1
|
Riederer AM, Krenz JE, Tchong-French MI, Torres E, Perez A, Younglove LR, Jansen KL, Hardie DC, Farquhar SA, Sampson PD, Metwali N, Thorne PS, Karr CJ. Effectiveness of portable HEPA air cleaners on reducing indoor endotoxin, PM 10, and coarse particulate matter in an agricultural cohort of children with asthma: A randomized intervention trial. INDOOR AIR 2021; 31:1926-1939. [PMID: 34288127 PMCID: PMC8577577 DOI: 10.1111/ina.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/05/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
We conducted a randomized trial of portable HEPA air cleaners in the homes of children age 6-12 years with asthma in the Yakima Valley, Washington. All families received asthma education while intervention families also received two HEPA cleaners (child's bedroom, living room). We collected 14-day integrated samples of endotoxin in settled dust and PM10 and PM10-2.5 in the air of the children's bedrooms at baseline and one-year follow-up, and used linear regression to compare follow-up levels, adjusting for baseline. Seventy-one families (36 HEPA, 35 control) completed the study. Baseline geometric mean (GSD) endotoxin loadings were 1565 (6.3) EU/m2 and 2110 (4.9) EU/m2 , respectively, in HEPA vs. control homes while PM10 and PM10-2.5 were 22.5 (1.9) μg/m3 and 9.5 (2.9) μg/m3 , respectively, in HEPA homes, and 19.8 (1.8) μg/m3 and 7.7 (2.0) μg/m3 , respectively, in control homes. At follow-up, HEPA families had 46% lower (95% CI, 31%-57%) PM10 on average than control families, consistent with prior studies. In the best-fit heterogeneous slopes model, HEPA families had 49% (95% CI, 6%-110%) and 89% lower (95% CI, 28%-177%) PM10-2.5 at follow-up, respectively, at 50th and 75th percentile baseline concentrations. Endotoxin loadings did not differ significantly at follow-up (4% lower, HEPA homes; 95% CI, -87% to 50%).
Collapse
Affiliation(s)
- Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jennifer E. Krenz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Maria I. Tchong-French
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Torres
- Northwest Communities Education Center, Radio KDNA, Granger, WA, USA
| | - Adriana Perez
- Yakima Valley Farm Workers Clinic, Toppenish, WA, USA
| | - Lisa R. Younglove
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Karen L. Jansen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - David C. Hardie
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie A. Farquhar
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Paul D. Sampson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nervana Metwali
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Catherine J. Karr
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Hong KY, King GH, Saraswat A, Henderson SB. Seasonal ambient particulate matter and population health outcomes among communities impacted by road dust in British Columbia, Canada. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:986-999. [PMID: 28498778 DOI: 10.1080/10962247.2017.1315348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
UNLABELLED In recent years, many air quality monitoring programs have favored measurement of particles less than 2.5 µm (PM2.5) over particles less than 10 µm (PM10) in light of evidence that health impacts are mostly from the fine fraction. However, the coarse fraction (PM10-2.5) may have independent health impacts that support continued measurement of PM10 in some areas, such as those affected by road dust. The objective of this study was to evaluate the associations between different measures of daily PM exposure and two daily indicators of population health in seven communities in British Columbia, Canada, where road dust is an ongoing concern. The measures of exposure were PM10, PM2.5, PM10-2.5, PM2.5 adjusted for PM10-2.5, and PM10-2.5 adjusted for PM2.5. The indicators of population health were dispensations of the respiratory reliever medication salbutamol sulfate and nonaccidental mortality. This study followed a time-series design using Poisson regression over a 2003-2015 study period, with analyses stratified by three seasons: residential woodsmoke in winter; road dust in spring; and wildfire smoke in summer. A random-effects meta-analysis was conducted to establish a pooled estimate. Overall, an interquartile range increase in daily PM10-2.5 was associated with a 3.6% [1.6, 5.6] increase in nonaccidental mortality during the road dust season, which was reduced to 3.1% [0.8, 5.4] after adjustment for PM2.5. The adjusted coarse fraction had no effect on salbutamol dispensations in any season. However, an interquartile range increase in PM2.5 was associated with a 2.7% [2.0, 3.4] increase in dispensations during the wildfire season. These analyses suggest different impacts of different PM fractions by season, with a robust association between the coarse fraction and nonaccidental mortality in communities and periods affected by road dust. We recommend that PM10 monitoring networks be maintained in these communities to provide feedback for future dust mitigation programs. IMPLICATIONS There was a significant association between daily concentrations of the coarse fraction and nonaccidental mortality during the road dust season, even after adjustment for the fine fraction. The acute and chronic health effects associated with exposure to the coarse fraction remain unclear, which supports the maintenance of PM10 monitoring networks to allow for further research in communities affected by sources such as road dust.
