1
|
Lorenzen US, Bracco MI, Zielinski AH, Broda M, Avril S, Rouet L, Eiberg JP. Strain Patterns With Ultrasound for Assessment of Abdominal Aortic Aneurysm Vessel Wall Biomechanics. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00357-0. [PMID: 39366791 DOI: 10.1016/j.ultrasmedbio.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) are an important cause of death. Small AAAs are surveyed with ultrasound (US) until a defined diameter threshold, often triggering a computer tomography scan and surgical repair. Nevertheless, 5%-10% of AAA ruptures are below threshold, and some large AAAs never rupture. AAA wall biomechanics may reveal vessel wall degradation with potential for patient-centred risk assessment. This clinical study investigated AAA vessel wall biomechanics and deformation patterns, including reproducibility. METHODS In 50 patients with AAA, 183 video clips were recorded by two sonographers. Prototype software extracted AAA vessel wall principal strain characteristics and patterns. Functional principal component analysis (FPCA) derived strain pattern statistics. RESULTS Strain patterns demonstrated reduced AAA wall strains close to the spine. The strain pattern "topography" (i.e., curve phases or "peaks" and "valleys") had a 3.9 times lower variance than simple numeric assessment of strain amplitudes, which allowed for clustering in two groups with FPCA. A high mean reproducibility of these clusters of 87.6% was found. Median pulse pressure-normalised mean principal strain (PPPS) was 0.038%/mm Hg (interquartile range: 0.029-0.051%/mm Hg) with no correlation to AAA size (Spearman's ρ = 0.02, false discovery rate-p = 0.15). Inter-operator reproducibility of PPPS was poor (limits of agreement: ±0.031%/mm Hg). DISCUSSION Strain patterns challenge previous numeric stiffness measures based on anterior-posterior-diameter and are reproducible for clustering. This study's PPPS aligned with prior findings, although clinical reproducibility was poor. In contrast, US-based strain patterns hold promising potential to enhance AAA risk assessment beyond traditional diameter-based metrics.
Collapse
Affiliation(s)
- Ulver S Lorenzen
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marta I Bracco
- Philips Health Technology Innovation, Paris, France; Centre for Biomedical and Healthcare Engineering, Soft Tissue BIOmechanics (STBio), MINES Saint-Étienne, Campus of Saint-Étienne, Saint-Priest-en-Jarez, France
| | - Alexander H Zielinski
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Magdalena Broda
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Stéphane Avril
- Centre for Biomedical and Healthcare Engineering, Soft Tissue BIOmechanics (STBio), MINES Saint-Étienne, Campus of Saint-Étienne, Saint-Priest-en-Jarez, France
| | - Laurence Rouet
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas P Eiberg
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Academy for Medical Education and Simulation (CAMES), The Capital Region, Copenhagen, Denmark
| |
Collapse
|
2
|
Mansouri M, Therasse E, Montagnon E, Zhan YO, Lessard S, Roy A, Boucher LM, Steinmetz O, Aslan E, Tang A, Chartrand-Lefebvre C, Soulez G. CT analysis of aortic calcifications to predict abdominal aortic aneurysm rupture. Eur Radiol 2024; 34:3903-3911. [PMID: 37999728 DOI: 10.1007/s00330-023-10429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) rupture prediction based on sex and diameter could be improved. The goal was to assess whether aortic calcification distribution could better predict AAA rupture through machine learning and LASSO regression. METHODOLOGY In this retrospective study, 80 patients treated for a ruptured AAA between January 2001 and August 2018 were matched with 80 non-ruptured patients based on maximal AAA diameter, age, and sex. Calcification volume and dispersion, morphologic, and clinical variables were compared between both groups using a univariable analysis with p = 0.05 and multivariable analysis through machine learning and LASSO regression. We used AUC for machine learning and odds ratios for regression to measure performance. RESULTS Mean age of patients was 74.0 ± 8.4 years and 89% were men. AAA diameters were equivalent in both groups (80.9 ± 17.5 vs 79.0 ± 17.3 mm, p = 0.505). Ruptured aneurysms contained a smaller number of calcification aggregates (18.0 ± 17.9 vs 25.6 ± 18.9, p = 0.010) and were less likely to have a proximal neck (45.0% vs 76.3%, p < 0.001). In the machine learning analysis, 5 variables were associated to AAA rupture: proximal neck, antiplatelet use, calcification number, Euclidian distance between calcifications, and standard deviation of the Euclidian distance. A follow-up LASSO regression was concomitant with the findings of the machine learning analysis regarding calcification dispersion but discordant on calcification number. CONCLUSION There might be more to AAA calcifications that what is known in the present literature. We need larger prospective studies to investigate if indeed, calcification dispersion affects rupture risk. CLINICAL RELEVANCE STATEMENT Ruptured aneurysms are possibly more likely to have their calcification volume concentrated in a smaller geographical area. KEY POINTS • Abdominal aortic aneurysm (AAA) rupture prediction based on sex and diameter could be improved. • For a given calcification volume, AAAs with well-distributed calcification clusters could be less likely to rupture. • A machine learning model including AAA calcifications better predicts rupture compared to a model based solely on maximal diameter and sex alone, although it might be prone to overfitting.
Collapse
Affiliation(s)
- Mohamed Mansouri
- Department of Radiology, McGill University Health Center (MUHC), Montréal, Québec, Canada
- Department of Diagnostic Radiology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Eric Therasse
- Department of Radiology, Centre Hospitalier de L'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC, H2X 3E4, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Laboratory of Clinical Imaging Processing, Centre Hospitalier de L'Université de Montréal (CHUM) Research Center (CRCHUM), Montréal, Québec, Canada
| | - Emmanuel Montagnon
- Laboratory of Clinical Imaging Processing, Centre Hospitalier de L'Université de Montréal (CHUM) Research Center (CRCHUM), Montréal, Québec, Canada
| | - Ying Olivier Zhan
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Simon Lessard
- Laboratory of Clinical Imaging Processing, Centre Hospitalier de L'Université de Montréal (CHUM) Research Center (CRCHUM), Montréal, Québec, Canada
| | - Aubert Roy
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Louis-Martin Boucher
- Department of Radiology, McGill University Health Center (MUHC), Montréal, Québec, Canada
- Department of Diagnostic Radiology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Oren Steinmetz
- Department of Vascular Surgery, McGill University Health Center (MUHC), Montréal, Québec, Canada
- Department of Vascular Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Emre Aslan
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Centre Hospitalier de L'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC, H2X 3E4, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Laboratory of Clinical Imaging Processing, Centre Hospitalier de L'Université de Montréal (CHUM) Research Center (CRCHUM), Montréal, Québec, Canada
| | - Carl Chartrand-Lefebvre
- Department of Radiology, Centre Hospitalier de L'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC, H2X 3E4, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada
- Laboratory of Clinical Imaging Processing, Centre Hospitalier de L'Université de Montréal (CHUM) Research Center (CRCHUM), Montréal, Québec, Canada
| | - Gilles Soulez
- Department of Radiology, Centre Hospitalier de L'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montreal, QC, H2X 3E4, Canada.
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada.
- Laboratory of Clinical Imaging Processing, Centre Hospitalier de L'Université de Montréal (CHUM) Research Center (CRCHUM), Montréal, Québec, Canada.
- Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Gonring DW, Zottola ZR, Hirad AA, Lakony R, Richards MS, Pitcher G, Stoner MC, Mix DS. Ultrasound elastography to quantify average percent pressure-normalized strain reduction associated with different aortic endografts in 3D-printed hydrogel phantoms. JVS Vasc Sci 2024; 5:100198. [PMID: 38846626 PMCID: PMC11153908 DOI: 10.1016/j.jvssci.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/23/2024] [Indexed: 06/09/2024] Open
Abstract
Objective Strain has become a viable index for evaluating abdominal aortic aneurysm stability after endovascular aneurysm repair (EVAR). In addition, literature has shown that healthy aortic tissue requires a degree of strain to maintain homeostasis. This has led to the hypothesis that too much strain reduction conferred by a high degree of graft oversizing is detrimental to the aneurysm neck in the seal zone of abdominal aortic aneurysms after EVAR. We investigated this in a laboratory experiment by examining the effects that graft oversizing has on the pressure-normalized strain (ε ρ + ¯ /pulse pressure [PP]) reduction using four different infrarenal EVAR endografts and our ultrasound elastography technique. Approximate graft oversizing percentages were 20% (30 mm phantom-graft combinations), 30% (28 mm phantom-graft combinations), and 50% (24 mm phantom-graft combinations). Methods Axisymmetric, 10% by mass polyvinyl alcohol phantoms were connected to a flow simulator. Ultrasound elastography was performed before and after implantation with the four different endografts: (1) 36 mm polyester/stainless steel, (2) 36 mm polyester/electropolished nitinol, (3) 35 mm polytetrafluoroethylene (PTFE)/nitinol, and (4) 36 mm nitinol/polyester/platinum-iridium. Five ultrasound cine loops were taken of each phantom-graft combination. They were analyzed over two different cardiac cycles (end-diastole to end-diastole), yielding a total of 10 maximum mean principal strain (ε ρ + ¯ ) values.ε ρ + ¯ was divided by pulse pressure to yield pressure-normalized strain (ε ρ + ¯ /PP). An analysis of variance was performed for graft comparisons. We calculated the average percentε ρ + ¯ /PP reduction by manufacturer and percent oversizing. These values were used for linear regression analysis. Results Results from one-way analysis of variance showed a significant difference inε ρ + ¯ /PP between the empty phantom condition and all oversizing conditions for all graft manufacturers (F(3, 56) = 106.7 [graft A], 132.7 [graft B], 106.5 [graft C], 105.7 [graft D], P < .0001 for grafts A-D). There was a significant difference when comparing the 50% condition with the 30% and 20% conditions across all manufacturers by post hoc analysis (P < .0001). No significant difference was found when comparing the 20% and 30% oversizing conditions for any of the manufacturers or when comparingε ρ + ¯ /PP values across the manufacturers according to percent oversize. Linear regression demonstrated a significant positive correlation between the percent graft oversize and the all-graft average percentε ρ + ¯ /PP reduction (R 2 = 0.84, P < .0001). Conclusions This brief report suggests that a 10% increase in graft oversizing leads to an approximate 5.9% reduction inε ρ + ¯ /PP on average. Applied clinically, this increase may result in increased stiffness in axisymmetric vessels after EVAR. Further research is needed to determine if this is clinically significant.
