1
|
Yang T, Wang Z, Li J, Shan F, Huang QY. Cerebral Lactate Participates in Hypoxia-induced Anapyrexia Through its Receptor G Protein-coupled Receptor 81. Neuroscience 2024; 536:119-130. [PMID: 37979840 DOI: 10.1016/j.neuroscience.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Hypoxia-induced anapyrexia is thought to be a regulated decrease in body core temperature (Tcore), but the underlying mechanism remains unclear. Recent evidence suggests that lactate, a glycolysis product, could modulate neuronal excitability through the G protein-coupled receptor 81 (GPR81). The present study aims to elucidate the role of central lactate and GPR81 in a rat model of hypoxia-induced anapyrexia. The findings revealed that hypoxia (11.1% O2, 2 h) led to an increase in lactate in cerebrospinal fluid (CSF) and a decrease in Tcore. Injection of dichloroacetate (DCA, 5 mg/kg, 1 μL), a lactate production inhibitor, to the third ventricle (3 V), alleviated the increase in CSF lactate and the decrease in Tcore under hypoxia. Immunofluorescence staining showed GPR81 was expressed in the preoptic area of hypothalamus (PO/AH), the physiological thermoregulation integration center. Under normoxia, injection of GPR81 agonist 3-chloro-5-hydroxybenzoic acid (CHBA, 0.05 mg/kg, 1 μL) to the 3 V, reduced Tcore significantly. In addition, hypoxia led to a dramatic increase in tail skin temperature and a decrease in interscapular brown adipose tissue skin temperature. The number of c-Fos+ cells in the PO/AH increased after exposure to 11.1% O2 for 2 h, but administration of DCA to the 3 V blunted this response. Injection of CHBA to the 3 V also increased the number of c-Fos+ cells in the PO/AH under normoxia. In light of these, our research has uncovered the pivotal role of central lactate-GPR81 signaling in anapyrexia, thereby providing novel insights into the mechanism of hypoxia-induced anapyrexia.
Collapse
Affiliation(s)
- Tian Yang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Zejun Wang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China
| | - Junxia Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Traumatic Shock and Transfusion, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Army Occupational Disease, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Qing-Yuan Huang
- Department of Frigid Zone Medicine, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| |
Collapse
|
2
|
Bueschke N, Amaral-Silva L, Hu M, Santin JM. Lactate ions induce synaptic plasticity to enhance output from the central respiratory network. J Physiol 2021; 599:5485-5504. [PMID: 34761806 DOI: 10.1113/jp282062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Lactate ion sensing has emerged as a process that regulates ventilation during metabolic challenges. Most work has focused on peripheral sensing of lactate for the control of breathing. However, lactate also rises in the central nervous system (CNS) during disturbances to blood gas homeostasis and exercise. Using an amphibian model, we recently showed that lactate ions, independently of pH and pyruvate metabolism, act directly in the brainstem to increase respiratory-related motor outflow. This response had a long washout time and corresponded with potentiated excitatory synaptic strength of respiratory motoneurons. Thus, we tested the hypothesis that lactate ions enhance respiratory output using cellular mechanisms associated with long-term synaptic plasticity within motoneurons. In this study, we confirm that 2 mM sodium lactate, but not sodium pyruvate, increases respiratory motor output in brainstem-spinal cord preparations, persisting for 2 h upon the removal of lactate. Lactate also led to prolonged increases in the amplitude of AMPA-glutamate receptor (AMPAR) currents in individual motoneurons from brainstem slices. Both motor facilitation and AMPAR potentiation by lactate required classic effectors of synaptic plasticity, L-type Ca2+ channels and NMDA receptors, as part of the transduction process but did not correspond with increased expression of immediate-early genes often associated with activity-dependent neuronal plasticity. Altogether these results show that lactate ions enhance respiratory motor output by inducing conserved mechanisms of synaptic plasticity and suggest a new mechanism that may contribute to coupling ventilation to metabolic demands in vertebrates. KEY POINTS: Lactate ions, independently of pH and metabolism, induce long-term increases in respiratory-related motor outflow in American bullfrogs. Lactate triggers a persistent increase in strength of AMPA-glutamatergic synapses onto respiratory motor neurons. Long-term plasticity of motor output and synaptic strength by lactate involves L-type Ca2+ channels and NMDA-receptors as part of the transduction process. Enhanced AMPA receptor function in response to lactate in the intact network is causal for motor plasticity. In sum, well-conserved synaptic plasticity mechanisms couple the brainstem lactate ion concentration to respiratory motor drive in vertebrates.
