1
|
Williams IR, Ryugo DK. Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse. Front Neural Circuits 2024; 18:1430598. [PMID: 39184455 PMCID: PMC11341401 DOI: 10.3389/fncir.2024.1430598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3-6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 μm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.
Collapse
Affiliation(s)
- Isabella R. Williams
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head, Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
2
|
Lee K, Dora S, Mejias JF, Bohte SM, Pennartz CMA. Predictive coding with spiking neurons and feedforward gist signaling. Front Comput Neurosci 2024; 18:1338280. [PMID: 38680678 PMCID: PMC11045951 DOI: 10.3389/fncom.2024.1338280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024] Open
Abstract
Predictive coding (PC) is an influential theory in neuroscience, which suggests the existence of a cortical architecture that is constantly generating and updating predictive representations of sensory inputs. Owing to its hierarchical and generative nature, PC has inspired many computational models of perception in the literature. However, the biological plausibility of existing models has not been sufficiently explored due to their use of artificial neurons that approximate neural activity with firing rates in the continuous time domain and propagate signals synchronously. Therefore, we developed a spiking neural network for predictive coding (SNN-PC), in which neurons communicate using event-driven and asynchronous spikes. Adopting the hierarchical structure and Hebbian learning algorithms from previous PC neural network models, SNN-PC introduces two novel features: (1) a fast feedforward sweep from the input to higher areas, which generates a spatially reduced and abstract representation of input (i.e., a neural code for the gist of a scene) and provides a neurobiological alternative to an arbitrary choice of priors; and (2) a separation of positive and negative error-computing neurons, which counters the biological implausibility of a bi-directional error neuron with a very high baseline firing rate. After training with the MNIST handwritten digit dataset, SNN-PC developed hierarchical internal representations and was able to reconstruct samples it had not seen during training. SNN-PC suggests biologically plausible mechanisms by which the brain may perform perceptual inference and learning in an unsupervised manner. In addition, it may be used in neuromorphic applications that can utilize its energy-efficient, event-driven, local learning, and parallel information processing nature.
Collapse
Affiliation(s)
- Kwangjun Lee
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Shirin Dora
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Department of Computer Science, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Jorge F. Mejias
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Sander M. Bohte
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
- Machine Learning Group, Centre of Mathematics and Computer Science, Amsterdam, Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Ryugo DK, Milinkeviciute G. Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Front Neural Circuits 2023; 17:1229746. [PMID: 37554670 PMCID: PMC10405501 DOI: 10.3389/fncir.2023.1229746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
The cochlear nucleus (CN) is often regarded as the gateway to the central auditory system because it initiates all ascending pathways. The CN consists of dorsal and ventral divisions (DCN and VCN, respectively), and whereas the DCN functions in the analysis of spectral cues, circuitry in VCN is part of the pathway focused on processing binaural information necessary for sound localization in horizontal plane. Both structures project to the inferior colliculus (IC), which serves as a hub for the auditory system because pathways ascending to the forebrain and descending from the cerebral cortex converge there to integrate auditory, motor, and other sensory information. DCN and VCN terminations in the IC are thought to overlap but given the differences in VCN and DCN architecture, neuronal properties, and functions in behavior, we aimed to investigate the pattern of CN connections in the IC in more detail. This study used electrophysiological recordings to establish the frequency sensitivity at the site of the anterograde dye injection for the VCN and DCN of the CBA/CaH mouse. We examined their contralateral projections that terminate in the IC. The VCN projections form a topographic sheet in the central nucleus (CNIC). The DCN projections form a tripartite set of laminar sheets; the lamina in the CNIC extends into the dorsal cortex (DC), whereas the sheets to the lateral cortex (LC) and ventrolateral cortex (VLC) are obliquely angled away. These fields in the IC are topographic with low frequencies situated dorsally and progressively higher frequencies lying more ventrally and/or laterally; the laminae nestle into the underlying higher frequency fields. The DCN projections are complementary to the somatosensory modules of layer II of the LC but both auditory and spinal trigeminal terminations converge in the VLC. While there remains much to be learned about these circuits, these new data on auditory circuits can be considered in the context of multimodal networks that facilitate auditory stream segregation, signal processing, and species survival.