Collapse
Affiliation(s)
- Dakota W. Gonring
- University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Adnan A. Hirad
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Ronald Lakony
- Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY
| | - Michael S. Richards
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY
| | - Grayson Pitcher
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Michael C. Stoner
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
4
|
Zhao TY, Johnson EMI, Elisha G, Halder S, Smith BC, Allen BD, Markl M, Patankar NA. Blood-wall fluttering instability as a physiomarker of the progression of thoracic aortic aneurysms. Nat Biomed Eng 2023; 7:1614-1626. [PMID: 38082182 PMCID: PMC11440811 DOI: 10.1038/s41551-023-01130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2023] [Indexed: 12/20/2023]
Abstract
The diagnosis of aneurysms is informed by empirically tracking their size and growth rate. Here, by analysing the growth of aortic aneurysms from first principles via linear stability analysis of flow through an elastic blood vessel, we show that abnormal aortic dilatation is associated with a transition from stable flow to unstable aortic fluttering. This transition to instability can be described by the critical threshold for a dimensionless number that depends on blood pressure, the size of the aorta, and the shear stress and stiffness of the aortic wall. By analysing data from four-dimensional flow magnetic resonance imaging for 117 patients who had undergone cardiothoracic imaging and for 100 healthy volunteers, we show that the dimensionless number is a physiomarker for the growth of thoracic ascending aortic aneurysms and that it can be used to accurately discriminate abnormal versus natural growth. Further characterization of the transition to blood-wall fluttering instability may aid the understanding of the mechanisms underlying aneurysm progression in patients.
Collapse
Affiliation(s)
- Tom Y Zhao
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
| | - Ethan M I Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Guy Elisha
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Sourav Halder
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Ben C Smith
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Neelesh A Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Maas EJ, Nievergeld AHM, Fonken JHC, Thirugnanasambandam M, van Sambeek MRHM, Lopata RGP. 3D-Ultrasound Based Mechanical and Geometrical Analysis of Abdominal Aortic Aneurysms and Relationship to Growth. Ann Biomed Eng 2023; 51:2554-2565. [PMID: 37410199 PMCID: PMC10598132 DOI: 10.1007/s10439-023-03301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
The heterogeneity of progression of abdominal aortic aneurysms (AAAs) is not well understood. This study investigates which geometrical and mechanical factors, determined using time-resolved 3D ultrasound (3D + t US), correlate with increased growth of the aneurysm. The AAA diameter, volume, wall curvature, distensibility, and compliance in the maximal diameter region were determined automatically from 3D + t echograms of 167 patients. Due to limitations in the field-of-view and visibility of aortic pulsation, measurements of the volume, compliance of a 60 mm long region and the distensibility were possible for 78, 67, and 122 patients, respectively. Validation of the geometrical parameters with CT showed high similarity, with a median similarity index of 0.92 and root-mean-square error (RMSE) of diameters of 3.5 mm. Investigation of Spearman correlation between parameters showed that the elasticity of the aneurysms decreases slightly with diameter (p = 0.034) and decreases significantly with mean arterial pressure (p < 0.0001). The growth of a AAA is significantly related to its diameter, volume, compliance, and surface curvature (p < 0.002). Investigation of a linear growth model showed that compliance is the best predictor for upcoming AAA growth (RMSE 1.70 mm/year). To conclude, mechanical and geometrical parameters of the maximally dilated region of AAAs can automatically and accurately be determined from 3D + t echograms. With this, a prediction can be made about the upcoming AAA growth. This is a step towards more patient-specific characterization of AAAs, leading to better predictability of the progression of the disease and, eventually, improved clinical decision making about the treatment of AAAs.
Collapse
Affiliation(s)
- Esther Jorien Maas
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
| | - Arjet Helena Margaretha Nievergeld
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Judith Helena Cornelia Fonken
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mirunalini Thirugnanasambandam
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Marc Rodolph Henricus Maria van Sambeek
- PULS/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | | |
Collapse
|
6
|
Zottola ZR, Kong DS, Medhekar AN, Frye LE, Hao SB, Gonring DW, Hirad AA, Stoner MC, Richards MS, Mix DS. Intermediate pressure-normalized principal wall strain values are associated with increased abdominal aortic aneurysmal growth rates. Front Cardiovasc Med 2023; 10:1232844. [PMID: 37719977 PMCID: PMC10501562 DOI: 10.3389/fcvm.2023.1232844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Current abdominal aortic aneurysm (AAA) assessment relies on analysis of AAA diameter and growth rate. However, evidence demonstrates that AAA pathology varies among patients and morphometric analysis alone is insufficient to precisely predict individual rupture risk. Biomechanical parameters, such as pressure-normalized AAA principal wall strain (ε ρ + ¯ /PP, %/mmHg), can provide useful information for AAA assessment. Therefore, this study utilized a previously validated ultrasound elastography (USE) technique to correlate ε ρ + ¯ /PP with the current AAA assessment methods of maximal diameter and growth rate. Methods Our USE algorithm utilizes a finite element mesh, overlaid a 2D cross-sectional view of the user-defined AAA wall, at the location of maximum diameter, to track two-dimensional, frame-to-frame displacements over a full cardiac cycle, using a custom image registration algorithm to produce ε ρ + ¯ /PP. This metric was compared between patients with healthy aortas and AAAs (≥3 cm) and compared between small and large AAAs (≥5 cm). AAAs were then separated into terciles based on ε ρ + ¯ /PP values to further assess differences in our metric across maximal diameter and prospective growth rate. Non-parametric tests of hypotheses were used to assess statistical significance as appropriate. Results USE analysis was conducted on 129 patients, 16 healthy aortas and 113 AAAs, of which 86 were classified as small AAAs and 27 as large. Non-aneurysmal aortas showed higher ε ρ + ¯ /PP compared to AAAs (0.044 ± 0.015 vs. 0.034 ± 0.017%/mmHg, p = 0.01) indicating AAA walls to be stiffer. Small and large AAAs showed no difference in ε ρ + ¯ /PP. When divided into terciles based on ε ρ + ¯ /PP cutoffs of 0.0251 and 0.038%/mmHg, there was no difference in AAA diameter. There was a statistically significant difference in prospective growth rate between the intermediate tercile and the outer two terciles (1.46 ± 2.48 vs. 3.59 ± 3.83 vs. 1.78 ± 1.64 mm/yr, p = 0.014). Discussion There was no correlation between AAA diameter and ε ρ + ¯ /PP, indicating biomechanical markers of AAA pathology are likely independent of diameter. AAAs in the intermediate tercile of ε ρ + ¯ /PP values were found to have nearly double the growth rates than the highest or lowest tercile, indicating an intermediate range of ε ρ + ¯ /PP values for which patients are at risk for increased AAA expansion, likely necessitating more frequent imaging follow-up.
Collapse
Affiliation(s)
- Zachary R. Zottola
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel S. Kong
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Ankit N. Medhekar
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Lauren E. Frye
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Scarlett B. Hao
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Dakota W. Gonring
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Adnan A. Hirad
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C. Stoner
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S. Richards
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Doran S. Mix
- Division of Vascular Surgery, Department of Surgery, Cardiovascular Engineering Lab, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
7
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
8
|
Dong H, Raterman B, White RD, Starr J, Vaccaro P, Haurani M, Go M, Eisner M, Brock G, Kolipaka A. MR Elastography of Abdominal Aortic Aneurysms: Relationship to Aneurysm Events. Radiology 2022; 304:721-729. [PMID: 35638926 PMCID: PMC9434816 DOI: 10.1148/radiol.212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 11/11/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) diameter remains the standard clinical parameter to predict growth and rupture. Studies suggest that using solely AAA diameter for risk stratification is insufficient. Purpose To evaluate the use of aortic MR elastography (MRE)-derived AAA stiffness and stiffness ratio at baseline to identify the potential for future aneurysm rupture or need for surgical repair. Materials and Methods Between August 2013 and March 2019, 72 participants with AAA and 56 healthy participants were enrolled in this prospective study. MRE examinations were performed to estimate AAA stiffness and the stiffness ratio between AAA and its adjacent remote normal aorta. Two Cox proportional hazards models were used to assess AAA stiffness and stiffness ratio for predicting aneurysmal events (subsequent repair, rupture, or diameter >5.0 cm). Log-rank tests were performed to determine a critical stiffness ratio suggesting high-risk AAAs. Baseline AAA stiffness and stiffness ratio were studied using Wilcoxon rank-sum tests between participants with and without aneurysmal events. Spearman correlation was used to investigate the relationship between stiffness and other potential imaging markers. Results Seventy-two participants with AAA (mean age, 71 years ± 9 [SD]; 56 men and 16 women) and 56 healthy participants (mean age, 42 years ± 16; 27 men and 29 women) were evaluated. In healthy participants, aortic stiffness positively correlated with age (ρ = 0.44; P < .001). AAA stiffness (event group [n = 21], 50.3 kPa ± 26.5 [SD]; no-event group [n = 21], 86.9 kPa ± 52.6; P = .01) and the stiffness ratio (event group, 0.7 ± 0.4; no-event group, 2.0 ± 1.4; P < .001) were lower in the event group than the no-event group at a mean follow-up of 449 days. AAA stiffness did not correlate with diameter in the event group (ρ = -0.06; P = .68) or the no-event group (ρ = -0.13; P = .32). AAA stiffness was inversely correlated with intraluminal thrombus area (ρ = -0.50; P = .01). Conclusion Lower abdominal aortic aneurysm stiffness and stiffness ratio measured with use of MR elastography was associated with aneurysmal events at a 15-month follow-up. © RSNA, 2022 See also the editorial by Sakuma in this issue.