Collapse
Affiliation(s)
- Nikolaus Bueschke
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Lara Amaral-Silva
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Min Hu
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| | - Joseph M Santin
- Department of Biology, The University of North Carolina, Greensboro, NC, USA
| |
Collapse
|
3
|
Bakewell L, Kelehear C, Graham S. Impacts of temperature on immune performance in a desert anuran (
Anaxyrus punctatus
). J Zool (1987) 2021. [DOI: 10.1111/jzo.12891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Burton MT, Santin JM. A direct excitatory action of lactate ions in the central respiratory network of bullfrogs, Lithobates catesbeianus. ACTA ACUST UNITED AC 2020; 223:jeb.235705. [PMID: 33161381 DOI: 10.1242/jeb.235705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Chemoreceptors that detect O2 and CO2/pH regulate ventilation. However, recent work shows that lactate ions activate arterial chemoreceptors independent of pH to stimulate breathing. Although lactate rises in the central nervous system (CNS) during metabolic challenges, the ability of lactate ions to enhance ventilation by directly targeting the central respiratory network remains unclear. To address this possibility, we isolated the amphibian brainstem-spinal cord and found that small increases in CNS lactate stimulate motor output that causes breathing. In addition, lactate potentiated the excitatory postsynaptic strength of respiratory motor neurons, thereby coupling central lactate to the excitatory drive of neurons that trigger muscle contraction. Lactate did not affect motor output through pH or pyruvate metabolism, arguing for sensitivity to lactate anions per se. In sum, these results introduce a mechanism whereby lactate ions in the CNS match respiratory motor output to metabolic demands.
Collapse
Affiliation(s)
- Michael T Burton
- The University of North Carolina at Greensboro, Department of Biology, Greensboro, NC 27412, USA
| | - Joseph M Santin
- The University of North Carolina at Greensboro, Department of Biology, Greensboro, NC 27412, USA
| |
Collapse
|
5
|
Cadena V, Tattersall G. The Effect of Thermal Quality on the Thermoregulatory Behavior of the Bearded DragonPogona vitticeps: Influences of Methodological Assessment. Physiol Biochem Zool 2009; 82:203-17. [DOI: 10.1086/597483] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Navas CA, Gomes FR, Carvalho JE. Thermal relationships and exercise physiology in anuran amphibians: Integration and evolutionary implications. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:344-362. [PMID: 17703978 DOI: 10.1016/j.cbpa.2007.07.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/02/2007] [Accepted: 07/07/2007] [Indexed: 11/19/2022]
Abstract
Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization.
Collapse
Affiliation(s)
- Carlos A Navas
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14 No 321, Cidade Universitária, CEP 05508-900, São Paulo, SP Brazil.
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Jr. S/N, CEP, 18628-000, Botucatu, SP Brazil
| | - José Eduardo Carvalho
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24-A, No 1515, Bela Vista, CEP 13506-900, Rio Claro, SP Brazil
| |
Collapse
|
7
|
Reynolds PS, Barbee RW, Ward KR. Pharmaceutical metabolic down-regulation by protein synthesis inhibition in a conscious rat model. Resuscitation 2007; 73:446-58. [PMID: 17292527 DOI: 10.1016/j.resuscitation.2006.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/23/2006] [Accepted: 10/31/2006] [Indexed: 01/26/2023]
Abstract
Pharmaceutically induced metabolic down-regulation may be a useful therapeutic adjunct when tissue oxygen supply is restricted. We hypothesized that protein synthesis inhibition in a non-hibernating species should lower oxygen demand, resulting in aerobic metabolic rate depression at the whole animal level. We compared metabolic responses and measures of systemic oxygenation of conscious catheterized rats given either protein synthesis inhibition (PSI) agents or carrier controls (normal saline and DMSO). Core temperature was measured by implanted transmitters, and VO2 was determined in an open flow-through metabolic chamber at 25 degrees C. Mean arterial pressure MAP and heart rate HR were determined from arterial pressure transducer tracings; arterial blood gases and lactate were sampled every 15 min. PSI rats exhibited an immediate transient decline in VO2, followed by a secondary decline to new resting levels; VO2 for the first hour was significantly lower than that for rats receiving DMSO vehicle. Unlike controls, PSI rats showed an overall 3.5 degrees C decline in core temperature, coupled with increased arterial lactate. There were no differences in MAP and HR of PSI rats compared to controls. Although hypothermic response to toxic agents typical of rodents cannot be ruled out completely, the mild hypothermia and reduced VO2 exhibited by PSI rats may be partially attributed to the action of protein synthesis agents.