Collapse
Affiliation(s)
- Kris Y Hong
- a Environmental Health Services , BC Centre for Disease Control , Vancouver , BC , Canada
| | - Gavin H King
- b British Columbia Ministry of Environment , Surrey , BC , Canada
| | - Arvind Saraswat
- b British Columbia Ministry of Environment , Surrey , BC , Canada
- c Institute for Resources, Environment & Sustainability , University of British Columbia , Vancouver , BC , Canada
| | - Sarah B Henderson
- a Environmental Health Services , BC Centre for Disease Control , Vancouver , BC , Canada
- d School of Population and Public Health , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
3
|
Ortiz C, Linares C, Carmona R, Díaz J. Evaluation of short-term mortality attributable to particulate matter pollution in Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:541-551. [PMID: 28237303 DOI: 10.1016/j.envpol.2017.02.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 02/16/2017] [Indexed: 05/18/2023]
Abstract
According to the WHO, 3 million deaths are attributable to air pollution due to particulate matter (PM) world-wide. However, there are no specific updated studies which calculate short-term PM-related cause specific mortality in Spain. The objective is to quantify the relative risks (RRs) and attributable risks (ARs) of daily mortality associated with PM10 concentrations, registered in Spanish provinces and to calculate the number of PM-related deaths. We calculated daily mortality due to natural (ICD-10: A00 R99), circulatory (ICD-10: I00 I99) and respiratory causes (ICD-10: J00 J99) for each province across the period 2000-2009. Mean daily concentrations of PM10, NO2 and O3 was used. For the estimate of RRs and ARs, we used generalised linear models with a Poisson link. A meta-analysis was used to estimate RRs and ARs in the provinces with statically significant results. The overall RRs obtained for these provinces, corresponding to increases of 10 μ g/m3 in PM10 concentrations were 1.009 (95% CI: 1.006 1011) for natural, 1.026 (95% CI: 1.019 1033) for respiratory, and 1.009 (95% CI: 1.006 1012) for circulatory-cause mortality. This amounted to an annual overall total of 2683 deaths (95% CI: 852 4354) due to natural, 651 (95% CI: 359 1026) due to respiratory, and 556 (95% CI: 116 1012) due to circulatory causes, with 90% of this mortality lying below the WHO guideline values. This study provides an updated estimate of the effect had by this type of pollutant on causes of mortality, and constitutes an important basis for reinforcing public health measures.
