1
|
Morris SR, Frederick R, MacKay AL, Laule C, Michal CA. Orientation dependence of inhomogeneous magnetization transfer and dipolar order relaxation rate in phospholipid bilayers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107205. [PMID: 35390716 DOI: 10.1016/j.jmr.2022.107205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Inhomogeneous magnetization transfer (ihMT) is a novel MRI technique used to measure white matter myelination in the brain and spinal cord. In the brain, ihMT has a strong orientation dependence which is likely to arise from the anisotropy of dipolar couplings between protons on oriented lipids in the myelin bilayers. We measured the orientation dependence of the second moment (M2) of the lineshape, dipolar order relaxation rate (R1D), and ihMT ratio (ihMTR) in an oriented phospholipid bilayer at 9.4 T. We found a strong orientation dependence in all three parameters. ihMTR and R1D were maximized when the bilayers were aligned perpendicular to B0 and minimized near the magic angle (∼54.7°). M2 followed an orientation dependence given by the second Legendre polynomial squared as predicted by the form of the secular dipolar Hamiltonian. These results were used to calculate the orientation dependence of R1D and ihMTR in a diffusionless myelin sheath model, which showed ihMTR was maximised for fibers perpendicular to B0 and minimised at 45°, similar to ex-vivo spinal cord with a larger prepulse frequency offset, but in contrast to in vivo brain findings. Adding fiber dispersion to this model smoothed the orientation dependence curve as expected. Our results suggest the importance of the effects of lipid diffusion and prepulse offset frequency on ihMTR.
Collapse
Affiliation(s)
- Sarah R Morris
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Canada; Dept. of Radiology, University of British Columbia, Canada; Dept. of Physics & Astronomy, University of British Columbia, Canada
| | - Rebecca Frederick
- Dept. of Physics & Astronomy, University of British Columbia, Canada
| | - Alex L MacKay
- Dept. of Radiology, University of British Columbia, Canada; Dept. of Physics & Astronomy, University of British Columbia, Canada; UBC MRI Research Centre, University of British Columbia, Canada
| | - Cornelia Laule
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Canada; Dept. of Radiology, University of British Columbia, Canada; Dept. of Physics & Astronomy, University of British Columbia, Canada; Dept. of Pathology and Laboratory Medicine, University of British Columbia, Canada
| | - Carl A Michal
- Dept. of Physics & Astronomy, University of British Columbia, Canada
| |
Collapse
|
2
|
Sturniolo S, Yates JR. The Lorentz sphere visualised. J Chem Phys 2019; 150:094103. [DOI: 10.1063/1.5080298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- S. Sturniolo
- Scientific Computing Department, UKRI, Rutherford Appleton Laboratory, Harwell, United Kingdom
| | - J. R. Yates
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
3
|
Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR IN BIOMEDICINE 2017; 30:e3569. [PMID: 27434134 DOI: 10.1002/nbm.3569] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and represents an important parameter in the field of MRI. With the recently introduced method of quantitative susceptibility mapping (QSM) and its conceptual extension to susceptibility tensor imaging (STI), the non-invasive assessment of this important physical quantity has become possible with MRI. Both methods solve the ill-posed inverse problem to determine the magnetic susceptibility from local magnetic fields. Whilst QSM allows the extraction of the spatial distribution of the bulk magnetic susceptibility from a single measurement, STI enables the quantification of magnetic susceptibility anisotropy, but requires multiple measurements with different orientations of the object relative to the main static magnetic field. In this review, we briefly recapitulate the fundamental theoretical foundation of QSM and STI, as well as computational strategies for the characterization of magnetic susceptibility with MRI phase data. In the second part, we provide an overview of current methodological and clinical applications of QSM with a focus on brain imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
- MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Manning AP, Giese M, Terpstra AS, MacLachlan MJ, Hamad WY, Dong RY, Michal CA. NMR of guest-host systems: 8CB in chiral nematic porous glasses. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:532-539. [PMID: 25251221 DOI: 10.1002/mrc.4101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/26/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Liquid crystals confined to porous materials often have different critical phenomena and ordering than in the bulk. Through the selection of pore size, structure and guest liquid crystal, these systems could enable a variety of functional materials for applications such as sensors and displays. A recent example of such a system is chiral nematic mesoporous films infiltrated with liquid crystal 4-cyano-4'-n-octylbiphenyl (8CB), which has reversible thermal switching of its optical bandgap. The optical bandgap is lost when the ordered 8CB guests are heated above ∼50 °C, where the 8CB becomes isotropic. In this study, we have used NMR cryoporometry and pulsed-field gradient diffusion measurements to determine the pore sizes and structures of various chiral nematic mesoporous silica and organosilica films. Temperature and orientation-dependent wideline (15)N NMR spectra of films infiltrated with (15)N-labelled 8CB guests show that the ordering of the 8CB mesogens is consistent with an average orientation parallel to the chiral nematic pore axes. Inclusion of a large, orientation-dependent shift was necessary to fit the spectra, probably due to susceptibility differences between the 8CB guests and the organosilica host.