Collapse
Affiliation(s)
- Penny S Reynolds
- Department of Emergency Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0401, USA.
| | | | | |
Collapse
|
8
|
Bicego KC, Barros RCH, Branco LGS. Physiology of temperature regulation: comparative aspects. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:616-639. [PMID: 16950637 DOI: 10.1016/j.cbpa.2006.06.032] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 05/28/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia.
Collapse
Affiliation(s)
- Kênia C Bicego
- Department of Animal Physiology and Morfology, College of Agricultural and Veterinarian Sciences, Sao Paulo State University, Jaboticabal, São Paulo, Brazil.
| | - Renata C H Barros
- Department of General and Specialized Nursing, Nursing School of Ribeirão Preto, University of São Paulo, 14040-904, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G S Branco
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
9
|
Pörtner HO. Synergistic effects of temperature extremes, hypoxia, and increases in CO2on marine animals: From Earth history to global change. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004jc002561] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Petersen AM, Gleeson TT, Scholnick DA. The effect of oxygen and adenosine on lizard thermoregulation. Physiol Biochem Zool 2003; 76:339-47. [PMID: 12905120 DOI: 10.1086/375429] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2003] [Indexed: 11/04/2022]
Abstract
A regulated decrease in internal body temperature (Tb) appears to play a protective role against metabolic disruptions such as exposure to ambient hypoxia. This study examined the possibility that Tb depression is initiated when low internal oxygen levels trigger the release of adenosine, a neural modulator known to influence thermoregulation. We measured selected Tb of Anolis sagrei in a thermal gradient under varied ambient oxygen conditions and following the administration of the adenosine receptor antagonist 8-cyclopentyltheophylline (CPT). The average decrease in Tb observed following exposure to hypoxia (<10% O2) and following exhaustive exercise were 5 degrees and 3 degrees C, respectively, suggesting a role of oxygen availability on initiation of regulated hypothermia. When A. sagrei were run to exhaustion and recovered in hyperoxic (>95% O2) conditions, exercise-induced Tb depression was abolished. Administration of CPT similarly abolished decreased Tb due to both exercise and hypoxia. Trials using Dipsosaurus dorsalis indicate that elevated ambient oxygen during exercise does not influence blood pH or lactate accumulation, suggesting that these factors do not initiate changes in thermoregulatory setpoint following exhaustive exercise. We suggest that when oxygen is limiting, a decrease in arterial oxygen may trigger the release of adenosine, thereby altering the thermoregulatory setpoint.
Collapse
Affiliation(s)
- Ann M Petersen
- Department of Biology, Eckerd College, St. Petersburg, Florida 33711, USA
| | | | | |
Collapse
|
11
|
Pinz I, Pörtner HO. Metabolic costs induced by lactate in the toad Bufo marinus: new mechanism behind oxygen debt? J Appl Physiol (1985) 2003; 94:1177-85. [PMID: 12433869 DOI: 10.1152/japplphysiol.00131.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of an increase in metabolic rate induced by lactate was investigated in the toad Bufo marinus. Oxygen consumption (Vo(2)) was analyzed in fully aerobic animals under hypoxic conditions (7% O(2) in air), accompanied by measurements of catecholamines in the plasma, and was measured in isolated hepatocytes in vitro under normoxia by using specific inhibitors of lactate proton symport [alpha-cyano-4-hydroxycinnamate (CHC)] and sodium proton exchange (EIPA). The rise in metabolic rate in vivo can be elicited by infusions of hyperosmotic (previous findings) or isosmotic sodium lactate solutions (this study). Despite previous findings of reduced metabolic stimulation under the effect of adrenergic blockers, the increase in Vo(2) in vivo was not associated with elevated plasma catecholamine levels, suggesting local release and effect. In addition to the possible in vivo effect via catecholamines, lactate induced a rise in Vo(2) of isolated hepatocytes, depending on the concentration present in a weakly buffered Ringer solution at pH 7.0. No increase was found at higher pH values (7.4 or 7.8) or in HEPES-buffered Ringer solution. Inhibition of the Lac(-)-H(+) transporter with alpha-CHC or of the Na(+)/H(+) exchanger with EIPA prevented the increase in metabolic rate. We conclude that increased Vo(2) at an elevated systemic lactate level may involve catecholamine action, but it is also caused by an increased energy demand of cellular acid-base regulation via stimulation of Na(+)/H(+) exchange and thereby Na(+)-K(+)-ATPase. The effect depends on entry of lactic acid into the cells via lactate proton symport, which is likely favored by low cellular surface pH. We suggest that these energetic costs should also be considered in other physiological phenomena, e.g., when lactate is present during excess, postexercise Vo(2).
