1
|
Yu X, Wei B, Su R, Yao J, Feng X, Jiang G, Xie H, Wu J, Xu X, Zhang M, Zheng S, Zhou L. A risk assessment model of acute liver allograft rejection by genetic polymorphism of CD276. Mol Genet Genomic Med 2019; 7:e689. [PMID: 31044564 PMCID: PMC6603397 DOI: 10.1002/mgg3.689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/05/2023] Open
Abstract
Background Liver transplantation is an effective therapy for end‐stage liver diseases and acute liver failure. After the operation, however, recipients may suffer grafts loss induced by alloimmune reaction, which is termed as acute allograft rejection. The interaction between costimulatory molecules, CD276, and its ligand, TREML2, promotes T cell‐mediated immune response, as well as acute or chronic allograft rejection. Our research aimed at correlating genetic polymorphisms of CD276/TREML2 with acute rejection, and evaluating its prognostic value of acute rejection after liver transplantation. Methods The study enrolled a total of 388 recipients. Among them, acute allograft rejection was observed in 54 cases. We performed single nucleotide polymorphism genotyping of CD276, including rs11072431, rs11574495, rs12593558, rs12594627, rs2127015, rs3816661 and rs7176654, and TREML2, including rs4714431, rs6915083, rs7754593, and rs9394767 from preoperative peripheral blood genome DNA. Results We found rs2127015 of CD276, rs6915083 and rs7754593 of TREML2, and HBV infection as well were associated with acute rejection. And, rs2127015 influences CD276 expression. Moreover, we established a risk assessment model, composited by statistically proved risk factors. Conclusion By integrating both clinical and genetic variables, liver transplant recipients can be categorized into different risk groups, and might benefit from individualized therapies.
Collapse
Affiliation(s)
- Xiaobo Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Bajin Wei
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Rong Su
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Jia Yao
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Xiaowen Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Guoping Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Min Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, CAMS, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
2
|
de Ruiter PE, Boor PPC, de Jonge J, Metselaar HJ, Tilanus HW, Ijzermans JN, Kwekkeboom J, van der Laan LJW. Prednisolone does not affect direct-acting antivirals against hepatitis C, but inhibits interferon-alpha production by plasmacytoid dendritic cells. Transpl Infect Dis 2015; 17:707-15. [PMID: 26250892 DOI: 10.1111/tid.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection compromises long-term outcomes of liver transplantation. Although glucocorticosteroid-based immunosuppression is commonly used, discussion is ongoing on the effect of prednisolone (Pred) on HCV recurrence and response to antiviral therapy post transplantation. Recently, new drugs (direct-acting antivirals) have been approved for the treatment of HCV, however, it remains unknown whether their antiviral activity is affected by Pred. The aim of this study was to investigate the effects of Pred on the antiviral activity of asunaprevir (Asu), daclatasvir (Dac), ribavirin (RBV), and interferon-alpha (IFN-α), and on plasmacytoid dendritic cells (PDCs), the main IFN-α-producing immune cells. METHODS The effects of Pred and antiviral compounds were tested in both a subgenomic and infectious HCV replication model. Furthermore, effects were tested on human PDCs stimulated with a Toll-like receptor-7 ligand. RESULT Pred did not directly affect HCV replication and did not inhibit the antiviral action of Asu, Dac, RBV, or IFN-α. Stimulated PDCs potently suppressed HCV replication. This suppression was reversed by treating PDCs with Pred. Pred significantly decreased IFN-α production by PDCs without affecting cell viability. When Asu and Dac were combined with PDCs, a significant cooperative antiviral effect was observed. CONCLUSION This study shows that Pred acts on the antiviral function of PDCs. Pred does not affect the antiviral action of Asu, Dac, RBV, or IFN-α. This implies that there is no contraindication to combine antiviral therapies with Pred in the post-transplantation management of HCV recurrence.