Collapse
Affiliation(s)
- Alan P Manning
- Department of Physics and Astronomy, The University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Wang H, Forse AC, Griffin JM, Trease NM, Trognko L, Taberna PL, Simon P, Grey CP. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J Am Chem Soc 2013; 135:18968-80. [PMID: 24274637 PMCID: PMC3876747 DOI: 10.1021/ja410287s] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 02/06/2023]
Abstract
Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode-electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations.
Collapse
Affiliation(s)
- Hao Wang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Alexander C. Forse
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - John M. Griffin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nicole M. Trease
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lorie Trognko
- Université
Paul Sabatier Toulouse III, CIRIMAT, UMR-CNRS 5085, F-31062 Toulouse, France
| | - Pierre-Louis Taberna
- Université
Paul Sabatier Toulouse III, CIRIMAT, UMR-CNRS 5085, F-31062 Toulouse, France
| | - Patrice Simon
- Université
Paul Sabatier Toulouse III, CIRIMAT, UMR-CNRS 5085, F-31062 Toulouse, France
| | - Clare P. Grey
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
6
|
Zhou L, Leskes M, Ilott AJ, Trease NM, Grey CP. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: application to Li1.08Mn1.92O4 spinels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 234:44-57. [PMID: 23838525 DOI: 10.1016/j.jmr.2013.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
To date, in situ nuclear magnetic resonance (NMR) studies of working batteries have been performed in static mode, i.e., in the absence of magic angle spinning (MAS). Thus, it is extremely challenging to apply the method to paramagnetic systems such as the cathodes spinels Li(1+x)Mn(2-x)O4 primarily due to three factors: (1) the resonance lines are broadened severely; (2) spectral analysis is made more complicated by bulk magnetic susceptibility (BMS) effects, which depend on the orientation and shape of the object under investigation; (3) the difficulty in untangling the BMS effects induced by the paramagnetic and metallic components on other (often diamagnetic) components in the system, which result in additional shifts and line broadening. Here we evaluate the orientation-dependence of the BMS effect of Li1.08Mn1.92O4, analyzing the experimental results by using a simple long-distance Li-electron dipolar coupling model. In addition, we discuss the shape and packing density dependence of the BMS effect and its influence on the observed frequencies of other components, such as the Li metal and the electrolyte in the battery. Finally, we show that by taking these effects into account we are able to minimize the BMS induced shift by orienting the cell at a rotation angle, αi=54.7° which facilitates the interpretation of the in situ NMR spectra of a working battery with the paramagnetic Li1.08Mn1.92O4 cathode.
Collapse
Affiliation(s)
- Lina Zhou
- University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Han OH. Nuclear magnetic resonance investigations on electrochemical reactions of low temperature fuel cells operating in acidic conditions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 72:1-41. [PMID: 23731860 DOI: 10.1016/j.pnmrs.2013.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/10/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Oc Hee Han
- Daegu Center, Korea Basic Science Institute, Daegu 702-701, Republic of Korea.