Collapse
Affiliation(s)
- Ilka Pinz
- Alfred-Wegener-Institute for Polar and Marine Research, 27568 Bremerhaven, Germany
| | | |
Collapse
|
12
|
Weber RE, Ostojic H, Fago A, Dewilde S, Van Hauwaert ML, Moens L, Monge C. Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1052-60. [PMID: 12376398 DOI: 10.1152/ajpregu.00292.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to birds and mammals, no information appears to be available on the molecular adaptations for O(2) transport in high-altitude ectothermic vertebrates. We investigated Hb of the aquatic Andean frog Telmatobius peruvianus from 3,800-m altitude as regards isoform differentiation, sensitivity to allosteric cofactors, and primary structures of the alpha- and beta-chains, and we carried out comparative O(2)-binding measurements on Hb of lowland Xenopus laevis. The three T. peruvianus isoHbs show similar functional properties. The high O(2) affinity of the major component results from an almost complete obliteration of chloride sensitivity, which correlates with two alpha-chain modifications: blockage of the NH(2)-terminal residues and replacement by nonpolar Ala of polar residues Ser and Thr found at position alpha131(H14) in human and X. leavis Hbs, respectively. The data indicate adaptive significance of alpha-chain chloride-binding sites in amphibians, in contrast to human Hb where chloride appears mainly to bind in the cavity between the beta-chains. The findings are discussed in relation to other strategies for high-altitude adaptations in amphibians.
Collapse
Affiliation(s)
- Roy E Weber
- Department of Zoophysiology, University of Aarhus, 131 C. F. Møllers Alle, DK 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
13
|
Navas CA. Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:469-85. [PMID: 12443907 DOI: 10.1016/s1095-6433(02)00207-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A well-defined macroecological pattern is the decline in biodiversity with altitude. However, this decline is taxa-specific. For example, amphibians are more diverse than squamates at extreme elevations in the tropical Andes, but this pattern is reversed at extreme elevations in the southern latitudes. Several ecophysiological and evolutionary factors may be related to this difference. At high-elevations in southern latitudes temperature differs dramatically among seasons and dry soils dominate, characteristics that appear to favor lizard physiological ecology. Tropical high altitudes, in contrast, are humid and offer abundant and diverse water resources. These characteristics allow for a richer anuran community but might complicate lizard egg development through temperature and oxygen constrains. Differences in strategies of thermal adaptation might also modulate diversity patterns. The thermal physiology of anurans is extremely labile so that behavioral and physiological performance is maintained despite an altitudinal decrease in field body temperature. Lizards, in contrast, exhibit a conservative thermal physiology and rely on behavioral thermoregulation to face cold and variable temperatures. Both, lizard behavioral strategies and anuran physiological adjustments seem equally efficient in allowing ecological success and diversification for both groups in the tropics up to approximately 3000 m. At higher elevations physiological thermal adaptation is required, and lizards are ecologically constrained, perhaps at various ontogenetic stages. Patterns of biodiversity along environmental clines can be better understood through a physiological approach, and can help to refine and propose hypotheses in evolutionary physiology.