Collapse
Affiliation(s)
- David K. Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
- Department of Otolaryngology, Head and Neck and Skull Base Surgery, St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Giedre Milinkeviciute
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
4
|
Gene delivery to neurons in the auditory brainstem of barn owls using standard recombinant adeno-associated virus vectors. CURRENT RESEARCH IN NEUROBIOLOGY 2020; 1:100001. [PMID: 36249276 PMCID: PMC9559881 DOI: 10.1016/j.crneur.2020.100001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a commonly used tool for gene delivery. There is a large choice of different serotypes whose transduction efficiency varies for different animal species. In this study, three rAAV vectors were tested for transduction efficiency in the auditory brainstem of adult barn owls (Tyto alba) which are not standard laboratory animals. Injections with rAAV serotypes 2/1 and 2/5 resulted in reliable expression in various nuclei of the auditory brainstem of barn owls. Both vectors showed evidence of being spread by axonal transport. However, only rAAV2/5 also showed expression in regions far distant from the injection site, suggesting long-range axonal transport in connections along the auditory pathway. In contrast, injections with rAAV2/9 resulted in no expression. Our results demonstrate for the first time that commercially available rAAV vectors can be used for reliable gene expression in the barn owl auditory brainstem and pave the way toward optogenetic manipulation of neural activity in this important animal species in neuroethology and auditory physiology. Standard rAAV vectors effectively mediate gene expression in the barn-owl brain. rAAV2/1 was best suited for confined expression around the targeted injection site. Due to more axonal transport, rAAV2/5 resulted in wider spread of expressed genes. rAAV-mediated expression is expected to remain stable for an extended period of time. rAAV expression and stability are excellent prerequisites for optogenetic experiments.
Collapse
|
5
|
Abstract
This study developed a wearable hearing-assist system that can identify the direction of a sound source while using short-term interaural time differences (ITDs) of sound pressure and convey the sound source direction to a hearing-impaired person via vibrators that are attached to his or her shoulders. This system, which is equipped with two microphones, could dynamically detect and convey the direction of front, side, and even rear sound sources. A male subject was able to turn his head toward continuous or intermittent sound sources within approximately 2.8 s when wearing the developed system. The sound source direction is probably overestimated when the interval between the two ears is smaller. When the subject can utilize vision, this may help in tracking the location of the target sound source, especially if the target comes into view, and it may shorten the tracking period.
Collapse
|
6
|
Cheng L, Mei HX, Huang Y. Inter-collicular suppression compresses all types of rate-amplitude functions of inferior collicular neurons in mice. Physiol Res 2016; 65:527-36. [PMID: 27070749 DOI: 10.33549/physiolres.933182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The two inferior colliculi (IC) are paired structures in the midbrain that are connected to each other by a bundle of commissural fibers. The fibers play an important role in coordinating sound signal processing between the two inferior colliculi. This study examined inter-collicular suppression on sound signal processing in amplitude domain of mice by measuring the rate-amplitude functions (RAFs) of neurons in one IC during the electrical stimulation of the opposite IC. Three types (monotonic, saturated and non-monotonic) RAFs of collicular neurons were measured before and during inter-collicular suppression. Inter-collicular suppression significantly increased the slope, decreased the dynamic range and narrowed down the responsive amplitude of all RAFs to high amplitude level but did not change the type of most (36/43, 84 %) RAFs. As a result, all types of RAFs were compressed at a greater degree at low than at high sound amplitude during inter-collicular suppression. These data indicate that inter-collicular suppression improve sound processing in the high amplitude domain.
Collapse
Affiliation(s)
- L Cheng
- School of Psychology, Central China Normal University, Wuhan, China.
| | | | | |
Collapse
|
7
|
Hunting increases phosphorylation of calcium/calmodulin-dependent protein kinase type II in adult barn owls. Neural Plast 2015; 2015:819257. [PMID: 25789177 PMCID: PMC4348593 DOI: 10.1155/2015/819257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX), the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is "off" in adults.
Collapse
|
8
|
Hazan Y, Kra Y, Yarin I, Wagner H, Gutfreund Y. Visual-auditory integration for visual search: a behavioral study in barn owls. Front Integr Neurosci 2015; 9:11. [PMID: 25762905 PMCID: PMC4327738 DOI: 10.3389/fnint.2015.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022] Open
Abstract
Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target.
Collapse
Affiliation(s)
- Yael Hazan
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Yonatan Kra
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Inna Yarin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| | - Hermann Wagner
- Department of Zoology and Animal Physiology, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Yoram Gutfreund
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion Haifa, Israel
| |
Collapse
|
9
|
Menezes PDL, Andrade KCLD, Carnaúba ATL, Cabral FB, Leal MDC, Pereira LD. Sound localization and occupational noise. Clinics (Sao Paulo) 2014; 69:83-6. [PMID: 24519197 PMCID: PMC3912320 DOI: 10.6061/clinics/2014(02)02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01) than that of the control group. CONCLUSION Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.
