1
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
2
|
Aalberse RC, Knol EF. Historic overview of allergy research in the Netherlands. Immunol Lett 2014; 162:163-72. [PMID: 25455604 DOI: 10.1016/j.imlet.2014.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Research in allergy has a long history in the Netherlands, although the relation with immunology has not always been appreciated. In many aspects Dutch researchers have made major contribution in allergy research. This ranges from the first characterization of house dust mite as an important allergen, the first characterization of human Th2 and Th1 T cell clones, to the development of diagnostic test systems. In this overview Aalberse and Knol have made an overview of the major contributions of Dutch immunologists in allergy.
Collapse
Affiliation(s)
- Rob C Aalberse
- Department of Immunopathology, Sanquin Blood Supply Foundation and Academic Medical Centre, Amsterdam, The Netherlands
| | - Edward F Knol
- Department of Immunology, University Medical Center Utrecht, The Netherlands; Department of Dermatology and Allergology, University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
3
|
Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization. PLoS One 2014; 9:e112823. [PMID: 25396429 PMCID: PMC4232476 DOI: 10.1371/journal.pone.0112823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
The translationally-controlled tumor protein (TCTP) is a highly conserved, ubiquitously expressed, abundant protein that is broadly distributed among eukaryotes. Its biological function spans numerous cellular processes ranging from regulation of the cell cycle and microtubule stabilization to cell growth, transformation, and death processes. In this work, we propose a new function for TCTP as a “buffer protein” controlling cellular homeostasis. We demonstrate that binding of hemin to TCTP is mediated by a conserved His-containing motif (His76His77) followed by dimerization, an event that involves ligand-mediated conformational changes and that is necessary to trigger TCTP's cytokine-like activity. Mutation in both His residues to Ala prevents hemin from binding and abrogates oligomerization, suggesting that the ligand site localizes at the interface of the oligomer. Unlike heme, binding of Ca2+ ligand to TCTP does not alter its monomeric state; although, Ca2+ is able to destabilize an existing TCTP dimer created by hemin addition. In agreement with TCTP's proposed buffer function, ligand binding occurs at high concentration, allowing the “buffer” condition to be dissociated from TCTP's role as a component of signal transduction mechanisms.
Collapse
|
4
|
Dimerization of TCTP and its clinical implications for allergy. Biochimie 2013; 95:659-66. [DOI: 10.1016/j.biochi.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 01/12/2023]
|
5
|
Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW, Chung J, Hwang ES, Lee K. Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS One 2009; 4:e6464. [PMID: 19649253 PMCID: PMC2715101 DOI: 10.1371/journal.pone.0006464] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 06/25/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Translationally Controlled Tumor Protein (TCTP) found in nasal lavage fluids of allergic patients was named IgE-dependent histamine-releasing factor (HRF). Human recombinant HRF (HrHRF) has been recently reported to be much less effective than HRF produced from activated mononuclear cells (HRFmn). METHODS AND FINDINGS We found that only NH(2)-terminal truncated, but not C-terminal truncated, TCTP shows cytokine releasing activity compared to full-length TCTP. Interestingly, only NH(2)-terminal truncated TCTP, unlike full-length TCTP, forms dimers through intermolecular disulfide bonds. We tested the activity of dimerized full-length TCTP generated by fusing it to rabbit Fc region. The untruncated-full length protein (Fc-HrTCTP) was more active than HrTCTP in BEAS-2B cells, suggesting that dimerization of TCTP, rather than truncation, is essential for the activation of TCTP in allergic responses. We used confocal microscopy to evaluate the affinity of TCTPs to its putative receptor. We detected stronger fluorescence in the plasma membrane of BEAS-2B cells incubated with Del-N11TCTP than those incubated with rat recombinant TCTP (RrTCTP). Allergenic activity of Del-N11TCTP prompted us to see whether the NH(2)-terminal truncated TCTP can induce allergic airway inflammation in vivo. While RrTCTP had no influence on airway inflammation, Del-N11TCTP increased goblet cell hyperplasia in both lung and rhinal cavity. The dimerized protein was found in sera from allergic patients, and bronchoalveolar lavage fluids from airway inflamed mice. CONCLUSIONS Dimerization of TCTP seems to be essential for its cytokine-like activity. Our study has potential to enhance the understanding of pathogenesis of allergic disease and provide a target for allergic drug development.