Collapse
Affiliation(s)
- Cristina Ortiz
- Department of Epidemiology and Biostatistic, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - Cristina Linares
- Department of Epidemiology and Biostatistic, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - Rocio Carmona
- Department of Epidemiology and Biostatistic, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - Julio Díaz
- Department of Epidemiology and Biostatistic, National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
4
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
5
|
Mirowsky J, Hickey C, Horton L, Blaustein M, Galdanes K, Peltier RE, Chillrud S, Chen LC, Ross J, Nadas A, Lippmann M, Gordon T. The effect of particle size, location and season on the toxicity of urban and rural particulate matter. Inhal Toxicol 2014; 25:747-57. [PMID: 24255952 DOI: 10.3109/08958378.2013.846443] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Particulate matter (PM) varies in chemical composition and mass concentration based on a number of factors including location, season, source and particle size. The aim of this study was to evaluate the in vitro and in vivo toxicity of coarse and fine PM simultaneously collected at three rural and two urban sites within the metropolitan New York City (NYC) region during two seasons, and to assess how particle size and elemental composition affect toxicity. Human pulmonary microvascular endothelial (HPMEC-ST1.6R) and bronchial epithelial (BEAS-2B) cell lines were exposed to PM (50 μg/mL) and analyzed for reactive oxygen species (ROS). Mice (FVB/N) were exposed by oropharyngeal aspiration to 50 µg PM, and lavage fluid was analyzed for total protein and PMN influx. The ROS response was greater in the HPMEC-ST1.6R cell line compared to BEAS-2B cells, but the responses were significantly correlated (p < 0.01). The ROS response was affected by location, locale and the location:size interaction in both cell lines, and an additional association for size was observed from HPMEC-ST1.6R cells. Urban fine PM generated the highest ROS response. In the mouse model, inflammation was associated with particle size and by a season:size interaction, with coarse PM producing greater PMN inflammation. This study showed that the aerodynamic size, locale (i.e. urban versus rural), and site of PM samples affected the ROS response in pulmonary endothelial and epithelial cells and the inflammatory response in mice. Importantly, these responses were dependent upon the chemical composition of the PM samples.
Collapse
Affiliation(s)
- Jaime Mirowsky
- Department of Environmental Medicine, New York University School of Medicine , Tuxedo, NY , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dexamethasone-conjugated polyethylenimine/MIF siRNA complex regulation of particulate matter-induced airway inflammation. Biomaterials 2013; 34:7453-61. [PMID: 23831186 DOI: 10.1016/j.biomaterials.2013.05.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/24/2013] [Indexed: 01/15/2023]
Abstract
Inhalation of airborne particulate matter (PM), such as silicon dioxide (SiO2) and titanium dioxide (TiO2), induces acute lung inflammation. siRNA therapy has been proposed as a method to repair acute lung inflammation. To determine whether DEXA-PEI/MIF siRNA contributes to SiO2-induced acute lung inflammation repair, we administered Dexa-PEI/MIF siRNA in SiO2-treated Beas-2b cells and instilled DEXA-PEI-MIF siRNA intratracheally in mice with SiO2-induced acute lung inflammation. Using genetic (MIF mRNA RT-PCR), histological (H&E and PAS) and immunohistochemical (MIF and Muc5ac) analyses, we estimated the acute lung inflammation in Beas-2b cells and BALB/c mice. Cells and mice treated with SiO2 particles demonstrated pulmonary inflammation. DEXA-PEI/MIF siRNA restricted the extent of the pulmonary inflammation reaction to SiO2 in cells and mice. In case of SiO2-treated Beas-2b cells, only DEXA-PEI treatment failed to effectively regulate MIF mRNA release. At the same time, only DEXA-PEI treatment adjusted the amount of MIF mRNA to some extent in SiO2-treated BALB/c mice. siRNA treatment did not markedly control MIF mRNA release in mice. We also observed that the amount of MIF mRNA was decreased in cells and mice treated with DEXA-PEI/MIF siRNA. The increase of MIF mRNA markedly increased Muc5ac; in contrast, the decrease of MIF mRNA using DEXA-PEI/MIF siRNA effectively lowered Muc5ac in SiO2-treated cells and mice. These results suggest that DEXA-PEI plays a role in delivering siRNA to the nucleus as a carrier and limits the extent of acute lung inflammation. MIF siRNA also contributed to the reparative lung response in SiO2-induced pulmonary inflammation.