Collapse
Affiliation(s)
- Huiming Dong
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Brian Raterman
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Richard D. White
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Jean Starr
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Patrick Vaccaro
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Mounir Haurani
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Michael Go
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Mariah Eisner
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Guy Brock
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| | - Arunark Kolipaka
- From the Department of Radiology (H.D., B.R., R.D.W., A.K.), Department of Internal Medicine, Division of Cardiovascular Medicine (R.D.W., A.K.), Department of Surgery (J.S., P.V., M.H., M.G.), and Department of Biomedical Informatics and Center for Biostatistics (M.E., G.B.), College of Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Ave, 4th Floor, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio (H.D., A.K.); and Department of Radiology, Mayo Clinic, Jacksonville, Fla (R.D.W.)
| |
Collapse
|
9
|
Zottola ZR, Gonring DW, Wang ML, Hirad AA, Richards MS, Stoner MC, Mix DS. Changes in Intra-operative Aortic Strain as Detected by Ultrasound Elastography in Patients Following Abdominal Endovascular Aneurysm Repair. J Vasc Surg Cases Innov Tech 2022; 8:762-769. [DOI: 10.1016/j.jvscit.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022] Open
|
10
|
Aneurysm geometry analyzed by the novel three-dimensional tomographic ultrasound relates to abdominal aortic aneurysm growth. Ann Vasc Surg 2022; 87:469-477. [DOI: 10.1016/j.avsg.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022]
|
11
|
Sakuma H. Abdominal Aortic Aneurysm: Prediction of Rupture Risk with MR Elastography. Radiology 2022; 304:730-731. [PMID: 35638930 DOI: 10.1148/radiol.221044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hajime Sakuma
- From the Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 5148507, Japan
| |
Collapse
|
12
|
Ning H, Liu X, Ma C, Yang J, Li T. The Evaluation of Longitudinal Strain of Large and Small Abdominal Aortic Aneurysm by Two-Dimensional Speckle-Tracking Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1085-1093. [PMID: 34296470 DOI: 10.1002/jum.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/21/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Abdominal aortic aneurysm (AAA) is a dangerous and lethal vascular disease. Non-invasive two-dimensional speckle-tracking imaging (2D STI) plays an important role in assessing aortic biomechanical properties. Our study aimed to evaluate the alterations of biomechanical characteristics using 2D STI in 91 AAA patients with different size. METHODS Aneurysm strain, elastic modulus, stiffness index β, and aortic distensibility determined by M-Mode ultrasound (US), and longitudinal strain (LS) derived from 2D STI were compared in 40 large AAA patients (diameter ≥ 55 mm) and 51 small AAA patients (diameter < 55 mm). RESULTS Compared with small AAA group, anterior wall longitudinal strain (ALS) and posterior wall longitudinal strain (PLS) were significantly decreased in large AAA group (all P < .05) and not affected by age, symptom, hypertension, and thrombus. Meanwhile, ALS and PLS correlated negatively with maximal aneurysm diameters (r = -0.628 and -0.469, respectively, all P < .001). And only ALS was associated with M-Mode US parameters (all P < .05). Based on receiver operating characteristic (ROC) analysis, ALS and PLS had strong diagnostic values for large AAA with the area under the curve (AUC) of 0.82 and 0.72, and cut-off points of 1.71 and 1.64% with a sensitivity of 78 and 72%, and a specificity of 75 and 70%, respectively. CONCLUSIONS LS measured by 2D STI could evaluate the biomechanical properties of aneurysm wall with different size, and add additional diagnostic value in distinguishing between small and large AAA.
Collapse
Affiliation(s)
- Hongxia Ning
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaozheng Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
13
|
Berman AG, Romary DJ, Kerr KE, Gorazd NE, Wigand MM, Patnaik SS, Finol EA, Cox AD, Goergen CJ. Experimental aortic aneurysm severity and growth depend on topical elastase concentration and lysyl oxidase inhibition. Sci Rep 2022; 12:99. [PMID: 34997075 PMCID: PMC8742076 DOI: 10.1038/s41598-021-04089-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) formation and expansion is highly complex and multifactorial, and the improvement of animal models is an important step to enhance our understanding of AAA pathophysiology. In this study, we explore our ability to influence aneurysm growth in a topical elastase plus β-Aminopropionitrile (BAPN) mouse model by varying elastase concentration and by altering the cross-linking capability of the tissue. To do so, we assess both chronic and acute effects of elastase concentration using volumetric ultrasound. Our results suggest that the applied elastase concentration affects initial elastin degradation, as well as long-term vessel expansion. Additionally, we assessed the effects of BAPN by (1) removing it to restore the cross-linking capability of tissue after aneurysm formation and (2) adding it to animals with stable aneurysms to interrupt cross-linking. These results demonstrate that, even after aneurysm formation, lysyl oxidase inhibition remains necessary for continued expansion. Removing BAPN reduces the aneurysm growth rate to near zero, resulting in a stable aneurysm. In contrast, adding BAPN causes a stable aneurysm to expand. Altogether, these results demonstrate the ability of elastase concentration and BAPN to modulate aneurysm growth rate and severity. The findings open several new areas of investigation in a murine model that mimics many aspects of human AAA.
Collapse
Affiliation(s)
- Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Daniel J Romary
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Katherine E Kerr
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Natalyn E Gorazd
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Morgan M Wigand
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Sourav S Patnaik
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ender A Finol
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Abigail D Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Munshaw S, Bruche S, Redpath AN, Jones A, Patel J, Dubé KN, Lee R, Hester SS, Davies R, Neal G, Handa A, Sattler M, Fischer R, Channon KM, Smart N. Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling. J Clin Invest 2021; 131:127884. [PMID: 33784254 PMCID: PMC8121525 DOI: 10.1172/jci127884] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Vascular stability and tone are maintained by contractile smooth muscle cells (VSMCs). However, injury-induced growth factors stimulate a contractile-synthetic phenotypic modulation which increases susceptibility to abdominal aortic aneurysm (AAA). As a regulator of embryonic VSMC differentiation, we hypothesized that Thymosin β4 (Tβ4) may function to maintain healthy vasculature throughout postnatal life. This was supported by the identification of an interaction with low density lipoprotein receptor related protein 1 (LRP1), an endocytic regulator of platelet-derived growth factor BB (PDGF-BB) signaling and VSMC proliferation. LRP1 variants have been implicated by genome-wide association studies with risk of AAA and other arterial diseases. Tβ4-null mice displayed aortic VSMC and elastin defects that phenocopy those of LRP1 mutants, and their compromised vascular integrity predisposed them to Angiotensin II-induced aneurysm formation. Aneurysmal vessels were characterized by enhanced VSMC phenotypic modulation and augmented PDGFR-β signaling. In vitro, enhanced sensitivity to PDGF-BB upon loss of Tβ4 was associated with dysregulated endocytosis, with increased recycling and reduced lysosomal targeting of LRP1-PDGFR-β. Accordingly, the exacerbated aneurysmal phenotype in Tβ4-null mice was rescued upon treatment with the PDGFR-β antagonist Imatinib. Our study identifies Tβ4 as a key regulator of LRP1 for maintaining vascular health, and provides insights into the mechanisms of growth factor-controlled VSMC phenotypic modulation underlying aortic disease progression.
Collapse
MESH Headings
- Angiotensin II/adverse effects
- Angiotensin II/pharmacology
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Becaplermin/genetics
- Becaplermin/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/genetics
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Thymosin/genetics
- Thymosin/metabolism
- Thymosin/pharmacology
Collapse
Affiliation(s)
- Sonali Munshaw
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Susann Bruche
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Andia N. Redpath
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Alisha Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Munich, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Munich, Germany
| | - Jyoti Patel
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Svenja S. Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Davies
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Giles Neal
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Munich, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Munich, Germany
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Keith M. Channon
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicola Smart
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, United Kingdom
| |
Collapse
|
15
|
Petterson N, Sjoerdsma M, van Sambeek M, van de Vosse F, Lopata R. Mechanical characterization of abdominal aortas using multi-perspective ultrasound imaging. J Mech Behav Biomed Mater 2021; 119:104509. [PMID: 33865067 DOI: 10.1016/j.jmbbm.2021.104509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/13/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Mechanical characterization of abdominal aortic aneurysms using personalized biomechanical models is being widely investigated as an alternative criterion to assess risk of rupture. These methods rely on accurate wall motion detection and appropriate model boundary conditions. In this study, multi-perspective ultrasound is combined with finite element models to perform mechanical characterization of abdominal aortas in volunteers. Multi-perspective biplane radio frequency ultrasound recordings were made under seven angles (-45° to 45°) in one phantom set-up and eight volunteers, which were merged using automatic image registration. 2-D displacement fields were estimated in the seven longitudinal ultrasound views, creating a sparse, high resolution 3-D map of the wall motion at relatively high frame rates (20-27 Hz). The displacements were used to personalize the subject-specific finite element model of which the geometry of the aorta, spine, and surrounding tissue were determined from a single 3-D ultrasound acquisition. Automatic registration of the multi-perspective images was successful in six out of eight cases with an average error of 5.4° compared to the ground truth. Displacements of the aortic wall were measured and cyclic strain of the aortic diameter was found ranging from 4.2% to 8.6%. The subject-specific mesh and inverse FE analysis was performed yielding shear moduli estimates for the wall between 104 and 215 kPa. Comparative results from a single-perspective workflow revealed very low aortic wall motion signal, which resulted in relatively high modulus estimates, between 230 and 754 kPa. Multi-perspective biplane ultrasound imaging was used to personalize finite element models of the abdominal aorta and its surroundings, and performing mechanical characterization of the aortic shear modulus. The method was found to be a more robust method compared to a single-perspective 3-D ultrasound approach. Future research will focus on investigating the use of multiple 3-D ultrasound acquisitions, the feasibility of free-hand scanning, the creation of a full 3-D automatic registration process, and with that, enable a clinical continuation of this study.