Collapse
Affiliation(s)
- Pedro de Lemos Menezes
- Universidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Acoustic Instrumentation Laboratory, MaceióAL, Brazil, Universidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Acoustic Instrumentation Laboratory, Maceió/AL, Brazil
| | - Kelly Cristina Lira de Andrade
- Universidade Federal de Pernambuco (UFPE), Departamento de FonoaudiologiaRecifePE, Brazil, Universidade Federal de Pernambuco (UFPE), Departamento de Fonoaudiologia, Recife/PE, Brazil
| | - Aline Tenório Lins Carnaúba
- Universidade Federal de Pernambuco (UFPE), Departamento de FonoaudiologiaRecifePE, Brazil, Universidade Federal de Pernambuco (UFPE), Departamento de Fonoaudiologia, Recife/PE, Brazil
| | - Frantänia B Cabral
- Universidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Acoustic Instrumentation Laboratory, MaceióAL, Brazil, Universidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Acoustic Instrumentation Laboratory, Maceió/AL, Brazil
| | - Mariana de Carvalho Leal
- Universidade Federal de Pernambuco (UFPE), Departamento de FonoaudiologiaRecifePE, Brazil, Universidade Federal de Pernambuco (UFPE), Departamento de Fonoaudiologia, Recife/PE, Brazil
| | - Liliane Desgualdo Pereira
- Escola Paulista de Medicina (UNIFESP), Departamento de Fonoaudiologia, São PauloSP, Brazil, Escola Paulista de Medicina (UNIFESP), Departamento de Fonoaudiologia, São Paulo/SP, Brazil
| |
Collapse
|
10
|
The Malleable Middle Ear: An Underappreciated Player in the Evolution of Hearing in Vertebrates. INSIGHTS FROM COMPARATIVE HEARING RESEARCH 2013. [DOI: 10.1007/2506_2013_33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Hennig P, Kern R, Egelhaaf M. Binocular integration of visual information: a model study on naturalistic optic flow processing. Front Neural Circuits 2011; 5:4. [PMID: 21519385 PMCID: PMC3078557 DOI: 10.3389/fncir.2011.00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/21/2011] [Indexed: 11/30/2022] Open
Abstract
The computation of visual information from both visual hemispheres is often of functional relevance when solving orientation and navigation tasks. The vCH-cell is a motion-sensitive wide-field neuron in the visual system of the blowfly Calliphora, a model system in the field of optic flow processing. The vCH-cell receives input from various other identified wide-field cells, the receptive fields of which are located in both the ipsilateral and the contralateral visual field. The relevance of this connectivity to the processing of naturalistic image sequences, with their peculiar dynamical characteristics, is still unresolved. To disentangle the contributions of the different input components to the cell's overall response, we used electrophysiologically determined responses of the vCH-cell and its various input elements to tune a model of the vCH-circuit. Their impact on the vCH-cell response could be distinguished by stimulating not only extended parts of the visual field of the fly, but also selected regions in the ipsi- and contralateral visual field with behaviorally generated optic flow. We show that a computational model of the vCH-circuit is able to account for the neuronal activities of the counterparts in the blowfly's visual system. Furthermore, we offer an insight into the dendritic integration of binocular visual input.
Collapse
Affiliation(s)
- Patrick Hennig
- Department of Neurobiology and Center of Excellence 'Cognitive Interaction Technology', Bielefeld University Bielefeld, Germany
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, USA.
| |
Collapse
|
13
|
A bird brain's view of auditory processing and perception. Hear Res 2010; 273:123-33. [PMID: 20851756 DOI: 10.1016/j.heares.2010.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 08/12/2010] [Accepted: 08/14/2010] [Indexed: 11/24/2022]
Abstract
By studying the primary forebrain auditory area of songbirds, field L, using a song-inspired synthetic stimulus and reverse correlation techniques, we found a surprisingly systematic organization of this area, with nearly all neurons narrowly tuned along the spectral dimension, the temporal dimension, or both; there were virtually no strongly orientation-sensitive cells, and in the areas that we recorded, cells broadly tuned in both time and frequency were rare. In addition, cells responsive to fast temporal frequencies predominated only in the field L input layer, suggesting that neurons with fast and slow responses are concentrated in different regions. Together with other songbird data and work from chicks and mammals, these findings suggest that sampling a range of temporal and spectral modulations, rather than orientation in time-frequency space, is the organizing principle of forebrain auditory sensitivity. We then examined the role of these acoustic parameters important to field L organization in a behavioral task. Birds' categorization of songs fell off rapidly when songs were altered in frequency, but, despite the temporal sensitivity of field L neurons, the same birds generalized well to songs that were significantly changed in timing. These behavioral data point out that we cannot assume that animals use the information present in particular neurons without specifically testing perception.