Collapse
|
7
|
Hong X, Liu C, Chen X, Song Y, Wang Q, Wang P, Hu D. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring. Toxicology 2013; 306:59-67. [DOI: 10.1016/j.tox.2013.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/15/2013] [Accepted: 02/01/2013] [Indexed: 12/23/2022]
|
8
|
Fabian MP, Stout NK, Adamkiewicz G, Geggel A, Ren C, Sandel M, Levy JI. The effects of indoor environmental exposures on pediatric asthma: a discrete event simulation model. Environ Health 2012; 11:66. [PMID: 22989068 PMCID: PMC3527278 DOI: 10.1186/1476-069x-11-66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 09/06/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND In the United States, asthma is the most common chronic disease of childhood across all socioeconomic classes and is the most frequent cause of hospitalization among children. Asthma exacerbations have been associated with exposure to residential indoor environmental stressors such as allergens and air pollutants as well as numerous additional factors. Simulation modeling is a valuable tool that can be used to evaluate interventions for complex multifactorial diseases such as asthma but in spite of its flexibility and applicability, modeling applications in either environmental exposures or asthma have been limited to date. METHODS We designed a discrete event simulation model to study the effect of environmental factors on asthma exacerbations in school-age children living in low-income multi-family housing. Model outcomes include asthma symptoms, medication use, hospitalizations, and emergency room visits. Environmental factors were linked to percent predicted forced expiratory volume in 1 second (FEV1%), which in turn was linked to risk equations for each outcome. Exposures affecting FEV1% included indoor and outdoor sources of NO2 and PM2.5, cockroach allergen, and dampness as a proxy for mold. RESULTS Model design parameters and equations are described in detail. We evaluated the model by simulating 50,000 children over 10 years and showed that pollutant concentrations and health outcome rates are comparable to values reported in the literature. In an application example, we simulated what would happen if the kitchen and bathroom exhaust fans were improved for the entire cohort, and showed reductions in pollutant concentrations and healthcare utilization rates. CONCLUSIONS We describe the design and evaluation of a discrete event simulation model of pediatric asthma for children living in low-income multi-family housing. Our model simulates the effect of environmental factors (combustion pollutants and allergens), medication compliance, seasonality, and medical history on asthma outcomes (symptom-days, medication use, hospitalizations, and emergency room visits). The model can be used to evaluate building interventions and green building construction practices on pollutant concentrations, energy savings, and asthma healthcare utilization costs, and demonstrates the value of a simulation approach for studying complex diseases such as asthma.
Collapse
Affiliation(s)
- M Patricia Fabian
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Natasha K Stout
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Amelia Geggel
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Cizao Ren
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Megan Sandel
- Department of General Pediatrics, Boston Medical University School of Medicine, Boston, MA, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Jiménez E, Linares C, Martínez D, Díaz J. Particulate air pollution and short-term mortality due to specific causes among the elderly in Madrid (Spain): seasonal differences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2011; 21:372-90. [PMID: 21547809 DOI: 10.1080/09603123.2011.560251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A time-series study was conducted to ascertain the short-term effects of different-sized airborne particulate matter (PM) on daily respiratory and cardiovascular cause-specific mortality in winter and summer, among subjects aged over 75 years in Madrid. Poisson regression was used to analyse the time-series, in which the dependent variable was daily mortality due to different specific respiratory and circulatory causes, and the principal independent variables were daily mean PM10, PM2.5 and PM10-2.5 concentrations; other variables: other air pollutants (chemicals, biotic and acoustic), influenza, trend, seasonality and autocorrelation of the series. The results indicated an association between coarser PM fractions (PM10 and PM10-2.5) and respiratory-specific mortality on the one hand, and between PM2.5 and cardiovascular-specific mortality on the other. While the risk of mortality due to exposure to particulate matter was greater in summer than in winter, this difference was statistically significant solely for total organic-cause mortality.