Collapse
Affiliation(s)
- Niels Petterson
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Marloes Sjoerdsma
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| | - Marc van Sambeek
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Department of Vascular Surgery, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
| | - Frans van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Richard Lopata
- Photoacoustics & Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| |
Collapse
|
16
|
In Vivo Aortic Magnetic Resonance Elastography in Abdominal Aortic Aneurysm: A Validation in an Animal Model. Invest Radiol 2021; 55:463-472. [PMID: 32520516 DOI: 10.1097/rli.0000000000000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Using maximum diameter of an abdominal aortic aneurysm (AAA) alone for management can lead to delayed interventions or unnecessary urgent repairs. Abdominal aortic aneurysm stiffness plays an important role in its expansion and rupture. In vivo aortic magnetic resonance elastography (MRE) was developed to spatially measure AAA stiffness in previous pilot studies and has not been thoroughly validated and evaluated for its potential clinical value. This study aims to evaluate noninvasive in vivo aortic MRE-derived stiffness in an AAA porcine model and investigate the relationships between MRE-derived AAA stiffness and (1) histopathology, (2) uniaxial tensile test, and (3) burst testing for assessing MRE's potential in evaluating AAA rupture risk. MATERIALS AND METHODS Abdominal aortic aneurysm was induced in 31 Yorkshire pigs (n = 226 stiffness measurements). Animals were randomly divided into 3 cohorts: 2-week, 4-week, and 4-week-burst. Aortic MRE was sequentially performed. Histopathologic analyses were performed to quantify elastin, collagen, and mineral densities. Uniaxial tensile test and burst testing were conducted to measure peak stress and burst pressure for assessing the ultimate wall strength. RESULTS Magnetic resonance elastography-derived AAA stiffness was significantly higher than the normal aorta. Significant reduction in elastin and collagen densities as well as increased mineralization was observed in AAAs. Uniaxial tensile test and burst testing revealed reduced ultimate wall strength. Magnetic resonance elastography-derived aortic stiffness correlated to elastin density (ρ = -0.68; P < 0.0001; n = 60) and mineralization (ρ = 0.59; P < 0.0001; n = 60). Inverse correlations were observed between aortic stiffness and peak stress (ρ = -0.32; P = 0.0495; n = 38) as well as burst pressure (ρ = -0.55; P = 0.0116; n = 20). CONCLUSIONS Noninvasive in vivo aortic MRE successfully detected aortic wall stiffening, confirming the extracellular matrix remodeling observed in the histopathologic analyses. These mural changes diminished wall strength. Inverse correlation between MRE-derived aortic stiffness and aortic wall strength suggests that MRE-derived stiffness can be a potential biomarker for clinically assessing AAA wall status and rupture potential.
Collapse
|
17
|
Reproducibility assessment of ultrasound-based aortic stiffness quantification and verification using Bi-axial tensile testing. J Mech Behav Biomed Mater 2020; 103:103571. [DOI: 10.1016/j.jmbbm.2019.103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 09/10/2019] [Accepted: 11/29/2019] [Indexed: 01/04/2023]
|
18
|
Sangiorgi G, Biondi-Zoccai G, Pizzuto A, Martelli E. Commentary: Biochemical Markers for Diagnosis and Follow-up of Aortic Diseases: An Endless Search for the Holy Grail. J Endovasc Ther 2019; 26:836-842. [PMID: 31608740 DOI: 10.1177/1526602819879941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Giuseppe Sangiorgi
- Department of Systemic Medicine, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Mediterranea Cardiocentro, Napoli, Italy
| | - Alessandra Pizzuto
- Department of Systemic Medicine, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Eugenio Martelli
- Department of Medical, Surgical and Experimental Sciences, Division of Vascular Surgery, University of Sassari, Italy
| |
Collapse
|
19
|
Boczar KE, Cheung K, Boodhwani M, Beauchesne L, Dennie C, Nagpal S, Chan K, Coutinho T. Sex Differences in Thoracic Aortic Aneurysm Growth. Hypertension 2019; 73:190-196. [DOI: 10.1161/hypertensionaha.118.11851] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kevin E. Boczar
- From the Division of Cardiology, University of Ottawa Heart Institute, ON, Canada (K.E.B., L.B., K.C., T.C.)
| | - Katie Cheung
- The Department of Health Research Methods, Evidence, and Impact (HEI) at McMaster University, Hamilton, ON, Canada (K.C.)
| | - Munir Boodhwani
- Division of Cardiac Surgery (M.B.), University of Ottawa Heart Institute, ON, Canada
| | - Luc Beauchesne
- From the Division of Cardiology, University of Ottawa Heart Institute, ON, Canada (K.E.B., L.B., K.C., T.C.)
| | - Carole Dennie
- Department of Radiology (C.D.), The Ottawa Hospital, ON, Canada
| | - Sudhir Nagpal
- Division of Vascular Surgery (S.N.), The Ottawa Hospital, ON, Canada
| | - Kwan Chan
- From the Division of Cardiology, University of Ottawa Heart Institute, ON, Canada (K.E.B., L.B., K.C., T.C.)
| | - Thais Coutinho
- From the Division of Cardiology, University of Ottawa Heart Institute, ON, Canada (K.E.B., L.B., K.C., T.C.)
- Division of Cardiac Prevention and Rehabilitation (T.C.), University of Ottawa Heart Institute, ON, Canada
- Canadian Women’s Heart Health Centre (T.C.), University of Ottawa Heart Institute, ON, Canada
| |
Collapse
|
20
|
Jalalahmadi G, Helguera M, Mix DS, Linte CA. Toward modeling the effects of regional material properties on the wall stress distribution of abdominal aortic aneurysms. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10578:105780I. [PMID: 31213733 PMCID: PMC6581509 DOI: 10.1117/12.2294558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The overall geometry and different biomechanical parameters of an abdominal aortic aneurysm (AAA), contribute to its severity and risk of rupture, therefore they could be used to track its progression. Previous and ongoing research efforts have resorted to using uniform material properties to model the behavior of AAA. However, it has been recently illustrated that different regions of the AAA wall exhibit different behavior due to the effect of the biological activities in the metalloproteinase matrix that makes up the wall at the aneurysm site. In this work, we introduce a non-invasive patient-specific regional material property model to help us better understand and investigate the AAA wall stress distribution, peak wall stress (PWS) severity, and potential rupture risk. Our results indicate that the PWS and the overall wall stress distribution predicted using the proposed regional material property model, are higher than those predicted using the traditional homogeneous, hyper-elastic model (p <1.43E-07). Our results also show that to investigate AAA, the overall geometry, presence of intra-luminal thrombus (ILT), and loading condition in a patient specific manner may be critical for capturing the biomechanical complexity of AAAs.
Collapse
Affiliation(s)
- Golnaz Jalalahmadi
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, USA
| | - María Helguera
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, USA
- Instituto Tecnológico José Mario Molina Pasquel y Henríquez - Unidad Lagos de Moreno, Jalisco, México
| | - Doran S Mix
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, USA
- Department of Surgery, Division of Vascular Surgery, University of Rochester Medical Center, Rochester, USA
| | - Cristian A Linte
- Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, USA
- Biomedical Engineering Department, Rochester Institute of Technology, Rochester, USA
| |
Collapse
|
21
|
Mix DS, Yang L, Johnson CC, Couper N, Zarras B, Arabadjis I, Trakimas LE, Stoner MC, Day SW, Richards MS. Detecting Regional Stiffness Changes in Aortic Aneurysmal Geometries Using Pressure-Normalized Strain. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2372-2394. [PMID: 28728780 PMCID: PMC5562537 DOI: 10.1016/j.ultrasmedbio.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/26/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Transabdominal ultrasound elasticity imaging could improve the assessment of rupture risk for abdominal aortic aneurysms by providing information on the mechanical properties and stress or strain states of vessel walls. We implemented a non-rigid image registration method to visualize the pressure-normalized strain within vascular tissues and adapted it to measure total strain over an entire cardiac cycle. We validated the algorithm's performance with both simulated ultrasound images with known principal strains and anatomically accurate heterogeneous polyvinyl alcohol cryogel vessel phantoms. Patient images of abdominal aortic aneurysm were also used to illustrate the clinical feasibility of our imaging algorithm and the potential value of pressure-normalized strain as a clinical metric. Our results indicated that pressure-normalized strain could be used to identify spatial variations in vessel tissue stiffness. The results of this investigation were sufficiently encouraging to warrant a clinical study measuring abdominal aortic pressure-normalized strain in a patient population with aneurysmal disease.
