos ST-HSCs compared to Flk2negCD34neg LT-HSCs. Interestingly, expression of CD26, a peptidase known to deactivate chemokines (i.e.SDF-1), was higher on Flk2negCD34neg LT-HSCs. Given that migration is compromised in Flk2negCD34neg LT-HSCs, we aimed to enhance their ability to migrate using recombinant fucosyltransferase 6 (rhFTVI) and DiprotinA (CD26-inhibitor). We observed that although LT-HSCs expressed low levels of sLex, in vivo engraftment was not compromised. Moreover, although both treaments enhanced migration in vitro, only pre-treatment of LT-HSCs with DiprotinA enhanced engraftment in vivo. Remarkably, fucosylation of Flk2negCD34pos ST-HSCs consistently led to their ability to transplant secondary recipients, the gold standard for testing functionality of LT-HSCs. These data suggest that treatments to overcome the molecular disparity in adhesion mechanisms among ST-HSCs and LT-HSCs, differentially influences their abilities to migrate and engraft in vivo and boosts ST-HSCs engraftment in vivo.
Collapse
|
33
|
Somuncular E, Hauenstein J, Khalkar P, Johansson AS, Dumral Ö, Frengen NS, Gustafsson C, Mocci G, Su TY, Brouwer H, Trautmann CL, Vanlandewijck M, Orkin SH, Månsson R, Luc S. CD49b identifies functionally and epigenetically distinct subsets of lineage-biased hematopoietic stem cells. Stem Cell Reports 2022; 17:1546-1560. [PMID: 35714596 PMCID: PMC9287668 DOI: 10.1016/j.stemcr.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Hematopoiesis is maintained by functionally diverse lineage-biased hematopoietic stem cells (HSCs). The functional significance of HSC heterogeneity and the regulatory mechanisms underlying lineage bias are not well understood. However, absolute purification of HSC subtypes with a pre-determined behavior remains challenging, highlighting the importance of continued efforts toward prospective isolation of homogeneous HSC subsets. In this study, we demonstrate that CD49b subdivides the most primitive HSC compartment into functionally distinct subtypes: CD49b− HSCs are highly enriched for myeloid-biased and the most durable cells, while CD49b+ HSCs are enriched for multipotent cells with lymphoid bias and reduced self-renewal ability. We further demonstrate considerable transcriptional similarities between CD49b− and CD49b+ HSCs but distinct differences in chromatin accessibility. Our studies highlight the diversity of HSC functional behaviors and provide insights into the molecular regulation of HSC heterogeneity through transcriptional and epigenetic mechanisms. CD49b− HSCs are highly enriched for durable and long-term myeloid-biased HSCs CD49b+ HSCs are enriched for less durable cells with lymphoid bias CD49b− and CD49b+ HSCs are transcriptionally similar but epigenetically distinct
Collapse
Affiliation(s)
- Ece Somuncular
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Julia Hauenstein
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Prajakta Khalkar
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Özge Dumral
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicolai S Frengen
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giuseppe Mocci
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Single Cell Core Facility of Flemingsberg Campus, Karolinska Institutet, Stockholm, Sweden
| | - Tsu-Yi Su
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hugo Brouwer
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christine L Trautmann
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Vanlandewijck
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Single Cell Core Facility of Flemingsberg Campus, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sidinh Luc
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Safi F, Dhapola P, Warsi S, Sommarin M, Erlandsson E, Ungerbäck J, Warfvinge R, Sitnicka E, Bryder D, Böiers C, Thakur RK, Karlsson G. Concurrent stem- and lineage-affiliated chromatin programs precede hematopoietic lineage restriction. Cell Rep 2022; 39:110798. [PMID: 35545037 DOI: 10.1016/j.celrep.2022.110798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/20/2021] [Accepted: 04/15/2022] [Indexed: 01/06/2023] Open
Abstract
The emerging notion of hematopoietic stem and progenitor cells (HSPCs) as a low-primed cloud without sharply demarcated gene expression programs raises the question on how cellular-fate options emerge and at which stem-like stage lineage priming is initiated. Here, we investigate single-cell chromatin accessibility of Lineage-, cKit+, and Sca1+ (LSK) HSPCs spanning the early differentiation landscape. Application of a signal-processing algorithm to detect transition points corresponding to massive alterations in accessibility of 571 transcription factor motifs reveals a population of LSK FMS-like tyrosine kinase 3 (Flt3)intCD9high cells that concurrently display stem-like and lineage-affiliated chromatin signatures, pointing to a simultaneous gain of both lympho-myeloid and megakaryocyte-erythroid programs. Molecularly and functionally, these cells position between stem cells and committed progenitors and display multi-lineage capacity in vitro and in vivo but lack self-renewal activity. This integrative molecular analysis resolves the heterogeneity of cells along hematopoietic differentiation and permits investigation of chromatin-mediated transition between multipotency and lineage restriction.