Collapse
|
14
|
Christensen-Dalsgaard J. Vertebrate pressure-gradient receivers. Hear Res 2010; 273:37-45. [PMID: 20727396 DOI: 10.1016/j.heares.2010.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and strongly dependent on interaural transmission attenuation. Even though the tympanic middle ear has originated independently in the major tetrapod groups, in each group the ancestral condition probably was that the two middle ears were exposed in the mouth cavity with relatively high interaural transmission. Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural transmission and functionally isolated pressure receiver ears in the mammals. Since some of the binaural interaction already takes place at the eardrum in animals with strongly coupled ears, producing enhanced interaural time and level differences, the subsequent neural processing may be simpler. In robotic simulations of lizards, simple binaural subtraction (EI cells, found in brainstem nuclei of both frogs and lizards) produces strongly lateralized responses that are sufficient for steering the animal robustly to sound sources.
Collapse
|
15
|
Glackin B, Wall JA, McGinnity TM, Maguire LP, McDaid LJ. A spiking neural network model of the medial superior olive using spike timing dependent plasticity for sound localization. Front Comput Neurosci 2010; 4. [PMID: 20802855 PMCID: PMC2928664 DOI: 10.3389/fncom.2010.00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022] Open
Abstract
Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz–1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of ±10° is used. For angular resolutions down to 2.5°, it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.
Collapse
Affiliation(s)
- Brendan Glackin
- Intelligent Systems Research Centre, Magee Campus, University of Ulster Derry, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
16
|
Swofford JA, DeBello WM. Transcriptome changes associated with instructed learning in the barn owl auditory localization pathway. Dev Neurobiol 2007; 67:1457-77. [PMID: 17526003 DOI: 10.1002/dneu.20458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Owls reared wearing prismatic spectacles learn to make adaptive orienting movements. This instructed learning depends on re-calibration of the midbrain auditory space map, which in turn involves the formation of new synapses. Here we investigated whether these processes are associated with differential gene expression, using longSAGE. Newly fledged owls were reared for 8-36 days with prism or control lenses at which time the extent of learning was quantified by electrophysiological mapping. Transciptome profiles were obtained from the inferior colliculus (IC), the major site of synaptic plasticity, and the optic tectum (OT), which provides an instructive signal that controls the direction and extent of plasticity. Twenty-two differentially expressed sequence tags were identified in IC and 36 in OT, out of more than 35,000 unique tags. Of these, only four were regulated in both structures. These results indicate that regulation of two largely independent gene clusters is associated with synaptic remodeling (in IC) and generation of the instructive signal (in OT). Real-time PCR data confirmed the changes for two transcripts, ubiquitin/polyubiquitin and tyrosine 3-monooxgenase/tryotophan 5-monooxygenase activation protein, theta subunit (YWHAQ; also referred to as 14-3-3 protein). Ubiquitin was downregulated in IC, consistent with a model in which protein degradation pathways act as an inhibitory constraint on synaptogenesis. YWHAQ was up-regulated in OT, indicating a role in the synthesis or delivery of instructive information. In total, our results provide a path towards unraveling molecular cascades that link naturalistic experience with synaptic remodeling and, ultimately, with the expression of learned behavior.