Collapse
Affiliation(s)
- Doran S Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA.
| | - Ling Yang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Camille C Johnson
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Nathan Couper
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Ben Zarras
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Isaac Arabadjis
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Lauren E Trakimas
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael C Stoner
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven W Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Michael S Richards
- Division of Vascular Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA; Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
22
|
Abstract
An abdominal aortic aneurysm (AAA) is a focal full thickness dilatation of the abdominal aorta, greater than 1.5 times its normal diameter. Although some patients with AAA experience back or abdominal pain, most remain asymptomatic until rupture. The prognosis after AAA rupture is poor. Management strategies for patients with asymptomatic AAAs include risk factor reduction, such as smoking cessation, optimizing antihypertensive treatment, and treating dyslipidemia, as well as surveillance by ultrasound. Currently, aneurysm diameter alone is often used to assess risk of rupture. Once the aneurysm diameter reaches 5.5 cm, the risk of rupture is considered greater than the risk of intervention and elective aneurysm repair is undertaken. There is increasing interest in detecting AAAs early, and national screening programs are now in place. Furthermore, there is increasing research interest in biomarkers, genetics, and functional imaging to improve detection of AAAs at risk of progression and rupture. In this review, we discuss risk factors for AAA rupture, which should be considered during the management process, to advance current deficiencies in management pathways.
Collapse
|
23
|
In vivo strain assessment of the abdominal aortic aneurysm. J Biomech 2014; 48:354-60. [PMID: 25497379 DOI: 10.1016/j.jbiomech.2014.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022]
Abstract
The only criteria currently used to inform surgical decision for abdominal aortic aneurysms are maximum diameter (>5.5 cm) and rate of growth, even though several studies have identified the need for more specific indicators of risk. Patient-specific biomechanical variables likely to affect rupture risk would be a valuable addition to the science of understanding rupture risk and prove to be a life saving benefit for patients. Local deformability of the aorta is related to the local mechanical properties of the wall and may provide indication on the state of weakening of the wall tissue. We propose a 3D image-based approach to compute aortic wall strain maps in vivo. The method is applicable to a variety of imaging modalities that provide sequential images at different phases in the cardiac cycle. We applied the method to a series of abdominal aneurysms imaged using cine-MRI obtaining strain maps at different phases in the cardiac cycle. These maps could be used to evaluate the distensibility of an aneurysm at baseline and at different follow-up times and provide an additional index to clinicians to facilitate decisions on the best course of action for a specific patient.
Collapse
|
24
|
Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. J Vasc Surg 2014; 59:1393-401.e1-2. [DOI: 10.1016/j.jvs.2013.04.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 11/20/2022]
|
25
|
Kontopodis N, Metaxa E, Papaharilaou Y, Tavlas E, Tsetis D, Ioannou C. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture. Vascular 2014; 23:65-77. [PMID: 24757027 DOI: 10.1177/1708538114532084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abdominal aortic aneurysms are a common health problem and currently the need for surgical intervention is determined based on maximum diameter and growth rate criteria. Since these universal variables often fail to predict accurately every abdominal aortic aneurysms evolution, there is a considerable effort in the literature for other markers to be identified towards individualized rupture risk estimations and growth rate predictions. To this effort, biomechanical tools have been extensively used since abdominal aortic aneurysm rupture is in fact a material failure of the diseased arterial wall to compensate the stress acting on it. The peak wall stress, the role of the unique geometry of every individual abdominal aortic aneurysm as well as the mechanical properties and the local strength of the degenerated aneurysmal wall, all confer to rupture risk. In this review article, the assessment of these variables through mechanical testing, advanced imaging and computational modeling is reviewed and the clinical perspective is discussed.
Collapse
Affiliation(s)
- Nikolaos Kontopodis
- Department of Vascular Surgery, University of Crete Medical School, Heraklion, Greece
| | - Eleni Metaxa
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Greece
| | - Yannis Papaharilaou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Greece
| | - Emmanouil Tavlas
- Department of Vascular Surgery, University of Crete Medical School, Heraklion, Greece
| | - Dimitrios Tsetis
- Department of Interventional Radiology, University of Crete Medical School, Heraklion, Greece
| | - Christos Ioannou
- Department of Vascular Surgery, University of Crete Medical School, Heraklion, Greece
| |
Collapse
|
26
|
Konofagou E, Lee WN, Luo J, Provost J, Vappou J. Physiologic cardiovascular strain and intrinsic wave imaging. Annu Rev Biomed Eng 2012; 13:477-505. [PMID: 21756144 DOI: 10.1146/annurev-bioeng-071910-124721] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiovascular disease remains the primary killer worldwide. The heart, essentially an electrically driven mechanical pump, alters its mechanical and electrical properties to compensate for loss of normal mechanical and electrical function. The same adjustment also is performed in the vessels, which constantly adapt their properties to accommodate mechanical and geometrical changes related to aging or disease. Real-time, quantitative assessment of cardiac contractility, conduction, and vascular function before the specialist can visually detect it could be feasible. This new physiologic data could open up interactive therapy regimens that are currently not considered. The eventual goal of this technology is to provide a specific method for estimating the position and severity of contraction defects in cardiac infarcts or angina. This would improve care and outcomes as well as detect stiffness changes and overcome the current global measurement limitations in the progression of vascular disease, at little more cost or risk than that of a clinical ultrasound.
Collapse
Affiliation(s)
- Elisa Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10023, USA.
| | | | | | | | | |
Collapse
|
27
|
Iezzi R, Santoro M, Di Natale G, Pirro F, Dattesi R, Nestola M, Snider F, Bonomo L. Aortic-neck dilation after endovascular abdominal aortic aneurysm repair (EVAR): can it be predicted? Radiol Med 2011; 117:804-14. [PMID: 22095419 DOI: 10.1007/s11547-011-0750-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/15/2011] [Indexed: 10/15/2022]
Abstract
PURPOSE This study was performed to evaluate whether dynamic computed tomography (CT) can provide functional vessel information predicting outcomes of aortic neck in patients undergoing endovascular aneurysm repair (EVAR) of an abdominal aortic aneurysm (AAA). MATERIALS AND METHODS Twenty patients with and 20 without AAA were enrolled. Electrocardiographically (ECG)-gated data sets were acquired with a 64-slice CT scanner. Axial pulsatility measurements were taken at three levels: 2 cm above the highest renal artery; immediately below the lowest renal artery; 1 cm below the lowest renal artery. Three independent readers performed the measurements. Systolic and diastolic blood pressures were measured in the brachial artery to calculate arterial-wall distensibility expressed as pressure strain elastic modulus (Ep). Cross-sectional area change, wall distensibility and Ep value were statistically compared. RESULTS No significant differences were found in terms of Ep values in the suprarenal and juxtarenal level. In the AAA group, a significantly higher value was obtained at the infrarenal level. A subgroup of patients with AAA (45%) had a significantly higher Ep value at the infrarenal level. CONCLUSIONS Dynamic CT provided insight into the abdominal aorta pathophysiology. Identifying patients with higher infrarenal distensibility could change selection of graft size to improve proximal fixation.
Collapse
Affiliation(s)
- R Iezzi
- Department of Bioimaging and Radiological Sciences, Institute of Radiology, A. Gemelli Hospital, Catholic University, L.go A. Gemelli 8, 00168, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Xenos M, Bluestein D. Biomechanical Aspects of Abdominal Aortic Aneurysm (AAA) and its Risk of Rupture: Fluid Structure Interaction (FSI) Studies. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2011. [DOI: 10.1007/8415_2011_72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Trimarchi S, Sangiorgi G, Sang X, Rampoldi V, Suzuki T, Eagle KA, Elefteriades JA. In search of blood tests for thoracic aortic diseases. Ann Thorac Surg 2010; 90:1735-42. [PMID: 20971314 DOI: 10.1016/j.athoracsur.2010.04.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 10/18/2022]
Abstract
A number of new diagnostic screening tools have been developed for the assessment of acute and chronic diseases of the thoracic aorta. Although standardized blood-based tests capable of detecting individuals at risk for aortic aneurysm and dissection disease are not yet available, our current knowledge is expanding at a rapid rate and the future is very promising. In this review, an update of the contemporary knowledge on blood tests for detecting thoracic aortic diseases in both preclinical and clinical settings is provided, offering the potential to predict adverse aortic events, such as enlargement, rupture, and dissection.
Collapse
Affiliation(s)
- Santi Trimarchi
- Policlinico San Donato IRCCS, Cardiovascular Center E. Malan, University of Milano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Patient-specific biomechanical profiling in abdominal aortic aneurysm development and rupture. J Vasc Surg 2010; 52:480-8. [DOI: 10.1016/j.jvs.2010.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/07/2010] [Accepted: 01/10/2010] [Indexed: 11/20/2022]
|
31
|
Dynamics of the Aorta Before and After Endovascular Aneurysm Repair: A Systematic Review. Eur J Vasc Endovasc Surg 2009; 38:586-96. [DOI: 10.1016/j.ejvs.2009.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/26/2009] [Indexed: 11/20/2022]
|
32
|
Hoegh A, Lindholt JS. Basic Science Review: Vascular Distensibility as a Predictive Tool in the Management of Small Asymptomatic Abdominal Aortic Aneurysms. Vasc Endovascular Surg 2009; 43:333-8. [DOI: 10.1177/1538574409336019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: This study investigates whether baseline aortic wall distensibility serves as a supplemental bio-marker for AAA progression and need for later repair. Methods: In 1998, 61 males with a small asymptomatic AAAs had a baseline measurement of elasticity and stiffness, using an echo-tracking ultrasound system (Diamove). The cohort was followed till 2005 concerning Dmax, expansion rate, operations for AAA, hospitalisation do to cardiovascular disease and death. Results: During follow-up, 49% died, and 45.9% were hospitalised do to cardiovascular disease, compared to Dmax, Ep and b no significant associations were found. Elasticity correlated moderately to annual expansion rate and Dmax. Good correlation was found between annual expansion rate and Dmax. ROC-curve analysis showed that elasticity, stiffness and Dmax all tended to predict future need for AAA-repair. Conclusion: Baseline aortic wall distensibility may provide an additional parameter for AAA to optimize the indication and time for elective repair.