Collapse
Affiliation(s)
- P E de Ruiter
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - P P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - H J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - H W Tilanus
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J N Ijzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - L J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Yu X, Wei B, Dai Y, Zhang M, Wu J, Xu X, Jiang G, Zheng S, Zhou L. Genetic polymorphism of interferon regulatory factor 5 (IRF5) correlates with allograft acute rejection of liver transplantation. PLoS One 2014; 9:e94426. [PMID: 24788560 PMCID: PMC4005731 DOI: 10.1371/journal.pone.0094426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/16/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although liver transplantation is one of the most efficient curative therapies of end stage liver diseases, recipients may suffer liver graft loss opst-operation. IRF-5, a member of Interferon Regulatory Factors, functions as a key regulator in TLR4 cascade, and is capable of inducing inflammatory cytokines. Although TLR4 has been proved to contribute to acute allograft rejection, including after liver transplantation, the correlation between IRF5 gene and acute rejection has not been elucidated yet. METHODS The study enrolled a total of 289 recipients, including 39 females and 250 males, and 39 recipients developed acute allograft rejection within 6 months post-transplantation. The allograft rejections were diagnosed by liver biopsies. Genome DNA of recipients was extracted from pre-operative peripheral blood. Genotyping of IRF-5, including rs3757385, rs752637 and rs11761199, was performed, followed by SNP frequency and Hardy-Weinberg equilibrium analysis. RESULTS The genetic polymorphism of rs3757385 was found associated with acute rejection. G/G homozygous individuals were at higher risk of acute rejection, with a P value of 0.042 (OR = 2.34 (1.07-5.10)). CONCLUSIONS IRF5, which transcriptionally activates inflammatory cytokines, is genetically associated with acute rejection and might function as a risk factor for acute rejection of liver transplantations.
Collapse
Affiliation(s)
- Xiaobo Yu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bajin Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Dai
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoping Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
4
|
Dehghani SM, Taghavi SAR, Geramizadeh B, Nikeghbalian S, Derakhshan N, Malekpour A, Malek-Hosseini SA. Hepatitis B recurrence after liver transplantation: a single center experiences and review the literature. HEPATITIS MONTHLY 2013; 13:e6609. [PMID: 23483668 PMCID: PMC3589890 DOI: 10.5812/hepatmon.6609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/26/2012] [Accepted: 12/28/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite the advances in the treatment of chronic hepatitis B virus (HBV) infection, liver transplantation (LT) remains the only hope for many patients with end-stage liver diseases resulting from HBV. OBJECTIVES The aim of this study was to investigate the rate of HBV recurrence in cases that had undergone LT due to the HBV related liver cirrhosis. PATIENTS AND METHODS Forty-nine patients who underwent LT due to HBV related cirrhosis since 2001 to 2009 in Shiraz Organ Transplantation Center were enrolled in the present study. They were asked to complete the planned questionnaire and also to sign the informed consent in order to take part in this study. Post-transplant prophylaxis protocol against HBV recurrence was based on a hundred milligrams of lamivudine daily plus intramuscular injections of hepatitis B immune globulin (HBIG) with appropriate dosage to keep anti-HBs antibody titer above 300 IU/L and 100 IU/L in the first six months and afterwards, respectively. Blood samples were obtained and checked for HBsAg, HBeAg, and the titers of Anti -HBsAb as well as Anti- HBeAb with ELISA. A quantitative HBV DNA assay was also done on all samples (GENE-RAD® Real-time PCR). RESULTS There were 91.8% males and 8.2% females enrolled in the study. The duration of post-transplant prophylaxis ranged from 3 months to 8 years (mean 18.9 ± 19.3 months). HBsAg and HBeAg were positive in 24.5% and 2% of cases, respectively. Real-time PCR for HBV DNA were zero copies/mL in 91.8% of patients, none of which represented a positive value for HBV recurrence (Positive > 10,000 copies/mL). The mean Anti-HBs Ab titer was 231.7 ± 135.9 IU/L; it was above 100 IU/L in 71.4% of patients. Thirty-seven (75.5%) of the patients were taking tacrolimus plus mycophenolate mofetil, 6 (12.2%) were on cyclosporine plus mycophenolate mofetil, and 6 (12.2%) were taking sirolimus plus mycophenolate mofetil. HBsAg was detectable in seven patients taking tacrolimus plus mycophenolate mofetil (18.9%), in four patients taking cyclosporine plus mycophenolate mofetil (66.7%), and in one patient among the six who were taking sirolimus plus mycophenolate mofetil (16.7%). There was no significant statistical correlation between the presence of a positive value for HBsAg and the immunosuppression regimen or Anti HBsAb titer (P ˃ 0.05). Presence of a positive value for HBsAg was not predictive of a positive HBV DNA or its level in blood (P ˃ 0.05). CONCLUSIONS Post-transplant HBV prophylaxis with lamivudine and intramuscular HBIG with appropriate dosage to keep anti-HBs antibody titer above 300 IU/L in the first six months and above 100 IU/L afterwards is effective for prevention of HBV recurrence after LT.
Collapse
Affiliation(s)
- Seyed Mohsen Dehghani
- Shiraz Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Gastroenterohepatology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Seyed Ali Reza Taghavi
- Gastroenterohepatology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Bita Geramizadeh
- Shiraz Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Nima Derakhshan
- Gastroenterohepatology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Abdorrasoul Malekpour
- Gastroenterohepatology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Seyed Ali Malek-Hosseini
- Shiraz Transplant Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|