Collapse
Affiliation(s)
- Eva Jiménez
- Department of Preventive Medicine, San Carlos University Teaching Hospital, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Guaita R, Pichiule M, Maté T, Linares C, Díaz J. Short-term impact of particulate matter (PM(2.5)) on respiratory mortality in Madrid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2011; 21:260-74. [PMID: 21644129 DOI: 10.1080/09603123.2010.544033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OBJECTIVES This paper sought to quantify the particulate matter (PM(2.5)) pollutant's impact on short-term daily respiratory-cause mortality in the city of Madrid. METHODS As our dependent variable, we took daily mortality registered in Madrid from 1 January 2003 to 31 December 2005, attributed to all diseases of the respiratory system as classified under heads J00-J99 of the ICD 10 and broken down as follows: J12-J18, pneumonia; J40-J44, chronic diseases of the respiratory system except asthma; J45-J46, asthma; and J96, respiratory failure. RESULTS The relative risk (RR) for daily overall respiratory mortality was RR 1.0281 (1.0043-1.0520), with a proportional attributable risk (PAR) of 2.74%. This effect occurred in lag 1; respiratory failure, RR 1.0816 (1.0119-1.1512) and PAR 7.54% at lag 5; and pneumonia, RR 1.0438 (1.0001-1.0875) and PAR 4.19% at lag 6. CONCLUSIONS Our results reflect the association that exists between PM(2.5) concentrations and daily respiratory-cause mortality.
Collapse
Affiliation(s)
- Rosana Guaita
- Departments of Preventive Medicine, Doctor Peset University Teaching Hospital, Valencia
| | | | | | | | | |
Collapse
|
11
|
Schneider A, Alexis NE, Diaz-Sanchez D, Neas LM, Harder S, Herbst MC, Cascio WE, Buse JB, Peters A, Devlin RB. Ambient PM2.5 exposure up-regulates the expression of costimulatory receptors on circulating monocytes in diabetic individuals. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:778-83. [PMID: 21169129 PMCID: PMC3114811 DOI: 10.1289/ehp.1002543] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/17/2010] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure of humans to air pollutants such as ozone and particulate matter (PM) may result in airway and systemic inflammation and altered immune function. One putative mechanism may be through modification of cell-surface costimulatory molecules. OBJECTIVES We examined whether changes in expression of costimulatory molecules on circulating cells are associated with ambient levels of fine PM [aerodynamic diameter ≤ 2.5 μm (PM2.5)] in a susceptible population of diabetic individuals. METHODS Twenty subjects were studied for 4 consecutive days. Daily measurements of PM2.5 and meteorologic data were acquired on the rooftop of the exam site. Circulating cell-surface markers that mediate innate immune and inflammatory responses were assessed by flow cytometry on each day. Sensitivity analysis was conducted on glutathione S-transferase M1 (GSTM1) genotype, body mass index, and glycosylated hemoglobin A1c (HbA1c) levels to determine their role as effect modifiers. Data were analyzed using random effects models adjusting for season, weekday, and meteorology. RESULTS We found significantly increased monocyte expression (mean fluorescent intensity) of CD80, CD40, CD86, HLA-DR, and CD23 per 10-μg/m3 increase in PM2.5 at 2- to 4-day lag times after exposure. These findings were significantly higher in obese individuals, in individuals with HbA1c > 7%, and in participants who were GSTM1 null. CONCLUSIONS Exposure to PM2.5 can enhance antigen-presenting cell phenotypes on circulating cells, which may have consequences in the development of allergic or autoimmune diseases. These effects are amplified in diabetic individuals with characteristics that are associated with insulin resistance or with oxidative stress.