Collapse
Affiliation(s)
- Annette Hoegh
- Department of Vascular Surgery, Vascular Research Unit, Viborg Hospital, Denmark,
| | - Jes S. Lindholt
- Department of Vascular Surgery, Vascular Research Unit, Viborg Hospital, Denmark
| |
Collapse
|
33
|
Luo J, Fujikura K, Tyrie LS, Tilson MD, Konofagou EE. Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:477-486. [PMID: 19272985 DOI: 10.1109/tmi.2008.928179] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The abdominal aortic aneurysm (AAA) is a common vascular disease. The current clinical criterion for treating AAAs is an increased diameter above a critical value. However, the maximum diameter does not correlate well with aortic rupture, the main cause of death from AAA disease. AAA disease leads to changes in the aortic wall mechanical properties. The pulse-wave velocity (PWV) may indicate such a change. Because of limitations in temporal and spatial resolution, the widely used foot-to-foot method measures the global, instead of regional, PWV between two points at a certain distance in the circulation. However, mechanical properties are nonuniform along the normal and pathological (e.g., the AAA and atherosclerosis) arteries; thus, such changes are typically regional. Pulse-wave imaging (PWI) has been developed by our group to map the pulse-wave propagation along the abdominal aorta in mice in vivo. By using a retrospective electrocardiogram (ECG) gating technique, the radio-frequency (RF) signals over one cardiac cycle were obtained in murine aortas at the extremely high frame rate of 8 kHz and with a field-of-view (FOV) of 12 x 12 mm(2). The velocities of the aortic wall were estimated using an RF-based speckle tracking method. An Angiotensin II (AngII) infusion-based AAA model was used to simulate the human AAA case. Sequences of wall velocity images can noninvasively and quantitatively map the propagation of the pulse wave along the aortic wall. In the normal and sham aortas, the propagation of the pulse wave was relatively uniform along the wall, while in the AngII-treated aortas, the propagation was shown to be nonuniform. There was no significant difference ( p > 0.05) in the PWV between sham (4.67 +/- 1.15 m/s, n=5) and AngII-treated (4.34 +/- 1.48 m/s, n=17) aortas. The correlation coefficient of the linear regression was significantly higher ( p < 0.005) in the sham aortas (0.89 +/- 0.03, n=5 ) than in the AngII-treated ones (0.61 +/- 0.15, n=17). The wall velocities induced by the pulse wave were lower and the pulse wave moved nonuniformly along the AngII-treated aorta ( p < 0.005), with the lowest velocities at the aneurysmal regions. The discrepancy in the regional wall velocity and the nonuniform pulse-wave propagation along the AngII-treated aorta indicated the inhomogeneities in the aortic wall properties, and the reduced wall velocities indicated stiffening of the aneurysmal wall. This novel technique may thus constitute an early detection tool of vascular degeneration as well as serve as a suitable predictor of AAA rupture, complementary to the current clinical screening practice.
Collapse
Affiliation(s)
- Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
34
|
A zipper network model of the failure mechanics of extracellular matrices. Proc Natl Acad Sci U S A 2009; 106:1081-6. [PMID: 19144920 DOI: 10.1073/pnas.0808414106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical failure of soft tissues is characteristic of life-threatening diseases, including capillary stress failure, pulmonary emphysema, and vessel wall aneurysms. Failure occurs when mechanical forces are sufficiently high to rupture the enzymatically weakened extracellular matrix (ECM). Elastin, an important structural ECM protein, is known to stretch beyond 200% strain before failing. However, ECM constructs and native vessel walls composed primarily of elastin and proteoglycans (PGs) have been found to fail at much lower strains. In this study, we hypothesized that PGs significantly contribute to tissue failure. To test this, we developed a zipper network model (ZNM), in which springs representing elastin are organized into long wavy fibers in a zipper-like formation and placed within a network of springs mimicking PGs. Elastin and PG springs possessed distinct mechanical and failure properties. Simulations using the ZNM showed that the failure of PGs alone reduces the global failure strain of the ECM well below that of elastin, and hence, digestion of elastin does not influence the failure strain. Network analysis suggested that whereas PGs drive the failure process and define the failure strain, elastin determines the peak and failure stresses. Predictions of the ZNM were experimentally confirmed by measuring the failure properties of engineered elastin-rich ECM constructs before and after digestion with trypsin, which cleaves the core protein of PGs without affecting elastin. This study reveals a role for PGs in the failure properties of engineered and native ECM with implications for the design of engineered tissues.
Collapse
|
35
|
Nordon IM, Hinchliffe RJ, Holt PJ, Loftus IM, Thompson MM. Review of Current Theories for Abdominal Aortic Aneurysm Pathogenesis. Vascular 2009; 17:253-63. [DOI: 10.2310/6670.2009.00046] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerotic plaques are a feature of abdominal aortic aneurysms (AAAs). Atherosclerosis and AAA appear to share similar risk factors. These observations have led to the conclusion that AAAs are a consequence of advanced atherosclerosis. This review explores current theories regarding the pathogenesis of AAA and their implications for treatment. A systematic literature search was conducted using the search terms abdominal aortic aneurysm, atherosclerosis, pathogenesis, and systemic disease. Articles were categorized according to the association of AAAs with atherosclerosis, arteriomegaly, peripheral aneurysm, systemic expression, genetics, autoimmunity, oxidative stress, and systemic disease. Twenty-nine articles reporting changes in the systemic vasculature associated with AAA and 12 articles examining the shared risk factor hypothesis were identified. There is insufficient evidence to confirm that AAAs are the result of advanced atherosclerosis. The bulk of evidence points to AAA disease being a systemic disease of the vasculature, with a predetermined genetic susceptibility leading to a phenotype governed by environmental factors.
Collapse
Affiliation(s)
- Ian M. Nordon
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Robert J. Hinchliffe
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Peter J. Holt
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Ian M. Loftus
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| | - Matthew M. Thompson
- *St George's Vascular Institute, St James' Wing, St George's Hospital, London, UK
| |
Collapse
|
36
|
Lindholt JS. Aneurysmal wall calcification predicts natural history of small abdominal aortic aneurysms. Atherosclerosis 2008; 197:673-8. [PMID: 17442319 DOI: 10.1016/j.atherosclerosis.2007.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/28/2007] [Accepted: 03/08/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND The biomechanical properties of the abdominal aortic aneurysm (AAA) wall may hold predictive potential. This study aims to study the potential role of wall calcification in small AAAs. METHODS Initial AAA calcification was determined by ultrasonography to be either more or less than 50% of the initial maximal AAA circumference in 122 men with an initial AAA sized 30-49 mm in maximal diameter. The patients were offered annual control scans and refered for surgery, if the AAA diameter exceeded 50 mm. Surgery for AAA from the date of inclusion to 15 March 2005 was identified in the national vascular registry "Karbase". Mean follow time was 6.15 years. RESULTS The mean annual growth rate was significantly lower in men with an AAA wall calcification above than below 50% (1.72 mm versus 2.97 mm, P=0.001). The finding persisted after multivariate linear regression analysis adjusting for age, smoking and aspirin use. A total of 12 men with AAA calcification above 50% were operated compared with 25 men with an AAA calcification below 50% (risk ratio: 0.35 (0.18-0.71), P=0.003). The difference in risk persisted after adjustment for age, smoking and use of aspirin (risk ratio: 0.36 (0.18-0.74), P=0.008). CONCLUSION The calcification content in small AAA predicts the natural history of small AAA.
Collapse
Affiliation(s)
- Jes S Lindholt
- Vascular Research Unit, Department of Vascular Surgery, Viborg Hospital, PO Box 130, DK-8600 Viborg, Denmark.
| |
Collapse
|
37
|
Quantification of aortic distensibility in abdominal aortic aneurysm using ECG-gated multi-detector computed tomography. Eur Radiol 2008; 18:966-73. [DOI: 10.1007/s00330-007-0833-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 11/02/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
38
|
Claridge M, Hobbs S, Quick C, Day N, Bradbury A, Wilmink T. Nonsteroidal antiinflammatory drugs are associated with increased aortic stiffness. Vasc Health Risk Manag 2007; 1:149-53. [PMID: 17315401 PMCID: PMC1993941 DOI: 10.2147/vhrm.1.2.149.64082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Nonsteroidal antiinflammatory drugs (NSAIDS) have been shown to retard aneurysm growth in animal models. In vitro studies have shown an inhibitory effect of NSAIDS on matrix metalloproteinase-9, interleukin-1beta, and IL-6 mediated arterial wall elastolysis. The aim of this study was to investigate the effects of NSAIDs on arterial stiffness, a surrogate marker of elastolysis. METHODS 447 subjects enrolled in a community-based abdominal aortic aneurysm (AAA) screening program were assessed for age, blood pressure, smoking status, and drug history. Aortic diameter and stiffness were measured by M-Mode ultrasound. The concentration of the amino-terminal propeptide of type III procollagen was used as a proxy measurement of type III collagen turnover. RESULTS NSAID ingestion was significantly (p = 0.006) associated with increased aortic wall stiffness after adjusting for age, aortic diameter, blood pressure, and smoking status. No such effect was seen for beta-blockers, calcium channel antagonists, nitrates, angiotensin-converting enzyme inhibitors, diuretics, or antiplatelet agents. DISCUSSION These novel data show that NSAIDS are associated with increased aortic stiffness, possibly through the effects of cytokine mediated elastolysis. This in turn may prevent aortic expansion and the development of AAA.