Collapse
Affiliation(s)
- Carlos A Navas
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 No 321, Cidade Universitária, CEP 05508-900, SP, São Paulo, Brazil.
| |
Collapse
|
14
|
Pörtner HO. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:739-61. [PMID: 12095860 DOI: 10.1016/s1095-6433(02)00045-4] [Citation(s) in RCA: 724] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The physiological mechanisms limiting and adjusting cold and heat tolerance have regained interest in the light of global warming and associated shifts in the geographical distribution of ectothermic animals. Recent comparative studies, largely carried out on marine ectotherms, indicate that the processes and limits of thermal tolerance are linked with the adjustment of aerobic scope and capacity of the whole animal as a crucial step in thermal adaptation on top of parallel adjustments at the molecular or membrane level. In accordance with Shelford's law of tolerance decreasing whole animal aerobic scope characterises the onset of thermal limitation at low and high pejus thresholds (pejus=getting worse). The drop in aerobic scope of an animal indicated by falling oxygen levels in the body fluids and or the progressively limited capacity of circulatory and ventilatory mechanisms. At high temperatures, excessive oxygen demand causes insufficient oxygen levels in the body fluids, whereas at low temperatures the aerobic capacity of mitochondria may become limiting for ventilation and circulation. Further cooling or warming beyond these limits leads to low or high critical threshold temperatures (T(c)) where aerobic scope disappears and transition to an anaerobic mode of mitochondrial metabolism and progressive insufficiency of cellular energy levels occurs. The adjustments of mitochondrial densities and their functional properties appear as a critical process in defining and shifting thermal tolerance windows. The finding of an oxygen limited thermal tolerance owing to loss of aerobic scope is in line with Taylor's and Weibel's concept of symmorphosis, which implies that excess capacity of any component of the oxygen delivery system is avoided. The present study suggests that the capacity of oxygen delivery is set to a level just sufficient to meet maximum oxygen demand between the average highs and lows of environmental temperatures. At more extreme temperatures only time limited passive survival is supported by anaerobic metabolism or the protection of molecular functions by heat shock proteins and antioxidative defence. As a corollary, the first line of thermal sensitivity is due to capacity limitations at a high level of organisational complexity, i.e. the integrated function of the oxygen delivery system, before individual, molecular or membrane functions become disturbed. These interpretations are in line with the more general consideration that, as a result of the high level of complexity of metazoan organisms compared with simple eukaryotes and then prokaryotes, thermal tolerance is reduced in metazoans. A similar sequence of sensitivities prevails within the metazoan organism, with the highest sensitivity at the organismic level and wider tolerance windows at lower levels of complexity. However, the situation is different in that loss in aerobic scope and progressive hypoxia at the organismic level define the onset of thermal limitation which then transfers to lower hierarchical levels and causes cellular and molecular disturbances. Oxygen limitation contributes to oxidative stress and, finally, denaturation or malfunction of molecular repair, e.g. during suspension of protein synthesis. The sequence of thermal tolerance limits turns into a hierarchy, ranging from systemic to cellular to molecular levels.
Collapse
Affiliation(s)
- H O Pörtner
- Alfred-Wegener-Institut für Polar- und Meeresforschung, Okophysiologie, Postfach 12 01 61, D-27515 Bremerhaven, Germany.
| |
Collapse
|
15
|
Bicego KC, Steiner AA, Antunes-Rodrigues J, Branco LGS. Indomethacin impairs LPS-induced behavioral fever in toads. J Appl Physiol (1985) 2002; 93:512-6. [PMID: 12133858 DOI: 10.1152/japplphysiol.00121.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We tested the hypothesis that PGs mediate lipopolysaccharide (LPS)-induced behavioral fever in the toad Bufo paracnemis. Measurements of preferred body temperature (T(b)) were performed with a thermal gradient. Toads were injected intraperitoneally with the cyclooxygenase inhibitor indomethacin (5 mg/kg), which inhibits PG biosynthesis, or its vehicle (Tris) followed 30 min later by LPS (0.2 and 2 mg/kg) into the lymph sac. LPS at the dose of 0.2 mg/kg caused a significant increase in T(b) from 7 to 10 h after injection, and then T(b) returned toward baseline values. LPS at the dose of 2 mg/kg produced a different pattern of response, with a longer latency to the onset of fever (10th h) and a longer duration (until the end of the experiment at the 15th h). Tris significantly attenuated the fever induced by LPS at 0.2 mg/kg, but not at 2 mg/kg. Moreover, indomethacin completely blocked the fever evoked by LPS (2 mg/kg). These results indicate that the behavioral fever induced by LPS in toads requires the activation of the COX pathway, suggesting that the involvement of PG in fever has an ancient phylogenetic history and that endogenous PGs raise the thermoregulatory set point to produce fever, because behavioral thermoregulation seems to be related to changes in the thermoregulatory set point.