Collapse
Affiliation(s)
- Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Neil E. Alexis
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Address correspondence to N.E. Alexis, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina School of Medicine, 104 Mason Farm Rd., Chapel Hill, NC 27599-7310 USA. Telephone: (919) 966-9915. Fax: (919) 966-9863. E-mail:
| | - David Diaz-Sanchez
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Lucas M. Neas
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shirley Harder
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Margaret C. Herbst
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wayne E. Cascio
- Brody School of Medicine and East Carolina Heart Institute at East Carolina University, East Carolina University, Greenville, North Carolina, USA
| | - John B. Buse
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Focus Network Nanoparticles and Health (NanoHealth), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert B. Devlin
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
12
|
Abstract
Epidemiological and toxicological research continues to support a link between urban air pollution and an increased incidence and/or severity of airway disease. Detrimental effects of ozone (O(3)), nitrogen dioxide (NO(2)) and particulate matter (PM), as well as traffic-related pollution as a whole, on respiratory symptoms and function are well documented. Not only do we have strong epidemiological evidence of a relationship between air pollution and exacerbation of asthma and respiratory morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), but recent studies, particularly in urban areas, have suggested a role for pollutants in the development of both asthma and COPD. Similarly, while prevalence and severity of atopic conditions appear to be more common in urban compared with rural communities, evidence is emerging that traffic-related pollutants may contribute to the development of allergy. Furthermore, numerous epidemiological and experimental studies suggest an association between exposure to NO(2) , O(3) , PM and combustion products of biomass fuels and an increased susceptibility to and morbidity from respiratory infection. Given the considerable contribution that traffic emissions make to urban air pollution researchers have sought to characterize the relative toxicity of traffic-related PM pollutants. Recent advances in mechanisms implicated in the association of air pollutants and airway disease include epigenetic alteration of genes by combustion-related pollutants and how polymorphisms in genes involved in antioxidant pathways and airway inflammation can modify responses to air pollution exposures. Other interesting epidemiological observations related to increased host susceptibility include a possible link between chronic PM exposure during childhood and vulnerability to COPD in adulthood, and that infants subjected to higher prenatal levels of air pollution may be at greater risk of developing respiratory conditions. While the characterization of pollutant components and sources promise to guide pollution control strategies, the identification of susceptible subpopulations will be necessary if targeted therapy/prevention of pollution-induced respiratory diseases is to be developed.
Collapse
Affiliation(s)
- F J Kelly
- MRC-HPA Centre for Environment and Health, King's College, London, 150 Stamford Street, London SE1 9NH, UK.
| | | |
Collapse
|
13
|
Current world literature. Curr Opin Pediatr 2009; 21:272-80. [PMID: 19307901 DOI: 10.1097/mop.0b013e32832ad5c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Abstract
PURPOSE OF REVIEW Current levels of air pollution are consistently associated with asthma development and morbidity among children, suggesting that current regulatory policies may be insufficient. This review will describe recent studies that have examined specific emission sources or components of pollutants that may be associated with pediatric asthma and identify subpopulations that may be particularly susceptible to the effects of air pollution exposure. RECENT FINDINGS Important advances include new characterizations of the effects of traffic-related air pollution in urban areas. They also include the application of novel exposure and outcome measures such as pollution estimates derived from land use regression modeling and biological markers of airway inflammation. Additionally, studies have identified host susceptibility characteristics that may modify responses to air pollution exposure, including polymorphisms in oxidative stress genes and epigenetic alterations. SUMMARY Identifying specific sources and toxic constituents of air pollution and accurately assessing air pollutant-related asthma outcomes are needed to better direct control strategies. Further research is needed to identify additional host factors that confer increased susceptibility to air pollution exposure. Future therapy to reduce the adverse effects of air pollution on respiratory disease will likely depend on targeting susceptible populations for intervention.