Collapse
Affiliation(s)
- Miyoung Kim
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Min
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Hee Yeon Won
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Heejin Park
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | - Heung-Woo Park
- Division of Allergy and Clinical Immunology, Seoul National University Hospital, Seoul, Korea
| | - Junho Chung
- College of Medicine and Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Eun Sook Hwang
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | - Kyunglim Lee
- College of Pharmacy, Center for Cell Signaling Research and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| |
Collapse
|
6
|
Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, Zuberbier T, Baena-Cagnani CE, Canonica GW, van Weel C, Agache I, Aït-Khaled N, Bachert C, Blaiss MS, Bonini S, Boulet LP, Bousquet PJ, Camargos P, Carlsen KH, Chen Y, Custovic A, Dahl R, Demoly P, Douagui H, Durham SR, van Wijk RG, Kalayci O, Kaliner MA, Kim YY, Kowalski ML, Kuna P, Le LTT, Lemiere C, Li J, Lockey RF, Mavale-Manuel S, Meltzer EO, Mohammad Y, Mullol J, Naclerio R, O'Hehir RE, Ohta K, Ouedraogo S, Palkonen S, Papadopoulos N, Passalacqua G, Pawankar R, Popov TA, Rabe KF, Rosado-Pinto J, Scadding GK, Simons FER, Toskala E, Valovirta E, van Cauwenberge P, Wang DY, Wickman M, Yawn BP, Yorgancioglu A, Yusuf OM, Zar H, Annesi-Maesano I, Bateman ED, Ben Kheder A, Boakye DA, Bouchard J, Burney P, Busse WW, Chan-Yeung M, Chavannes NH, Chuchalin A, Dolen WK, Emuzyte R, Grouse L, Humbert M, Jackson C, Johnston SL, Keith PK, Kemp JP, Klossek JM, Larenas-Linnemann D, Lipworth B, Malo JL, Marshall GD, Naspitz C, Nekam K, Niggemann B, Nizankowska-Mogilnicka E, Okamoto Y, Orru MP, Potter P, Price D, Stoloff SW, Vandenplas O, Viegi G, Williams D. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008; 63 Suppl 86:8-160. [PMID: 18331513 DOI: 10.1111/j.1398-9995.2007.01620.x] [Citation(s) in RCA: 3080] [Impact Index Per Article: 192.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
MESH Headings
- Adolescent
- Asthma/epidemiology
- Asthma/etiology
- Asthma/therapy
- Child
- Global Health
- Humans
- Prevalence
- Rhinitis, Allergic, Perennial/complications
- Rhinitis, Allergic, Perennial/diagnosis
- Rhinitis, Allergic, Perennial/epidemiology
- Rhinitis, Allergic, Perennial/therapy
- Rhinitis, Allergic, Seasonal/complications
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/epidemiology
- Rhinitis, Allergic, Seasonal/therapy
- Risk Factors
- World Health Organization
Collapse
Affiliation(s)
- J Bousquet
- University Hospital and INSERM, Hôpital Arnaud de Villeneuve, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Histamine-releasing factor or HRF is a collective term used for a heterogeneous group of factors with different modes of action. The current review is focussed on IgE-dependent HRF that require the presence of certain types of IgE (designated IgE+) to induce histamine release. IgE+ might be a structurally different IgE molecule, or, alternatively, autoreactive IgE. A subgroup of IgE-dependent HRF does not bind to IgE, such as cloned HRF p23. This factor turned out to be a basophil-priming cytokine. Alternatively IgE-dependent HRF might be an autoallergen. Several groups demonstrated IgE antibodies to human proteins. However, not all IgE autoallergen-containing extracts induce histamine release of appropriately sensitized basophils. In culture supernatants of human mononuclear cells an autoallergenic activity (Agmn) is found, but no binding to IgE+ was found yet. Agmn might be an autoallergen, since it is cross-reactive with a grass pollen allergen in the stripped basophil assay. IgE-dependent HRF and IgE+ may play a role in the late allergic reaction (LAR). However, IgE+ responsiveness to Agmn (IgEmn+) was not required for a bronchial LAR. IgEmn+ is associated with chronic allergic disease, since the prevalence of IgEmn+ is high in the serum of severe asthmatics and atopic dermatitis patients. Our hypothesis is that exogenous allergens induce IgE antibodies cross-reactive with an endogenous protein. During a LAR, these endogenous proteins are released and the subsequent IgE-mediated reaction prolongs and aggravates the allergic and/or asthmatic symptoms. In conclusion, HRF is a confusing term since it is used for different activities. It might be better to avoid this terminology on and just describe the activity of the factors. Autoallergenic activity is likely to explain most, if not all, IgE-dependent activity.
Collapse
Affiliation(s)
- I Kleine Budde
- Department of Immunopathology, Sanquin Research at CLB, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Budde IK, de Heer PG, Natter S, Mahler V, van der Zee JS, Valenta R, Aalberse RC. Studies on the association between immunoglobulin E autoreactivity and immunoglobulin E-dependent histamine-releasing factors. Immunology 2002; 107:243-51. [PMID: 12383204 PMCID: PMC1782795 DOI: 10.1046/j.1365-2567.2002.01475.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been reported that serum immunoglobulin E (IgE) from certain atopic patients can sensitize basophils to release histamine in response to IgE-dependent histamine-releasing factors (HRFs). It has also been shown that patients suffering from severe forms of atopy may contain IgE autoantibodies. It was investigated whether HRF-responsive sera contained IgE autoantibodies and if there was an association between IgE autoreactivity and IgE-dependent responsiveness to HRF. The presence of HRF-responsive IgE (IgE+) in serum of patients with respiratory atopy was determined by stimulating stripped human basophils sensitized by serum with peripheral blood mononuclear cell (PBMC)-derived HRF, and measuring the release of histamine. In parallel, these sera were screened for the presence of IgE autoantibodies to nitrocellulose-blotted human cellular extracts. The capacity of IgE autoantigen-containing preparations to induce histamine release was tested in the stripped basophil assay. Eleven out of 52 sera contained IgE autoantibodies to blotted cellular extracts of human PBMCs or of the human epithelial cell line A431. No significant association was found between IgE autoreactivity and IgE-dependent responsiveness to HRF: 7/26 IgE+ sera contained IgE to human cellular extracts, and 4/26 of the sera without IgE+ did also. IgE autoantigen-containing extracts did not induce histamine release of appropriately sensitized basophils. By size-exclusion chromatography it was shown that a 32 000 MW autoantigen eluted in the >55 000 MW fraction, which indicates that this protein forms polymers or complexes with other macromolecules. This might explain the discrepancy between binding and histamine-releasing activity. A 20 000 MW IgE-defined autoantigen cross-reacted with a shrimp allergen. Our results indicate that IgE-reactivity to immunoblotted human protein and IgE-dependent HRF activity are distinct entities that may co-occur in atopic patients.
Collapse
Affiliation(s)
- Ilona Kleine Budde
- Department of Immunopathology, Sanquin Research at CLB, Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Plesmanlaan 125, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|