Collapse
Affiliation(s)
- Fatemeh Safi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Sarah Warsi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Mikael Sommarin
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Eva Erlandsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Rebecca Warfvinge
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Ewa Sitnicka
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden
| | - Ram Krishna Thakur
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden.
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 22184 Lund, Sweden.
| |
Collapse
|
35
|
Konturek-Ciesla A, Bryder D. Stem Cells, Hematopoiesis and Lineage Tracing: Transplantation-Centric Views and Beyond. Front Cell Dev Biol 2022; 10:903528. [PMID: 35573680 PMCID: PMC9091331 DOI: 10.3389/fcell.2022.903528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
An appropriate production of mature blood cells, or hematopoiesis, is essential for organismal health and homeostasis. In this developmental cascade, hematopoietic stem cells (HSCs) differentiate into intermediate progenitor types, that subsequently give rise to the many distinct blood cell lineages. Here, we describe tools and methods that permit for temporal and native clonal-level HSC lineage tracing in the mouse, and that can now be combined with emerging single-cell molecular analyses. We integrate new insights derived from such experimental paradigms with past knowledge, which has predominantly been derived from transplantation-based approaches. Finally, we outline current knowledge and novel strategies derived from studies aimed to trace human HSC-derived hematopoiesis.
Collapse
|
36
|
Dntt expression reveals developmental hierarchy and lineage specification of hematopoietic progenitors. Nat Immunol 2022; 23:505-517. [PMID: 35354960 PMCID: PMC9208307 DOI: 10.1038/s41590-022-01167-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022]
Abstract
Intrinsic and extrinsic cues determine developmental trajectories of hematopoietic stem cells (HSCs) towards erythroid, myeloid and lymphoid lineages. Using two newly generated transgenic mice that report and trace the expression of terminal deoxynucleotidyl transferase (TdT), transient induction of TdT was detected on a newly identified multipotent progenitor (MPP) subset that lacked self-renewal capacity but maintained multilineage differentiation potential. TdT induction on MPPs reflected a transcriptionally dynamic but uncommitted stage, characterized by low expression of lineage-associated genes. Single-cell CITE-seq indicated that multipotency in the TdT+ MPPs is associated with expression of the endothelial cell adhesion molecule ESAM. Stable and progressive upregulation of TdT defined the lymphoid developmental trajectory. Collectively, we here identify a new multipotent progenitor within the MPP4 compartment. Specification and commitment are defined by downregulation of ESAM which marks the progressive loss of alternative fates along all lineages.
Collapse
|
37
|
Yang Y, Kueh AJ, Grant ZL, Abeysekera W, Garnham AL, Wilcox S, Hyland CD, Di Rago L, Metcalf D, Alexander WS, Coultas L, Smyth GK, Voss AK, Thomas T. The histone lysine acetyltransferase HBO1 (KAT7) regulates hematopoietic stem cell quiescence and self-renewal. Blood 2022; 139:845-858. [PMID: 34724565 DOI: 10.1182/blood.2021013954] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022] Open
Abstract
The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation development, histone H3 lysine 14 acetylation (H3K14Ac), and the expression of embryonic patterning genes. In this study, we report the role of HBO1 in regulating hematopoietic stem cell function in adult hematopoiesis. We used 2 complementary cre-recombinase transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1-null mice became moribund due to hematopoietic failure with pancytopenia in the blood and bone marrow 2 to 6 weeks after Hbo1 deletion. Hbo1-deleted bone marrow cells failed to repopulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion caused a rapid loss of hematopoietic progenitors. The numbers of lineage-restricted progenitors for the erythroid, myeloid, B-, and T-cell lineages were reduced. Loss of HBO1 resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells (HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 deletion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2), Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1, and Hox9, as well as genes important for multipotent progenitor cells and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particularly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.