| |
Collapse
|
8
|
Tkachenko AN, Radchenko DS, Mykhailiuk PK, Afonin S, Ulrich AS, Komarov IV. Design, synthesis, and application of a trifluoromethylated phenylalanine analogue as a label to study peptides by solid-state 19F NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52:6504-7. [PMID: 23653105 DOI: 10.1002/anie.201301344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Anton N Tkachenko
- Faculty of Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska 62a, 01601 Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
9
|
Tkachenko AN, Radchenko DS, Mykhailiuk PK, Afonin S, Ulrich AS, Komarov IV. Design, Synthesis, and Application of a Trifluoromethylated Phenylalanine Analogue as a Label to Study Peptides by Solid-State19F NMR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Forse AC, Griffin JM, Wang H, Trease NM, Presser V, Gogotsi Y, Simon P, Grey CP. Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Phys Chem Chem Phys 2013; 15:7722-30. [DOI: 10.1039/c3cp51210j] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Dürr UHN, Afonin S, Hoff B, de Luca G, Emsley JW, Ulrich AS. Alignment of Druglike Compounds in Lipid Bilayers Analyzed by Solid-State 19F-NMR and Molecular Dynamics, Based on Dipolar Couplings of Adjacent CF3 Groups. J Phys Chem B 2012; 116:4769-82. [DOI: 10.1021/jp212339k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrich H. N. Dürr
- Institute
of Organic Chemistry
and CFN, Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg
6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Institute
of Organic Chemistry
and CFN, Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg
6, 76131 Karlsruhe, Germany
| | - Barbara Hoff
- Bioprocess Engineering, IMVM, Fritz-Haber-Weg
2, 76131 Karlsruhe, Germany
| | - Giuseppina de Luca
- Dipartimento di Chimica, University of Calabria, Campus di Arcavacata, Via Pietro
Bucci Cubo 12C, I-87036 Rende (Cosenza), Italy
| | - James W. Emsley
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Anne S. Ulrich
- Institute
of Organic Chemistry
and CFN, Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg
6, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Kummerlöwe G, Grage SL, Thiele CM, Kuprov I, Ulrich AS, Luy B. Variable angle NMR spectroscopy and its application to the measurement of residual chemical shift anisotropy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 209:19-30. [PMID: 21256060 DOI: 10.1016/j.jmr.2010.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
The successful measurement of anisotropic NMR parameters like residual dipolar couplings (RDCs), residual quadrupolar couplings (RQCs), or residual chemical shift anisotropy (RCSA) involves the partial alignment of solute molecules in an alignment medium. To avoid any influence of the change of environment from the isotropic to the anisotropic sample, the measurement of both datasets with a single sample is highly desirable. Here, we introduce the scaling of alignment for mechanically stretched polymer gels by varying the angle of the director of alignment relative to the static magnetic field, which we call variable angle NMR spectroscopy (VA-NMR). The technique is closely related to variable angle sample spinning NMR spectroscopy (VASS-NMR) of liquid crystalline samples, but due to the mechanical fixation of the director of alignment no sample spinning is necessary. Also, in contrast to VASS-NMR, VA-NMR works for the full range of sample inclinations between 0° and 90°. Isotropic spectra are obtained at the magic angle. As a demonstration of the approach we measure ¹³C-RCSA values for strychnine in a stretched PDMS/CDCl₃ gel and show their usefulness for assignment purposes. In this context special care has been taken with respect to the exact calibration of chemical shift data, for which three approaches have been derived and tested.
Collapse
Affiliation(s)
- Grit Kummerlöwe
- Department Chemie, Lehrstuhl Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Khuu A, Ren J, Dimitrov I, Woessner D, Murdoch J, Sherry AD, Malloy CR. Orientation of lipid strands in the extracellular compartment of muscle: effect on quantitation of intramyocellular lipids. Magn Reson Med 2009; 61:16-21. [PMID: 19097207 DOI: 10.1002/mrm.21831] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-voxel (1)H NMR spectra from gastrocnemius and soleus muscle were acquired in healthy volunteers at 7T with the objective of measuring the concentration of intramyocellular lipid [IMCL] (note: throughout this article, square brackets indicate concentration). However, significant asymmetry in the resonance assigned to the methylene protons (-CH(2)-)(n) in extramyocellular lipids (EMCL) interfered with fitting the spectra. Since muscle fibers in these tissues are generally not parallel to B(0), the influence of variable orientation in strands of extracellular fat was examined using a mathematical model. Modest variation in orientation produced asymmetric lineshapes that were qualitatively similar to typical observations at 7T. Analysis of simulated spectra by fitting with a Voigt function overestimated [IMCL]/[EMCL] except when EMCL fibers were nearly parallel to B(0). Estimates of [IMCL]/[EMCL] were improved by including variations in fiber orientation in the lineshape analysis (fiber orientation modeling, or FOM). Calculated [IMCL] using FOM, 4.8 +/- 2.2 mmol/kg wet weight, was lower compared to most previous reports in soleus.
