1
|
Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, Ray TK, Uddin MB, Kali MSK, Dua K, Kamal MA, Chellappan DK. Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance. Bioengineering (Basel) 2022; 9:bioengineering9080335. [PMID: 35892749 PMCID: PMC9332125 DOI: 10.3390/bioengineering9080335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Research on the immune system and cancer has led to the development of new medicines that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine learning algorithms can significantly support and increase the rate of research on complicated diseases to help find new remedies. One area of medical study that could greatly benefit from machine learning algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for different subtypes of the disease. However, developing a new drug is time-consuming, complicated, dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion. Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have been introduced to enhance drug development productivity and analytical methodologies, and they have become a crucial part of many drug discovery programs; many scanning programs, for example, use ligand screening and structural virtual screening techniques from hit detection to optimization. In this review, we examined various types of computational methods focusing on anticancer drugs. Machine-based learning in basic and translational cancer research that could reach new levels of personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending cancer as we know it means ensuring that every patient has access to safe and effective therapies. Recent developments in computational drug discovery technologies have had a large and remarkable impact on the design of anticancer drugs and have also yielded useful insights into the field of cancer therapy. With an emphasis on anticancer medications, we covered the various components of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional genomics, and biological networks are only a few examples of the bioinformatics techniques used to forecast anticancer medications and treatment combinations based on multi-omics data. We believe that a general review of the databases that are now available and the computational techniques used today will be beneficial for the creation of new cancer treatment approaches.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Shajib Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Sayedul Abrar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence:
| |
Collapse
|
3
|
Chang C, Ekins S, Bahadduri P, Swaan PW. Pharmacophore-based discovery of ligands for drug transporters. Adv Drug Deliv Rev 2006; 58:1431-50. [PMID: 17097188 PMCID: PMC1773055 DOI: 10.1016/j.addr.2006.09.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 09/04/2006] [Indexed: 11/24/2022]
Abstract
The ability to identify ligands for drug transporters is an important step in drug discovery and development. It can both improve accurate profiling of lead pharmacokinetic properties and assist in the discovery of new chemical entities targeting transporters. In silico approaches, especially pharmacophore-based database screening methods have great potential in improving the throughput of current transporter ligand identification assays, leading to a higher hit rate by focusing in vitro testing to the most promising hits. In this review, the potential of different in silico methods in transporter ligand identification studies are compared and summarized with an emphasis on pharmacophore modeling. Various implementations of pharmacophore model generation, database compilation and flexible screening algorithms are also introduced. Recent successful utilization of database searching with pharmacophores to identify novel ligands for the pharmaceutically significant transporters hPepT1, P-gp, BCRP, MRP1 and DAT are reviewed and the challenges encountered with current approaches are discussed.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD 21201 and
| | - Sean Ekins
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD 21201 and
- ACT LLC, 1 Penn Plaza-36th Floor, New York, NY 10119
| | - Praveen Bahadduri
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD 21201 and
| | - Peter W. Swaan
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD 21201 and
- Author for correspondence: Peter W. Swaan, Ph.D., Department of
Pharmaceutical Sciences, 20 Penn Street, HSF2-621, University of Maryland,
Baltimore, Baltimore, MD 21201, Tel: 410-706 –0130, Fax:
410-706-5017,
| |
Collapse
|
4
|
Seifert MHJ. ProPose: Steered Virtual Screening by Simultaneous Protein−Ligand Docking and Ligand−Ligand Alignment. J Chem Inf Model 2005; 45:449-60. [PMID: 15807511 DOI: 10.1021/ci0496393] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 'model-free' screening engine ProPose implements a general method for performing simultaneous protein-ligand docking, ligand-ligand alignment, pharmacophore queries-and combinations thereof-in order to incorporate a priori information into screening protocols. In this manuscript we describe a case study on herpes simplex virus thymidine kinase, an important antiviral drug target, where we evaluate different approaches for handling a specific type of a priori information, i.e., multiple target structures. We demonstrate that a simultaneous alignment on two target structures--in conjunction with logic operations on interactions and docking constraints derived from protein structure--is an effective means of (i) improving the enrichment of chemical substructures that are compatible with the a priori known ligands, (ii) ensuring the steric fit into the target protein, and (iii) handling target flexibility. The combination of ligand- and receptor-based methods steers the virtual screening by ranking molecules according to the similarity of their interaction pattern with known ligands, thereby--to some extent--outweighing the deficiencies of simple scoring functions often used in initial virtual screening.
Collapse
|