Collapse
Affiliation(s)
- Yuqing Yang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Zoe L Grant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Alexandra L Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
| | - Craig D Hyland
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
| | - Ladina Di Rago
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
| | - Don Metcalf
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Leigh Coultas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and
- Department of Medical Biology and
| |
Collapse
|
38
|
Yang M, Pan Z, Huang K, Büsche G, Liu H, Göhring G, Rumpel R, Dittrich-Breiholz O, Talbot S, Scherr M, Chaturvedi A, Eder M, Skokowa J, Zhou J, Welte K, von Neuhoff N, Liu L, Ganser A, Li Z. A unique role of p53 haploinsufficiency or loss in the development of acute myeloid leukemia with FLT3-ITD mutation. Leukemia 2022; 36:675-686. [PMID: 34732858 PMCID: PMC8885416 DOI: 10.1038/s41375-021-01452-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/29/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
With an incidence of ~50%, the absence or reduced protein level of p53 is much more common than TP53 mutations in acute myeloid leukemia (AML). AML with FLT3-ITD (internal tandem duplication) mutations has an unfavorable prognosis and is highly associated with wt-p53 dysfunction. While TP53 mutation in the presence of FLT3-ITD does not induce AML in mice, it is not clear whether p53 haploinsufficiency or loss cooperates with FLT3-ITD in the induction of AML. Here, we generated FLT3-ITD knock-in; p53 knockout (heterozygous and homozygous) double-transgenic mice and found that both alterations strongly cooperated in the induction of cytogenetically normal AML without increasing the self-renewal potential. At the molecular level, we found the strong upregulation of Htra3 and the downregulation of Lin28a, leading to enhanced proliferation and the inhibition of apoptosis and differentiation. The co-occurrence of Htra3 overexpression and Lin28a knockdown, in the presence of FLT3-ITD, induced AML with similar morphology as leukemic cells from double-transgenic mice. These leukemic cells were highly sensitive to the proteasome inhibitor carfilzomib. Carfilzomib strongly enhanced the activity of targeting AXL (upstream of FLT3) against murine and human leukemic cells. Our results unravel a unique role of p53 haploinsufficiency or loss in the development of FLT3-ITD + AML.
Collapse
Affiliation(s)
- Min Yang
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zengkai Pan
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany ,grid.16821.3c0000 0004 0368 8293Present Address: National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kezhi Huang
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany ,grid.12981.330000 0001 2360 039XPresent Address: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- grid.10423.340000 0000 9529 9877Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Hongyun Liu
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- grid.10423.340000 0000 9529 9877Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Regina Rumpel
- grid.10423.340000 0000 9529 9877Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Oliver Dittrich-Breiholz
- grid.10423.340000 0000 9529 9877Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Steven Talbot
- grid.10423.340000 0000 9529 9877Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Anuhar Chaturvedi
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Eder
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julia Skokowa
- grid.10392.390000 0001 2190 1447Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - Jianfeng Zhou
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Karl Welte
- grid.488549.cUniversity Children’s Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Tübingen, Germany
| | - Nils von Neuhoff
- grid.5718.b0000 0001 2187 5445AML Diagnostic Laboratory, Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Ligen Liu
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arnold Ganser
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
39
|
ILC Differentiation in the Thymus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:25-39. [DOI: 10.1007/978-981-16-8387-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Yu W, Schmachtel T, Fawaz M, Rieger MA. Isolation of murine bone marrow hematopoietic stem and progenitor cell populations via flow cytometry. Methods Cell Biol 2022; 171:173-195. [DOI: 10.1016/bs.mcb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Challen GA, Pietras EM, Wallscheid NC, Signer RAJ. Simplified murine multipotent progenitor isolation scheme: Establishing a consensus approach for multipotent progenitor identification. Exp Hematol 2021; 104:55-63. [PMID: 34648848 DOI: 10.1016/j.exphem.2021.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
The mouse hematopoietic system has served as a paradigm for analysis of developmental fate decisions in tissue homeostasis and regeneration. However, multiple immunophenotypic definitions of, and sometimes divergent nomenclatures used to classify, murine multipotent progenitors (MPPs) have emerged in the field over time. This has created significant confusion and inconsistency in the hematology field. To facilitate easier comparison of murine MPP phenotypes between research laboratories, a working group of four International Society for Experimental Hematology (ISEH) members with extensive experience studying the functional activities associated with different MPP phenotypic definitions reviewed the current state of the field with the goal of developing a position statement toward a simplified and unified immunophenotypic definition of MPP populations. In November of 2020, this position statement was presented as a webinar to the ISEH community for discussion and feedback. Hence, the Simplified MPP Identification Scheme presented here is the result of curation of existing literature, consultation with leaders in the field, and crowdsourcing from the wider experimental hematology community. Adoption of a unified definition and nomenclature, while still leaving room for individual investigator customization, will benefit scientists at all levels trying to compare these populations between experimental settings.