Collapse
Affiliation(s)
- K C Bicego
- Department of Physiology, Dental School of Ribeirao Preto, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, 14040-904 Ribeirao Preto, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
16
|
Abstract
Hypoxia elicits an array of compensatory responses in animals ranging from protozoa to mammals. Central among these responses is anapyrexia, the regulated decrease of body temperature. The importance of anapyrexia lies in the fact that it reduces oxygen consumption, increases the affinity of hemoglobin for oxygen, and blunts the energetically costly responses to hypoxia. The mechanisms of anapyrexia are of intense interest to physiologists. Several substances, among them lactate, adenosine, opioids, and nitric oxide, have been suggested as putative mediators of anapyrexia, and most appear to act in the central nervous system. Moreover, there is evidence that the drop in body temperature in response to hypoxia, unlike the ventilatory response to hypoxia, does not depend on the activation of peripheral chemoreceptors. The current knowledge of the mechanisms of hypoxia-induced anapyrexia are reviewed.
Collapse
Affiliation(s)
- Alexandre A Steiner
- Department of Morphology, Estomatology and Physiology, Dental School of Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
17
|
Bícego-Nahas KC, Gargaglioni LH, Branco LG. Seasonal changes in the preferred body temperature, cardiovascular, and respiratory responses to hypoxia in the toad,Bufo paracnemis. ACTA ACUST UNITED AC 2001; 289:359-65. [PMID: 11351323 DOI: 10.1002/jez.1017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Estivation is accompanied by a reduction of oxygen consumption in amphibians during drought. We tested the hypothesis that, during the dry season, the toad Bufo paracnemis selects a lower preferred body temperature (T(b)), and would be less sensitive to hypoxia, than during its active period. Therefore, during winter (dry season in São Paulo state, Brazil) and summer, we measured the effects of hypoxia (7% inspired O(2)) on preferred T(b). Additionally, pulmonary ventilation, heart rate, blood pressure, and oxygen consumption were also measured in toads at 15 and 25 degrees C. Blood gases were measured at 25 degrees C. Oxygen consumption was significantly higher during summer in toads at 25 degrees C. Under normoxia, preferred T(b) was higher during summer than during winter, and hypoxia caused a drop in preferred T(b) during both seasons. In both seasons, toads at 15 degrees C showed reduced pulmonary ventilation, heart rate, and blood pressure, and hypoxia had no effect. At 25 degrees C during summer only, hypoxia caused an increase in ventilation. Season had no effect on blood gases. We conclude that B. paracnemis displays an endogenous seasonal pattern of thermoregulation and control of ventilation. The decreased preferred T(b) and the physiological responses to hypoxia may be beneficial to toads encountering drought and when food is not available.
Collapse
Affiliation(s)
- K C Bícego-Nahas
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14040-904 Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
18
|
De Paula D, Steiner AA, Branco LG. The nitric oxide pathway is an important modulator of stress-induced fever in rats. Physiol Behav 2000; 70:505-11. [PMID: 11111004 DOI: 10.1016/s0031-9384(00)00295-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Psychological stress evokes a number of physiological responses, including a rise in body temperature (T(b)), which has been suggested to be the result of an elevation in the thermoregulatory set point, i.e., a fever. This response seems to share similar mechanisms with infectious fever. A growing number of studies have provided evidence that nitric oxide (NO) has a modulatory role in infectious fever, but no report exists about the participation of NO in stress fever. Thus, the present study aimed to verify the hypothesis that NO modulates stress fever by using restraint stress as a model. To this end, we tested the effects of the non-specific NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) or its inactive enantiomer N(G)-nitro-D-arginine methyl ester (D-NAME) on colonic T(b) of restrained or unrestrained rats. A rapid increase in T(b) was observed when animals were submitted to restraint. Intravenous (i.v.) injection of L-NAME at a dose (10 mg/kg) that caused no change in T(b) when administered alone significantly attenuated the elevation in T(b) elicited by stress, indicating that the NO pathway may mediate stress fever. Moreover, intracerebroventricular (i.c.v.) L-NAME (250 microg/microl) caused a rise in T(b) of euthermic animals and enhanced stress fever, supporting that NO in the central nervous system (CNS) leads to a reduction in T(b) and, therefore, this is unlikely to be the site where NO may mediate stress fever. Taken together, these data indicate that the NO pathway plays an important role in modulating restraint stress-induced fever in rats.