Collapse
Affiliation(s)
- Anthony Khuu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8568, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Grage SL, Dürr UHN, Afonin S, Mikhailiuk PK, Komarov IV, Ulrich AS. Solid state 19F NMR parameters of fluorine-labeled amino acids. Part II: aliphatic substituents. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 191:16-23. [PMID: 18155628 DOI: 10.1016/j.jmr.2007.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/30/2007] [Accepted: 11/21/2007] [Indexed: 05/25/2023]
Abstract
A representative set of amino acids with aliphatic 19F-labels has been characterized here, following up our previous compilation of NMR parameters for single 19F-substituents on aromatic side chains. Their isotropic chemical shifts, chemical shift tensor parameters, intra-molecular 19F dipole-dipole couplings and temperature-dependent T1 and T2 relaxation times were determined by solid state NMR on twelve polycrystalline amino acid samples, and the corresponding isotropic 19F chemical shifts and scalar couplings were obtained in solution. Of particular interest are amino acids carrying a trifluoromethyl-group, because not only the 19F chemical shift but also the intra-CF3 homonuclear dipolar coupling can be used for structural studies of 19F-labeled peptides and proteins. The CF3-groups are further compared with CH2F-, CD2F-, and CD3-groups, using both 19F and 2H NMR to describe their motional behavior and to examine the respective linebroadening effects of the protonated and deuterated neighbors. We have also characterized two unnatural amino acids in which a CF3-label is rigidly connected to the backbone by a phenyl or bicyclopentyl moiety, and which are particularly well suited for structure analysis of membrane-bound polypeptides. The 19F NMR parameters of the polycrystalline amino acids are compared with data from the correspondingly labeled side chains in synthetic peptides.
Collapse
Affiliation(s)
- Stephan L Grage
- Forschungszentrum Karlsruhe, Institute of Biological Interfaces, P.O.B. 3640, 76021 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Grage SL, Suleymanova AV, Afonin S, Wadhwani P, Ulrich AS. Solid state NMR analysis of the dipolar couplings within and between distant CF3-groups in a membrane-bound peptide. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 183:77-86. [PMID: 16919983 DOI: 10.1016/j.jmr.2006.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/11/2006] [Accepted: 07/14/2006] [Indexed: 05/11/2023]
Abstract
Dipolar couplings contain information on internuclear distances as well as orientational constraints. To characterize the structure of the antimicrobial peptide gramicidin S when bound to model membranes, two rigid 4-CF3-phenylglycine labels were attached to the cyclic backbone such that they reflect the behavior of the entire peptide. By solid state 19F NMR we measured the homonuclear dipolar couplings of the two trifluoromethyl-groups in oriented membrane samples. Using the CPMG experiment, both the strong couplings within each CF3-group as well as the weak coupling between the two CF3-groups could be detected. An intra-CF3-group dipolar coupling of 86 Hz and a weak inter-group coupling of 20 Hz were obtained by lineshape simulation of the complex dipolar spectrum. It is thus possible to explore the large distance range provided by 19F-labels and to resolve weak dipolar couplings even in the presence of strong intra-CF3 couplings. We applied this approach to distinguish and assign two epimers of the labeled gramicidin S peptide on the basis of their distinct 19F dipolar coupling patterns.