Collapse
|
15
|
Calderón-Garcidueñas L, Macías-Parra M, Hoffmann HJ, Valencia-Salazar G, Henríquez-Roldán C, Osnaya N, Monte OCD, Barragán-Mejía G, Villarreal-Calderon R, Romero L, Granada-Macías M, Torres-Jardón R, Medina-Cortina H, Maronpot RR. Immunotoxicity and Environment: Immunodysregulation and Systemic Inflammation in Children. Toxicol Pathol 2009; 37:161-9. [DOI: 10.1177/0192623308329340] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental pollutants, chemicals, and drugs have an impact on children’s immune system development. Mexico City (MC) children exposed to significant concentrations of air pollutants exhibit chronic respiratory inflammation, systemic inflammation, neuroinflammation, and cognitive deficits. We tested the hypothesis that exposure to severe air pollution plays a role in the immune responses of asymptomatic, apparently healthy children. Blood measurements for markers of immune function, inflammatory mediators, and molecules interacting with the lipopolysaccharide recognition complex were obtained from two cohorts of matched children (aged 9.7 ± 1.2 years) from southwest Mexico City (SWMC) (n = 66) and from a control city (n = 93) with criteria pollutant levels below current standards. MC children exhibited significant decreases in the numbers of natural killer cells ( p = .003) and increased numbers of mCD14+ monocytes ( p < .001) and CD8+ cells ( p = .02). Lower concentrations of interferon γ ( p = .009) and granulocyte–macrophage colony-stimulating factor ( p < .001), an endotoxin tolerance-like state, systemic inflammation, and an anti-inflammatory response were also present in the highly exposed children. C-reactive protein and the prostaglandin E metabolite levels were positively correlated with twenty-four- and forty-eight-hour cumulative concentrations of PM2.5. Exposure to urban air pollution is associated with immunodysregulation and systemic inflammation in children and is a major health threat.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, Montana, USA
| | | | - Hans J. Hoffmann
- Department of Respiratory Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Norma Osnaya
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | - Rodolfo Villarreal-Calderon
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, Montana, USA
| | - Lina Romero
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Margarita Granada-Macías
- Postgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Robert R. Maronpot
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| |
Collapse
|
16
|
Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nuñez MC, Sienra-Monge JJ, Ramírez-Aguilar M, Cortez-Lugo M, Holguin F, Diaz-Sánchez D, Olin AC, Romieu I. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City schoolchildren. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:832-8. [PMID: 18560490 PMCID: PMC2430242 DOI: 10.1289/ehp.10926] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/31/2008] [Indexed: 04/14/2023]
Abstract
BACKGROUND The biological mechanisms involved in inflammatory response to air pollution are not clearly understood. OBJECTIVE In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function. METHODS We studied a cohort of 158 asthmatic and 50 nonasthmatic school-age children, followed an average of 22 weeks. We conducted spirometric tests, measurements of fractional exhaled nitric oxide (Fe(NO)), interleukin-8 (IL-8) in nasal lavage, and pH of exhaled breath condensate every 15 days during follow-up. Data were analyzed using linear mixed-effects models. RESULTS An increase of 17.5 microg/m(3) in the 8-hr moving average of PM(2.5) levels (interquartile range) was associated with a 1.08-ppb increase in Fe(NO) [95% confidence interval (CI), 1.01-1.16] and a 1.07-pg/mL increase in IL-8 (95% CI 0.98-1.19) in asthmatic children and a 1.16 pg/ml increase in IL-8 (95% CI, 1.00-1.36) in nonasthmatic children. The 5-day accumulated average of exposure to particulate matter <2.5 microm in aerodynamic diamter (PM(2.5)) was significantly inversely associated with forced expiratory volume in 1 sec (FEV(1)) (p=0.048) and forced vital capacity (FVC) (p=0.012) in asthmatic children and with FVC (p=0.021) in nonasthmatic children. Fe(NO) and FEV(1) were inversely associated (p=0.005) in asthmatic children. CONCLUSIONS Exposure to PM(2.5) resulted in acute airway inflammation and decrease in lung function in both asthmatic and nonasthmatic children.
Collapse
Affiliation(s)
| | - Jordi Sunyer
- Environmental Epidemiological Research Centre (CREAL), IMIM, Barcelona, Spain
| | | | | | | | | | | | - Fernando Holguin
- Department of Pulmonary Allergy and Critical Care, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Diaz-Sánchez
- Human Studies Division, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
| | - Anna Carin Olin
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Isabelle Romieu
- Instituto Nacional de Salud Pública, Cuernavaca, México
- Address correspondence to I. Romieu, Instituto Nacional de Salud Pública, 655 Avenida Universidad, Col. Santa Maria Ahuacatitlán, 62508, Cuernavaca, Morelos, México. Telephone: 52-777-101-2935. Fax: 52-777-311-1148. E-mail:
| |
Collapse
|