Collapse
Affiliation(s)
- Martin Claridge
- Department of Vascular Surgery, University of Birmingham, Birmingham Heartlands HospitalBirmingham, UK
| | - Simon Hobbs
- Department of Vascular Surgery, University of Birmingham, Birmingham Heartlands HospitalBirmingham, UK
| | - Clive Quick
- Department of Surgery, Hinchingbrooke HospitalHuntingdon, UK
| | - Nick Day
- Department of Epidemiology and Biostatistics, University of CambridgeCambridge, UK
| | - Andrew Bradbury
- Department of Vascular Surgery, University of Birmingham, Birmingham Heartlands HospitalBirmingham, UK
| | - Teun Wilmink
- Department of Vascular Surgery, University of Birmingham, Birmingham Heartlands HospitalBirmingham, UK
| |
Collapse
|
39
|
Deplano V, Knapp Y, Bertrand E, Gaillard E. Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J Biomech 2007; 40:2406-13. [PMID: 17258220 DOI: 10.1016/j.jbiomech.2006.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 11/27/2006] [Indexed: 11/16/2022]
Abstract
An experimental study was carried out on asymmetrical abdominal aortic aneurysm (AAA) to analyse the physiological flows involved. Velocity measurements were performed using particle image velocimetry. Resting and exercise flow rates were investigated in models with rigid and compliant walls to assess the parameters affecting the flow behaviour. The secondary flow patterns, and especially the evolution of the vortices within the AAA, were found to be highly dependent on both the flow waveforms and the wall behaviour. Vortices impacts on the distal walls of the AAA occur in the compliant model and can increase the local pressure on the AAA walls and thus increase the wall stresses; AAA wall stresses are one of the most important factors contributing to ruptured aneurysm.
Collapse
Affiliation(s)
- Valerie Deplano
- IRPHE UMR 6594, Equipe de Biomécanique Cardiovasculaire, Marseille, France.
| | | | | | | |
Collapse
|
40
|
Lindblad B, Dias N, Malina M, Ivancev K, Resch T, Hansen F, Sonesson B. Pulsatile Wall Motion (PWM) Measurements after Endovascular Abdominal Aortic Aneurysm Exclusion are not Useful in the Classification of Endoleak. Eur J Vasc Endovasc Surg 2004; 28:623-8. [PMID: 15531197 DOI: 10.1016/j.ejvs.2004.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2004] [Indexed: 10/26/2022]
Abstract
UNLABELLED The pulsatile wall motion (PWM) of AAA is reduced after endovascular stent-graft placement. The purpose of this study was to identify whether PWM after endografting was useful in the classification of endoleak. PATIENTS AND METHODS 162 patients treated with EVAR underwent pre- and post-operative PWM assessment with ultrasonography. Follow-up was 1-9 years. 111 patients had well-excluded aneurysms, three patients had enlarging aneurysms without any recognizable endoleak (endotension), 16 had type I, 31 had type II and 1 had type III endoleak. RESULTS The PWM was reduced from about 1mm pre-operatively to 0.24 mm post-operatively in well-excluded aneurysms. PWM remained stable during follow-up. Type I endoleak was associated with moderately reduced PWM (proximal endoleak 0.79 mm and distal 0.32 mm). PWM in patients with type II endoleak was higher (0.32 mm) post-operatively (p=0.002) compared to well-excluded aneurysms. CONCLUSION PWM is permanently reduced after endografting. The smallest reduction in PWM was in patients with type II endoleaks. However, the overlap between the groups does not allow reliable identification of patients having endoleak with PWM-measurements.
Collapse
Affiliation(s)
- B Lindblad
- Department of Vascular Diseases, Malmö Endovascular Center, Lund University, Malmö University Hospital, S-205 02 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Long A, Rouet L, Bissery A, Rossignol P, Mouradian D, Sapoval M. Compliance of abdominal aortic aneurysms: evaluation of tissue Doppler imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:1099-1108. [PMID: 15550314 DOI: 10.1016/j.ultrasmedbio.2004.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/29/2004] [Accepted: 08/05/2004] [Indexed: 05/24/2023]
Abstract
Expansion of abdominal aortic aneurysms (AAA) is due to remodeling of the parietal extra-cellular matrix and may lead to rupture. This remodeling is reflected by compliance which may be an indicator of AAA behavior and thus useful for clinicians. Tissue Doppler Imaging (TDI) is an ultrasonographic modality which allows wall motion measurements along an arterial segment. It has previously been evaluated in normal aortas and was then evaluated in thirty-five patients with AAA. Mean values (+/-standard deviation) characterizing maximum diameter AAA compliance were dilation 809 mum (+/-465), strain 2.2% (+/-1), pressure strain elastic modulus 3.94 10(5) Pa [3.25; 4.8] and stiffness 28.8 [24; 34.5], last values being expressed as geometric mean [interquartile range]. They were in accordance with those previously obtained with other systems. Segmental parameter values were maximum mean segmental dilation 534 mum (+/-305) and segmental compliance 14.6 (+/-8.3) 10(-2) mum/Pa. Reproducibility was appropriate for clinical studies. The TDI system is simple and reliable for measurement of AAA compliance, and compliance can easily be recorded during routine ultrasound control.
Collapse
Affiliation(s)
- Anne Long
- Department of Cardiovascular Radiology, Hôpital Européen Georges Pompidou, Paris, France.
| | | | | | | | | | | |
Collapse
|
42
|
Sekhri AR, Lees WR, Adiseshiah M. Measurement of Aortic Compliance in Abdominal Aortic Aneurysms Before and After Open and Endoluminal Repair:Preliminary Results. J Endovasc Ther 2004; 11:472-82. [PMID: 15298497 DOI: 10.1583/04-1243.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To assess aortic wall compliance as a portent of rupture risk in patients with abdominal aortic aneurysms. METHODS In this pilot study, 38 patients (32 men; median age 78 years, range 63-95) underwent an ultrasound scan: 20 pre-repair and 24 post-repair (18 endovascular [EVR] and 6 open). Six patients from the pre-repair group were included in a post repair study after EVR. Cine loop images were analyzed offsite using wall tracking software, which measured aortic diameter changes during cardiac cycles. Brachial blood pressure was measured, and elastic modulus (Ep) and stiffness (beta) were calculated. Preop Ep and beta were determined at the neck, inflection points (IP), and mid sac levels. Postop Ep and beta were calculated in mid sac only for technical reasons. RESULTS Preoperative Ep and beta were significantly higher at IP compared with neck (median Ep 24.22 versus 12.95 N/cm(2), p<0.003; median beta 16.27 versus 8.65, p<0.003). At the mid sac, Ep and beta were also significantly higher compared with neck: Ep 26.41 versus 12.95 N/cm(2), p=0.001; beta 17.94 versus 8.65, p=0.001. The values for IP and mid sac were Ep 24.22 versus 26.41 N/cm(2), p=0.64; beta 16.27 versus 17.94, p=0.64. In the postop cases (n=24), Ep and beta in successful endovascular repair (n=12) were significantly higher than in open repair, respectively: median Ep 34.31 versus 12.33 N/cm(2), p<0.001; median beta 23.18 versus 8.24, p<0.001. Patients with endoleaks or endotension (n=6) had significantly elevated Ep and beta compared with those without endoleaks (n=12): median Ep 79.79 versus 34.31 N/ cm(2), p=0.002; median beta 51.52 versus 23.18, p<0.002. Six patients scanned before and after EVR showed a decrease of Ep and beta in 3, no change in 1, and an increase in 2. An increase greater than 2 fold was noted in a patient with a gross type II endoleak. CONCLUSIONS This pilot study shows that estimates of aortic wall compliance agree well with known values for wall stress distribution. EVR leaves patients with greater wall stiffness than those undergoing open repair, a situation accentuated by endoleaks. Wall compliance and stiffness measurement promises to be useful for the evaluation of success of endovascular repair.
Collapse
Affiliation(s)
- Amine R Sekhri
- Medical Imaging, The Middlesex Hospital, University College London Hospitals and University College London, England, UK
| | | | | |
Collapse
|
43
|
Long A, Rouet L, Bissery A, Goeau-Brissonniere O, Sapoval M. Aortic compliance in healthy subjects: evaluation of tissue Doppler imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:753-759. [PMID: 15219955 DOI: 10.1016/j.ultrasmedbio.2004.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 02/26/2004] [Accepted: 03/05/2004] [Indexed: 05/24/2023]
Abstract
Increased compliance of abdominal aortic aneurysms at maximum diameter over time might be related to rupture. Compliance could, therefore, be valuable in their management. However, such measurement requires a sophisticated system. An original arterial wall-motion measurement technique, based on tissue Doppler imaging (TDI) and providing segmental exploration, was applied to the study of aorta walls. We report its validation in healthy subjects. Technical feasibility was reliable. The time required for sequence acquisition and transfer was suitable for routine clinical use and the quality of the sequences provided precise identification of the aorta wall/lumen interface and accurate segmentation. The values characterising normal aortic compliance were similar to those previously published, and the initial results concerning reproducibility were appropriate for clinical studies. Further refinements may improve it. This study validates the TDI system for measurement of abdominal aortic compliance in healthy subjects. Study of application to aneurysm compliance is in progress.