Collapse
Affiliation(s)
- Stephan L Grage
- Institute of Biological Interfaces, Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
16
|
Mikhailiuk PK, Afonin S, Chernega AN, Rusanov EB, Platonov MO, Dubinina GG, Berditsch M, Ulrich AS, Komarov IV. Conformationally Rigid Trifluoromethyl-Substituted α-Amino Acid Designed for Peptide Structure Analysis by Solid-State19F NMR Spectroscopy. Angew Chem Int Ed Engl 2006; 45:5659-61. [PMID: 16865762 DOI: 10.1002/anie.200600346] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pavel K Mikhailiuk
- Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska 64, 01033 Kyiv, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mikhailiuk PK, Afonin S, Chernega AN, Rusanov EB, Platonov MO, Dubinina GG, Berditsch M, Ulrich AS, Komarov IV. Conformationally Rigid Trifluoromethyl-Substituted α-Amino Acid Designed for Peptide Structure Analysis by Solid-State19F NMR Spectroscopy. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600346] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Krasnosselskaia LV, Fullerton GD, Dodd SJ, Cameron IL. Water in tendon: orientational analysis of the free induction decay. Magn Reson Med 2005; 54:280-8. [PMID: 16032660 DOI: 10.1002/mrm.20540] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The orientation dependence of the free induction decay (FID) of 1H NMR water signal in ex vivo bovine digital flexor tendon at the native level of hydration is reported. Residual dipolar coupling due to the overall tissue anisotropy produces a 6:1 change in the signal intensity as an angle between the long axis of a specimen and the external magnetic field is changed from the "magic angle" of 54.7 degrees to 0 degrees. The strength of residual dipolar interactions between water protons was estimated by orientational analysis of the signal intensity to be equal to 780 Hz. Apparent signal maxima are observed at orientations 8-13 degrees away from 54.7 degrees due to an inhomogeneous contribution to the decay. A small fraction of total water in tendon is detectable at all orientations and exhibits a shift in the precession frequency. It is hypothesized that this water fraction resides in the interconnecting gaps at the ends of collagen molecules. The gaps have a disordered environment that allows for a zero time average of dipolar interactions. Measured frequency and phase shifts are interpreted as signatures of the bulk magnetic susceptibility effect due to geometry of the cavity formed by adjacent gaps at the ends of the collagen molecules. The multiexponentiality of the FID decay is hypothesized to be due to the exchange between orientationally restricted water structured along the length of the collagen molecule and disordered water in the cavity.
Collapse
Affiliation(s)
- Lada V Krasnosselskaia
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
19
|
Rainey JK, Sykes BD. Optimizing oriented planar-supported lipid samples for solid-state protein NMR. Biophys J 2005; 89:2792-805. [PMID: 16085766 PMCID: PMC1366779 DOI: 10.1529/biophysj.105.063800] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sample orientation relative to the static magnetic field of an NMR spectrometer allows study of membrane proteins in the lipid bilayer setting. The straightforward preparation and handling of extremely thin mica substrates with consistent surface properties has prompted us to examine oriented phospholipid bilayer and hexagonal phases on mica. The spectral characteristics of oriented lipid samples formed on mica are as good as or better than those on glass. Nine solvents with varying dielectric constants were used to cast lipid films or for vesicle spreading; film characteristics were then compared, and static solid-state 31P-NMR was used to characterize the degree of orientation of the hydrated lipid species. Lipids with four headgroup chemistries were tested: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Solvent affected orientation of POPG, DOPA, and DOPE, but not POPC. Film characteristics varied with solvent, with ramifications for producing homogeneous oriented lipid samples. POPC was used to optimize the amount of lipid per substrate and compare hydration methods. POPG did not orient reproducibly, whereas POPG-POPC mixtures did. DOPA showed 1-2 oriented states depending upon hydration level and deposition method. DOPE formed an oriented hexagonal phase that underwent a reversible temperature-induced phase transition to the oriented bilayer phase.
Collapse
Affiliation(s)
- Jan K Rainey
- Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
20
|
Chekmenev EY, Hu J, Gor'kov PL, Brey WW, Cross TA, Ruuge A, Smirnov AI. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:322-327. [PMID: 15780925 DOI: 10.1016/j.jmr.2004.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/18/2004] [Indexed: 05/24/2023]
Abstract
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.