Collapse
Affiliation(s)
- D De Paula
- Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (USP), 14040-904 Ribeirão Preto, São Paulo, Brazil
| | | | | |
Collapse
|
19
|
Branco LG, Steiner AA, Tattersall GJ, Wood SC. Role of adenosine in the hypoxia-induced hypothermia of toads. Am J Physiol Regul Integr Comp Physiol 2000; 279:R196-201. [PMID: 10896882 DOI: 10.1152/ajpregu.2000.279.1.r196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concept that hypoxia elicits a drop in body temperature (T(b)) in a wide variety of animals is not new, but the mechanisms remain unclear. We tested the hypothesis that adenosine mediates hypoxia-induced hypothermia in toads. Measurements of selected T(b) were performed using a thermal gradient. Animals were injected (into the lymph sac or intracerebroventricularly) with aminophylline (an adenosine receptor antagonist) followed by an 11-h period of hypoxia (7% O(2)) or normoxia exposure. Control animals received saline injections. Hypoxia elicited a drop in T(b) from 24.8 +/- 0.3 to 19. 5 +/- 1.1 degrees C (P < 0.05). Systemically applied aminophylline (25 mg/kg) did not change T(b) during normoxia, indicating that adenosine does not alter normal thermoregulatory function. However, aminophylline (25 mg/kg) significantly blunted hypoxia-induced hypothermia (P < 0.05). To assess the role of central thermoregulatory mechanisms, a smaller dose of aminophylline (0.25 mg/kg), which did not alter hypoxia-induced hypothermia systemically, was injected into the fourth cerebral ventricle. Intracerebroventricular injection of aminophylline (0.25 mg/kg) caused no significant change in T(b) under normoxia, but it abolished hypoxia-induced hypothermia. The present data indicate that adenosine is a central and possibly peripheral mediator of hypoxia-induced hypothermia.
Collapse
Affiliation(s)
- L G Branco
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, 14040-904, Ribeirão Preto, São Paulo, Brasil
| | | | | | | |
Collapse
|
20
|
Bicego-Nahas KC, Steiner AA, Carnio EC, Antunes-Rodrigues J, Branco LG. Antipyretic effect of arginine vasotocin in toads. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1408-14. [PMID: 10848505 DOI: 10.1152/ajpregu.2000.278.6.r1408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine vasotocin (AVT) is a nonmammalian analog of the mammalian hormone arginine vasopressin (AVP). These peptides are known for their antidiuretic and pressor effects. More recently, AVP has been recognized as an important antipyretic molecule in mammals. However, no information exists about the role of AVT in febrile ectotherms. We tested the hypothesis that AVT is an antipyretic molecule in the toad Bufo paracnemis. Toads equipped with a temperature probe were placed in a thermal gradient, and preferred body temperature was recorded continuously. A behavioral fever was observed after lipopolysaccharide (LPS) was injected systemically (200 microg/kg). Systemically injected AVT (300 pmol/kg) alone caused no significant change in body temperature, but abolished LPS-induced fever. Moreover, a smaller dose of AVT (10 pmol/kg), which did not affect LPS-induced fever when injected peripherally, abolished fever when injected intracerebroventricularly. We therefore conclude that AVT plays an antipyretic role in the central nervous system, by means of behavior, in an ectotherm, a fact consistent with the notion that AVT/AVP elicits antipyresis by reducing the thermoregulatory set point.
Collapse
Affiliation(s)
- K C Bicego-Nahas
- Faculdade de Medicina de Ribeiråo Preto, Universidade de Såo Paulo, 14040-904 Ribeiråo Preto, Såo Paulo, Brazil
| | | | | | | | | |
Collapse
|