Collapse
Affiliation(s)
- Janet A Swofford
- Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
Köppl C, Nickel R. Prolonged maturation of cochlear function in the barn owl after hatching. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:613-24. [PMID: 17323066 DOI: 10.1007/s00359-007-0216-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/22/2007] [Accepted: 02/03/2007] [Indexed: 11/29/2022]
Abstract
Cochlear microphonics (CMs), which represent the electrical activity of hair cells, and compound action potentials (CAPs), which represent the activity of the auditory nerve, were recorded from the round window of the inner ear, in owlets aged between 5 and 97 days posthatching, i.e., from soon after hatching to beyond fledgling. At the earliest ages examined, animals showed very insensitive CM and virtually no CAP responses. Thus, hearing in barn owls develops entirely posthatching and the birds appear to be profoundly deaf well into the second week. Thresholds improved gradually after that and CMs reached their adult sensitivity at 5 weeks posthatching at all frequencies. Compound action potential responses appeared progressively later with increasing frequency. Adult neural sensitivity was achieved about 1 week later than for the CM responses at most frequencies, but took until 9-10 weeks posthatching at the highest frequencies (8-10 kHz). This indicates an apex-to-base maturation sequence of neural sensitivity within the cochlea, with a disproportionately long period to maturity for the most basal regions. Compound action potential amplitudes matured even later, at about 3 months posthatching, at all frequencies. This suggests a prolonged immaturity in the temporal synchrony of spiking in the auditory nerve.
Collapse
Affiliation(s)
- Christine Köppl
- Lehrstuhl für Zoologie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| | | |
Collapse
|
18
|
Abstract
Sound localization behavior is of great importance for an animal's survival. To localize a sound, animals have to detect a sound source and assign a location to it. In this review we discuss recent results on the underlying mechanisms and on modulatory influences in the barn owl, an auditory specialist with very well developed capabilities to localize sound. Information processing in the barn owl auditory pathway underlying the computations of detection and localization is well understood. This analysis of the sensory information primarily determines the following orienting behavior towards the sound source. However, orienting behavior may be modulated by cognitive (top-down) influences such as attention. We show how advanced stimulation techniques can be used to determine the importance of different cues for sound localization in quasi-realistic stimulation situations, how attentional influences can improve the response to behaviorally relevant stimuli, and how attention can modulate related neural responses. Taken together, these data indicate how sound localization might function in the usually complex natural environment.
Collapse
|
19
|
Saberi K, Petrosyan A. Neural cross-correlation and signal decorrelation: insights into coding of auditory space. J Theor Biol 2005; 235:45-56. [PMID: 15833312 DOI: 10.1016/j.jtbi.2004.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 09/30/2004] [Accepted: 12/14/2004] [Indexed: 11/15/2022]
Abstract
The auditory systems of humans and many other species use the difference in the time of arrival of acoustic signals at the two ears to compute the lateral position of sound sources. This computation is assumed to initially occur in an assembly of neurons organized along a frequency-by-delay surface. Mathematically, the computations are equivalent to a two-dimensional cross-correlation of the input signals at the two ears, with the position of the peak activity along this surface designating the position of the source in space. In this study, partially correlated signals to the two ears are used to probe the mechanisms for encoding spatial cues in stationary or dynamic (moving) signals. It is demonstrated that a cross-correlation model of the auditory periphery coupled with statistical decision theory can predict the patterns of performance by human subjects for both stationary and motion stimuli as a function of stimulus decorrelation. Implications of these findings for the existence of a unique cortical motion system are discussed.
Collapse
Affiliation(s)
- Kourosh Saberi
- Department of Cognitive Sciences, University of California, Irvine, 92697, USA.
| | | |
Collapse
|
20
|
Abstract
In birds and mammals, precisely timed spikes encode the timing of acoustic stimuli, and interaural acoustic disparities propagate to binaural processing centers. The Jeffress model proposes that these projections act as delay lines to innervate an array of coincidence detectors, every element of which has a different relative delay between its ipsilateral and contralateral excitatory inputs. Thus, interaural time difference (ITD) is encoded into the position of the coincidence detector whose delay lines best cancel out the acoustic ITD. Neurons of the avian nucleus laminaris and mammalian MSO phase-lock to both monaural and binaural stimuli but respond maximally when phase-locked spikes from each side arrive simultaneously, i.e. when the difference in the conduction delays compensates for the ITD. McAlpine et al. [Nat. Neurosci. 4 (2001) 396] identified an apparent difference between avian and mammalian ITD coding. In the barn owl, the maximum firing rate appears to encode ITD. This may not be the case for the guinea pig, where the steepest region of the function relating discharge rate to interaural time delay (ITD) is close to midline for all neurons, irrespective of best frequency (BF). These data suggest that low BF ITD sensitivity in the guinea pig is mediated by detection of a change in slope of the ITD function, and not by maximum rate. We review coding of low best frequency ITDs in barn owls and mammals and discuss whether there may be differences in the code used to signal ITD in mammals and birds.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland, Biology-Psychology Building, Room 4227, College Park, MD 20742-4415, USA.
| | | |
Collapse
|