Collapse
Affiliation(s)
- Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
42
|
Liu C, Gong Y, Zhang H, Yang H, Zeng Y, Bian Z, Xin Q, Bai Z, Zhang M, He J, Yan J, Zhou J, Li Z, Ni Y, Wen A, Lan Y, Hu H, Liu B. Delineating spatiotemporal and hierarchical development of human fetal innate lymphoid cells. Cell Res 2021; 31:1106-1122. [PMID: 34239074 PMCID: PMC8486758 DOI: 10.1038/s41422-021-00529-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Whereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA- lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2- CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Han Zhang
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhilei Bian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Qian Xin
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Man Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Aiqing Wen
- Department of Blood Transfusion, Daping Hospital, Army Military Medical University, Chongqing, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Hongbo Hu
- Center for Immunology and Hematology, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University. Collaboration and Innovation Center for Biotherapy, Chengdu, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
43
|
Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells 2021; 10:cells10102507. [PMID: 34685487 PMCID: PMC8534120 DOI: 10.3390/cells10102507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids, associated enzymes, and the sphingolipid pathway are implicated in complex, multifaceted roles impacting several cell functions, such as cellular homeostasis, apoptosis, cell differentiation, and more through intrinsic and autocrine/paracrine mechanisms. Given this broad range of functions, it comes as no surprise that a large body of evidence points to important functions of sphingolipids in hematopoiesis. As the understanding of the processes that regulate hematopoiesis and of the specific characteristics that define each type of hematopoietic cells is being continuously refined, the understanding of the roles of sphingolipid metabolism in hematopoietic lineage commitment is also evolving. Recent findings indicate that sphingolipid alterations can modulate lineage commitment from stem cells all the way to megakaryocytic, erythroid, myeloid, and lymphoid cells. For instance, recent evidence points to the ability of de novo sphingolipids to regulate the stemness of hematopoietic stem cells while a substantial body of literature implicates various sphingolipids in specialized terminal differentiation, such as thrombopoiesis. This review provides a comprehensive discussion focused on the mechanisms that link sphingolipids to the commitment of hematopoietic cells to the different lineages, also highlighting yet to be resolved questions.
Collapse
|
44
|
Syndecan-2 expression enriches for hematopoietic stem cells and regulates stem cell repopulating capacity. Blood 2021; 139:188-204. [PMID: 34767029 DOI: 10.1182/blood.2020010447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
The discovery of novel hematopoietic stem cell (HSC) surface markers can enhance understanding of HSC identity and function. We have discovered a population of primitive bone marrow (BM) HSCs distinguished by their expression of the heparan sulfate proteoglycan, Syndecan-2, which serves as both a marker and regulator of HSC function. Syndecan-2 expression was increased 10-fold in CD150+CD48-CD34-c-Kit+Sca-1+Lineage- cells (long-term - HSCs, LT-HSCs) compared to differentiated hematopoietic cells. Isolation of BM cells based solely on Syndecan-2 surface expression produced a 24-fold enrichment for LT-HSCs, 6-fold enrichment for alpha-catulin+c-kit+ HSCs, and yielded HSCs with superior in vivo repopulating capacity compared to CD150+ cells. Competitive repopulation assays revealed the HSC frequency to be 17-fold higher in Syndecan-2+CD34-KSL cells compared to Syndecan-2-CD34-KSL cells and indistinguishable from CD150+CD34-KSL cells. Syndecan-2 expression also identified nearly all repopulating HSCs within the CD150+CD34-KSL population. Mechanistically, Syndecan-2 regulates HSC repopulating capacity through control of expression of Cdkn1c (p57) and HSC quiescence. Loss of Syndecan-2 expression caused increased HSC cell cycle entry, downregulation of Cdkn1c and loss of HSC long-term - repopulating capacity. Syndecan-2 is a novel marker of HSCs which regulates HSC repopulating capacity via control of HSC quiescence.