Collapse
Affiliation(s)
- Eduard Y Chekmenev
- The Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL 32310, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Glaser RW, Sachse C, Dürr UHN, Wadhwani P, Ulrich AS. Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:153-63. [PMID: 15082261 DOI: 10.1016/j.jmr.2004.02.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 02/02/2004] [Indexed: 05/03/2023]
Abstract
A highly sensitive solid state (19)F-NMR strategy is described to determine the orientation and dynamics of membrane-associated peptides from specific fluorine labels. Several analogues of the antimicrobial peptide PGLa were synthesized with the non-natural amino acid 4-trifluoromethyl-phenylglycine (CF(3)-Phg) at different positions throughout the alpha-helical peptide chain. A simple 1-pulse (19)F experiment allows the simultaneous measurement of both the anisotropic chemical shift and the homonuclear dipolar coupling within the rotating CF(3)-group in a macroscopically oriented membrane sample. The value and sign of the dipolar splitting determines the tilt of the CF(3)-rotational axis, which is rigidly attached to the peptide backbone, with respect to the external magnetic field direction. Using four CF(3)-labeled peptide analogues (with L-CF(3)-Phg at Ile9, Ala10, Ile13, and Ala14) we confirmed that PGLa is aligned at the surface of lipid membranes with its helix axis perpendicular to the bilayer normal at a peptide:lipid ratio of 1:200. We also determined the azimuthal rotation angle of the helix, which agrees well with the orientation expected from its amphiphilic character. Peptide analogues with a D-CF(3)-Phg label resulting from racemization of the amino acid during synthesis were separately collected by HPLC. Their spectra provide additional information about the PGLa structure and orientation but allow only to discriminate qualitatively between multiple solutions. The structural and functional characterization of the individual CF(3)-labeled peptides by circular dichroism and antimicrobial assays showed only small effects for our four substitutions on the hydrophobic face of the helix, but a significant disturbance was observed in a fifth analogue where Ala8 on the hydrophilic face had been replaced. Even though the hydrophobic CF(3)-Phg side chain cannot be utilized in all positions, it allows highly sensitive NMR measurements over a wide range of experimental conditions and dynamic regimes of the peptide.
Collapse
Affiliation(s)
- Ralf W Glaser
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-Universität Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
22
|
Afonin S, Dürr UHN, Glaser RW, Ulrich AS. 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:195-203. [PMID: 14745800 DOI: 10.1002/mrc.1340] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur.
Collapse
Affiliation(s)
- Sergii Afonin
- Forschungszentrum Karlsruhe, IFIA, POB 3640, 76021 Karlsruhe, Germany
| | | | | | | |
Collapse
|
23
|
Glaser RW, Ulrich AS. Susceptibility corrections in solid-state NMR experiments with oriented membrane samples. Part I: applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 164:104-114. [PMID: 12932462 DOI: 10.1016/s1090-7807(03)00207-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical shift referencing of solid-state NMR experiments on oriented membranes has to compensate for bulk magnetic susceptibility effects that are associated with the non-spherical sample shape, as described in the accompanying paper [J. Magn. Reson. 164 (2003) 115-127]. The resulting frequency deviations can be on the order of 10 ppm, which is serious for nuclei with a narrow chemical shift anisotropy such as 1H or 13C, and in some cases even 19F. Two referencing schemes are proposed here to compensate for these effects: A flat (0.4 mm) glass container with an isotropic reference molecule dissolved in a thin film of liquid is stacked on top of the oriented membrane sample. Alternatively, the intrinsic proton signal of the hydrated lipid can be used for chemical shift referencing. Further aspects related to magnetic susceptibility are discussed, such as air gaps in susceptibility-matched probeheads, the benefits of shimming, and limitations in the accuracy of orientational constraints. A biological application is illustrated by a series of experiments on the antimicrobial peptide PGLa, aimed at understanding its concentration-dependent membranolytic effect. To address a wide range of molar peptide/lipid ratios between 1:3000 and 1:8, multilayers of hydrated DMPC containing a 19F-labeled peptide were oriented between stacked glass plates. Maintaining an approximately constant amount of peptide gives rise to thick samples (18 plates) at low, and thin samples (3 plates) at high peptide/lipid ratio. Accurate referencing was critical to reveal a small but significant change over 5 ppm in the anisotropic chemical shift of the 19F label on the peptide, indicative of a change in the orientation and/or dynamics of PGLa in the membrane.
Collapse
Affiliation(s)
- Ralf W Glaser
- Institute of Molecular Biology, Friedrich-Schiller-Universität Jena, Winzerlaer Str. 10, D-07745 Jena, Germany
| | | |
Collapse
|