Collapse
Affiliation(s)
- Anne Long
- Department of Cardiovascular Radiology, Hôpital Européen George Pompidou, Paris, France.
| | | | | | | | | |
Collapse
|
44
|
Gawenda M, Knez P, Winter S, Jaschke G, Wassmer G, Schmitz-Rixen T, Brunkwall J. Endotension is Influenced by Wall Compliance in a Latex Aneurysm Model. Eur J Vasc Endovasc Surg 2004; 27:45-50. [PMID: 14652836 DOI: 10.1016/j.ejvs.2003.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Even though endovascular aneurysm repair (EVAR) creates a closed chamber except for patent branches, the intra-sac pressure is never zero. This study was designed to investigate whether, and to what extent, aneurysm wall compliance influences intra-sac pressure. DESIGN In vitro experimental study. METHODS Aneurysm models with six and 12 latex layers were produced, resulting in elastic and stiff circumferential compliance (3.5 +/- 0.5 and 0.9 +/- 0.3%/100 mmHg, respectively). The models with an 18 mm internal neck and maximum aneurysm diameter of 60 mm were inserted into an in vitro circulation system. The systemic mean pressure (SPmean) was varied from 50 to 120 mmHg. After the aneurysm was excluded with a knitted polyethylene graft, aneurysm sac mean pressure (ASPmean) and aneurysm sac pulse pressure (ASPpulse) were measured. Data are presented as mean +/- SD. Statistics were performed using repeated measurements of variance; p<0.05 was considered significant. RESULTS In the model EVAR created a closed chamber without endoleak, but with an aneurysm sac pressure related to wall compliance. In the elastic aneurysm model with six latex coats the aneurysm sac mean pressure (ASPmean) and the aneurysm sac pulse pressure (ASPpulse) at all systemic pressures were significantly lower than they were in the stiffer model with 12 latex coats (p<0.05). At a SPmean of 90 mmHg, the ASPmean was 21.0 +/- 0.9 mmHg (six latex coats) and 26.0 +/- 0.2 mmHg (12 latex coats) (p<0.05), the ASPpulse was 5.7 +/- 0.2 mmHg (six latex coats) and 8.8 +/- 0.3 mmHg (12 latex coats) (p<0.05). CONCLUSIONS This in vitro model demonstrated that the aneurysm sac mean pressure (ASPmean) and the aneurysm sac pulse pressure (ASPpulse) were significantly influenced by the compliance of the aneurysm wall. These data highlight the need for further studies regarding endotension.
Collapse
Affiliation(s)
- M Gawenda
- Division of Vascular Surgery, Department of Visceral and Vascular Surgery, University of Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Wilson KA, Lee AJ, Lee AJ, Hoskins PR, Fowkes FGR, Ruckley CV, Bradbury AW. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J Vasc Surg 2003; 37:112-7. [PMID: 12514586 DOI: 10.1067/mva.2003.40] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A more accurate means of prediction of abdominal aortic aneurysm (AAA) rupture would improve the clinical and cost effectiveness of prophylactic repair. The purpose of this study was to determine whether AAA wall distensibility can be used to predict time to rupture independently of other recognized risk factors. METHODS A prospective, six-center study of 210 patients with AAA in whom blood pressure (BP), maximum AAA diameter (Dmax), and AAA distensibility (pressure strain elastic modulus [Ep] and stiffness [beta]) were measured at 6 months with an ultrasound scan-based echo-tracking technique. A stepwise, time-dependent, Cox proportional hazards model was used to determine the effect on time to rupture of age, gender, BP, Dmax, BP, Ep, beta, and change in Dmax, Ep, and beta adjusted for time between follow-up visits. RESULTS Median (interquartile range) AAA diameter was 48 mm (41 to 54 mm), median age was 72 years (68 to 77 years), and median follow-up period was 19 months (9 to 30 months). In the Cox model, female gender (hazards ratio [HR], 2.78; 95% CI, 1.23 to 6.28; P =.014), larger Dmax (HR, 1.36 for 10% increase in Dmax; 95% CI, 1.12 to 1.66; P =.002), higher diastolic BP (HR, 1.13 for 10% increase in BP; 95% CI, 1.13 to 1.92; P =.004), and a decrease in Ep (increase in distensibility) over time (HR, 1.38 for 10% decrease in Ep over 6 months; 95% CI, 1.08 to 1.78; P =.010) significantly reduced the time to rupture (had a shorter time to rupture). CONCLUSION Women have a shorter time to AAA rupture. The measurement of AAA distensibility, diastolic BP, and diameter may provide a more accurate assessment of rupture risk than diameter alone.
Collapse
Affiliation(s)
- Katie A Wilson
- Vascular Surgery Unit, University Department of Clinical and Surgical Sciences, the Medical Statistics Unit, University of Edinburgh, Royal Infirmary of Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Chaikof EL, Blankensteijn JD, Harris PL, White GH, Zarins CK, Bernhard VM, Matsumura JS, May J, Veith FJ, Fillinger MF, Rutherford RB, Kent KC. Reporting standards for endovascular aortic aneurysm repair. J Vasc Surg 2002; 35:1048-60. [PMID: 12021727 DOI: 10.1067/mva.2002.123763] [Citation(s) in RCA: 1386] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elliot L Chaikof
- Emory University, 21639 Pierce Drive, Rm 5105, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Thompson RW, Geraghty PJ, Lee JK. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg 2002; 39:110-230. [PMID: 11884965 DOI: 10.1067/msg.2002.121421] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Robert W Thompson
- Department of Surgery (Section of Vascular Surgery), Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
48
|
Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 2001; 23:647-55. [PMID: 11755809 DOI: 10.1016/s1350-4533(01)00093-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abdominal aortic aneurysm (AAA) disease is a degenerating process whose ultimate event is the rupture of the vessel wall. Rupture occurs when the stresses acting on the wall rise above the strength of the AAA wall tissue. The complex mechanical interaction between blood flow and wall dynamics in a three dimensional custom model of a patient AAA was studied by means of computational coupled fluid-structure interaction analysis. Real 3D AAA geometry is obtained from CT scans image processing. The results provide a quantitative local evaluation of the stresses due to local structural and fluid dynamic conditions. The method accounts for the complex geometry of the aneurysm, the presence of a thrombus and the interaction between solid and fluid. A proven clinical efficacy may promote the method as a tool to determine factual aneurysm risk of rupture and aid the surgeon to refer elective surgery patients.
Collapse
Affiliation(s)
- E S Di Martino
- Department of Bioengineering, Politecnico of Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Wilson K, MacCallum H, Wilkinson IB, Hoskins PR, Lee AJ, Bradbury AW. Comparison of brachial artery pressure and derived central pressure in the measurement of abdominal aortic aneurysm distensibility. Eur J Vasc Endovasc Surg 2001; 22:355-60. [PMID: 11563897 DOI: 10.1053/ejvs.2001.1465] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE AAA distensibility (Ep, beta) may predict growth and risk of rupture. However, distensibility measurements based on brachial rather than central pressure may be inaccurate. Our aim was to compare AAA distensibility using non-invasive brachial and derived central aortic pressure. DESIGN brachial and central pressures were measured prospectively by automated sphygmomanometry (Omron) and pulse wave analysis (SphygmoCor) respectively. AAA distensibility was calculated using brachial (Ep(b), beta(b)) and central (Ep(c), beta(c)) pressures by ultrasonic echo-tracking (Diamove). Twenty-eight patients (18 males) were selected on a first come basis from a larger study of AAA patients. There were no exclusion criteria, so 54% had cardiac dysfunction (MI, angina) and 14% were hypertensive (BP >140/90 mmHg). RESULTS median (IQR) age was 74 (70-77) years, median AAA (IQR) diameter was 44 (40-51) mm. Central and brachial systolic pressures were significantly different, [140 (121-153) vs 144 (130-164) mmHg respectively, p < or =0.01]. Central and brachial diastolic pressures were not significantly different [76 (72-86) vs 76 (71-86) mmHg respectively, p=0.5]. Ep(c)(3.0, [2.2-4.9]) and beta(c)(22.2 [15.5-33.2]) were significantly lower than Ep(b)(3.6, [2.4-5.1] 10(5)Nm(-2)) and beta(b)(24.7 [17.1-33.0] a.u., all p < 0.001. Brachial and central derived distensibility remained significantly different after adjusting for age and diameter (p<0.001). CONCLUSION the use of brachial pressure leads to a small, systematic overestimate of Ep (18%) and beta (11%) independent of age and AAA diameter. This systematic error will not bias follow-up of changes in distensibility.
Collapse
Affiliation(s)
- K Wilson
- Vascular Surgery Unit, University Department of Clinical and Surgical Sciences, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
50
|
Petersen E, Gineitis A, Wågberg F, Angquist KA. Serum levels of elastin-derived peptides in patients with ruptured and asymptomatic abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2001; 22:48-52. [PMID: 11461103 DOI: 10.1053/ejvs.2001.1404] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE to determine whether serum elastin-derived peptides (S-EDP), are lower in patients with ruptured abdominal aortic aneurysms (rAAA) than asymptomatic (aAAA). MATERIALS AND METHODS serum samples were collected preoperatively from 45 consecutive patients with aAAA and 15 haemodynamically stable patients with rAAA. S-EDP (ng/ml) was measured by a competitive enzyme-linked immunosorbent assay (ELISA). RESULTS S-EDP (mean +/- s.d.) was significantly lower in patients with rAAA (31.6 ng/ml +/- 6.8) than in patients with aAAA (39.4 ng/ml +/- 8.0 p=0.001). CONCLUSION patients with rAAA had significantly lower levels of S-EDP than patients with aAAA. The possibility that S-EDP can be used to identify patients at increased risk of rupture requires further investigation.
Collapse
Affiliation(s)
- E Petersen
- Department of Surgery, Umeå University Hospital, Umeå, Sweden
| | | | | | | |
Collapse
|