Collapse
|
45
|
Tian Y, Meng L, Wang Y, Li B, Yu H, Zhou Y, Bui T, Abraham C, Li A, Zhang Y, Wang J, Zhao C, Mineishi S, Gallucci S, Porter D, Hexner E, Zheng H, Zhang Y, Hu S, Zhang Y. Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction. J Clin Invest 2021; 131:136774. [PMID: 33090973 DOI: 10.1172/jci136774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Graft-versus-host disease (GVHD) causes failed reconstitution of donor plasmacytoid dendritic cells (pDCs) that are critical for immune protection and tolerance. We used both murine and human systems to uncover the mechanisms whereby GVHD induces donor pDC defects. GVHD depleted Flt3-expressing donor multipotent progenitors (MPPs) that sustained pDCs, leading to impaired generation of pDCs. MPP loss was associated with decreased amounts of MPP-producing hematopoietic stem cells (HSCs) and oxidative stress-induced death of proliferating MPPs. Additionally, alloreactive T cells produced GM-CSF to inhibit MPP expression of Tcf4, the transcription factor essential for pDC development, subverting MPP production of pDCs. GM-CSF did not affect the maturation of pDC precursors. Notably, enhanced recovery of donor pDCs upon adoptive transfer early after allogeneic HSC transplantation repressed GVHD and restored the de novo generation of donor pDCs in recipient mice. pDCs suppressed the proliferation and expansion of activated autologous T cells via a type I IFN signaling-dependent mechanism. They also produced PD-L1 and LILRB4 to inhibit T cell production of IFN-γ. We thus demonstrate that GVHD impairs the reconstitution of tolerogenic donor pDCs by depleting DC progenitors rather than by preventing pDC maturation. MPPs are an important target to effectively bolster pDC reconstitution for controlling GVHD.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Lijun Meng
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - Bohan Li
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tien Bui
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Alicia Li
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yongping Zhang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Jian Wang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Chenchen Zhao
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Shin Mineishi
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - David Porter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hong Zheng
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyan Hu
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Flow Cytometry Analysis of Mouse Hematopoietic Stem and Multipotent Progenitor Cells. Methods Mol Biol 2021. [PMID: 34057715 DOI: 10.1007/978-1-0716-1425-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Flow cytometry has been widely used to detect a single event by means of multiparametric fluorescence measurements. Here we describe a method to analyze subsets of hematopoietic stem and progenitor cells isolated from long bones of mice. We further show that this method allows for comparing JAM-C protein expression between subsets of hematopoietic stem and progenitor cells.
Collapse
|
47
|
Sottoriva K, Pajcini KV. Notch Signaling in the Bone Marrow Lymphopoietic Niche. Front Immunol 2021; 12:723055. [PMID: 34394130 PMCID: PMC8355626 DOI: 10.3389/fimmu.2021.723055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lifelong mammalian hematopoiesis requires continuous generation of mature blood cells that originate from Hematopoietic Stem and Progenitor Cells (HSPCs) situated in the post-natal Bone Marrow (BM). The BM microenvironment is inherently complex and extensive studies have been devoted to identifying the niche that maintains HSPC homeostasis and supports hematopoietic potential. The Notch signaling pathway is required for the emergence of the definitive Hematopoietic Stem Cell (HSC) during embryonic development, but its role in BM HSC homeostasis is convoluted. Recent work has begun to explore novel roles for the Notch signaling pathway in downstream progenitor populations. In this review, we will focus an important role for Notch signaling in the establishment of a T cell primed sub-population of Common Lymphoid Progenitors (CLPs). Given that its activation mechanism relies primarily on cell-to-cell contact, Notch signaling is an ideal means to investigate and define a novel BM lymphopoietic niche. We will discuss how new genetic model systems indicate a pre-thymic, BM-specific role for Notch activation in early T cell development and what this means to the paradigm of lymphoid lineage commitment. Lastly, we will examine how leukemic T-cell acute lymphoblastic leukemia (T-ALL) blasts take advantage of Notch and downstream lymphoid signals in the pathological BM niche.
Collapse
Affiliation(s)
- Kilian Sottoriva
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
48
|
Boast B, Nunes-Santos CDJ, Kuehn HS, Rosenzweig SD. Ikaros-Associated Diseases: From Mice to Humans and Back Again. Front Pediatr 2021; 9:705497. [PMID: 34354970 PMCID: PMC8330404 DOI: 10.3389/fped.2021.705497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The normal expression of Ikaros (IKZF1) is important for the proper functioning of both the human and murine immune systems. Whilst our understanding of IKZF1 in the immune system has been greatly enhanced by the study of mice carrying mutations in Ikzf1, analyses of human patients carrying germline IKZF1 mutations have been instrumental in understanding its biological role within the human immune system and its effect on human disease. A myriad of different mutations in IKZF1 have been identified, spanning across the entire gene causing differential clinical outcomes in patients including immunodeficiency, immune dysregulation, and cancer. The majority of mutations in humans leading to IKAROS-associated diseases are single amino acid heterozygous substitutions that affect the overall function of the protein. The majority of mutations studied in mice however, affect the expression of the protein rather than its function. Murine studies would suggest that the complete absence of IKZF1 expression leads to severe and sometimes catastrophic outcomes, yet these extreme phenotypes are not commonly observed in patients carrying IKZF1 heterozygous mutations. It is unknown whether this discrepancy is simply due to differences in zygosity, the role and regulation of IKZF1 in the murine and human immune systems, or simply due to a lack of similar controls across both groups. This review will focus its analysis on the current literature surrounding what is known about germline IKZF1 defects in both the human and the murine immune systems, and whether existing mice models are indeed accurate tools to study the effects of IKZF1-associated diseases.
Collapse
Affiliation(s)
- Brigette Boast
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Cristiane de Jesus Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
49
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
50
|
Hung CH, Wang KY, Liou YH, Wang JP, Huang AYS, Lee TL, Jiang ST, Liao NS, Shyu YC, Shen CKJ. Negative Regulation of the Differentiation of Flk2 - CD34 - LSK Hematopoietic Stem Cells by EKLF/KLF1. Int J Mol Sci 2020; 21:E8448. [PMID: 33182781 PMCID: PMC7697791 DOI: 10.3390/ijms21228448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF/KLF1) was identified initially as a critical erythroid-specific transcription factor and was later found to be also expressed in other types of hematopoietic cells, including megakaryocytes and several progenitors. In this study, we have examined the regulatory effects of EKLF on hematopoiesis by comparative analysis of E14.5 fetal livers from wild-type and Eklf gene knockout (KO) mouse embryos. Depletion of EKLF expression greatly changes the populations of different types of hematopoietic cells, including, unexpectedly, the long-term hematopoietic stem cells Flk2- CD34- Lin- Sca1+ c-Kit+ (LSK)-HSC. In an interesting correlation, Eklf is expressed at a relatively high level in multipotent progenitor (MPP). Furthermore, EKLF appears to repress the expression of the colony-stimulating factor 2 receptor β subunit (CSF2RB). As a result, Flk2- CD34- LSK-HSC gains increased differentiation capability upon depletion of EKLF, as demonstrated by the methylcellulose colony formation assay and by serial transplantation experiments in vivo. Together, these data demonstrate the regulation of hematopoiesis in vertebrates by EKLF through its negative regulatory effects on the differentiation of the hematopoietic stem and progenitor cells, including Flk2- CD34- LSK-HSCs.
Collapse
Affiliation(s)
- Chun-Hao Hung
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Keh-Yang Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yae-Huei Liou
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Jing-Ping Wang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Anna Yu-Szu Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Tung-Liang Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Si-Tse Jiang
- Department of Research and Development, National Laboratory Animal Center, National Applied Research Laboratories, Tainan 74147, Taiwan;
| | - Nah-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
| | - Yu-Chiau Shyu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Che-Kun James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan; (C.-H.H.); (K.-Y.W.); (Y.-H.L.); (J.-P.W.); (A.Y.-S.H.); (T.-L.L.); (N.-S.L.)
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 115, Taiwan
| |
Collapse
|