1
|
Nagahama T, Muramatsu M, Nagahama S. An age-related decline in the cholinergic synaptic response may cause the firing pattern in the jaw-closing motor neurons, which resembles the aversive taste response in the feeding behavior of old Aplysia kurodai. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:561-570. [PMID: 36104576 PMCID: PMC9734230 DOI: 10.1007/s00359-022-01573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Anorexia due to aging is recognized as a syndrome of animal feeding behavior. Age-related functional disorders of the brain often cause behavioral changes. We used Aplysia kurodai to study this neural mechanism, following our previous study on food preference behaviors. The age of each wild animal was defined by a previously described method, and a significant age-related decline in food intake was observed. In this study, we explored the effects of aging on a specific inhibitory synaptic response in jaw-closing (JC) motor neurons produced by cholinergic multiaction (MA) neurons, the size of which determines the delay between MA and JC firings and this delay is reduced during aversive taste responses; in our analyses, we found a significant age-related decline in the synaptic response. Thereafter, we further explored whether such functional decline affects the JC firing pattern during the normal feeding response. During the feeding-like rhythmic responses induced by electrical nerve stimulation, the firing of the JC motor neurons advanced toward that of the MA burst, which typically happens during aversive taste responses. These results suggest that the age-related decline in the cholinergic synaptic response may partly cause the JC firing patterns that resemble the aversive taste response in old animals.
Collapse
Affiliation(s)
- Tatsumi Nagahama
- Department of Biophysics, Faculty of Pharmaceutical Science, Toho University, Funabashi, 274-8510, Japan.
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, 170-8445, Japan.
| | - Motohiro Muramatsu
- Department of Biophysics, Faculty of Pharmaceutical Science, Toho University, Funabashi, 274-8510, Japan
| | - Setsuko Nagahama
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, 170-8445, Japan
| |
Collapse
|
2
|
Morgan LD, Mohammed A, Patel BA, Arundell M, Jennert-Burtson K, Hernádi L, Overall A, Bowler LD, O'Hare D, Yeoman MS. Decreased 14-3-3 expression correlates with age-related regional reductions in CNS dopamine and motor function in the pond snail, Lymnaea. Eur J Neurosci 2020; 53:1394-1411. [PMID: 33131114 DOI: 10.1111/ejn.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
Ageing is associated in many organisms with a reduction in motor movements. We have previously shown that the rate of feeding movements of the pond snail, Lymnaea, decreased with age but the underlying cause is not fully understood. Here, we show that dopamine in the cerebro-buccal complex is an important signalling molecule regulating feeding frequency in Lymnaea and that ageing is associated with a decrease in CNS dopamine. A proteomic screen of young and old CNSs highlighted a group of proteins that regulate stress responses. One of the proteins identified was 14-3-3, which can enhance the synthesis of dopamine. We show that the Lymnaea 14-3-3 family exists as three distinct isoforms. The expression of the 29 kDa isoform (14-3-3Lym3) in the cerebro-buccal complex decreased with age and correlated with feeding rate. Using a 14-3-3 antagonist (R18) we were able to reduce the synthesis of L-DOPA and dopamine in ex vivo cerebro-buccal complexes. Together these data suggest that an age-related reduction in 14-3-3 can decrease CNS dopamine leading to a consequential reduction in feeding rate.
Collapse
Affiliation(s)
- Lindsay D Morgan
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Aiyaz Mohammed
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Bhavik Anil Patel
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Martin Arundell
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Katrin Jennert-Burtson
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - László Hernádi
- Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Andrew Overall
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Lucas D Bowler
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Danny O'Hare
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
3
|
Hernádi L, Vehovszky Á, Serfőző Z. Immunological and pharmacological identification of the dopamine D1 receptor in the CNS of the pond snail, Lymnaea stagnalis. ACTA BIOLOGICA HUNGARICA 2012; 63 Suppl 2:151-9. [PMID: 22776488 DOI: 10.1556/abiol.63.2012.suppl.2.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the presence and distribution of the D1 dopamine receptor in the CNS of Lymnaea stagnalis applying immunobloting and immunocytochemistry. We also investigated the effect of dopamine as well as the specific D1 receptor blocker, SCH23390, on the firing activity of the feeding modulator serotonergic neuron, CGC, which displayed D1 immunoreactivity. Immunoblot experiments showed one specifically labeled band with 62 kDa mw which is close to that of the mammalian D1 receptor. Neurons displaying D1-like immunoreactivity can be observed in each ganglion of the CNS but particularly in the pedal ganglia which are the center for locomotion. Dopamine regularly evokes burst activity in the serotonergic CGC at 1 mM and this effect could be antagonized by SCH23390. These observations suggest that a D1-like receptor molecule is present in the CNS of Lymnaea.
Collapse
Affiliation(s)
- L Hernádi
- MTA Centre for Ecological Research, Balaton Limnological Institute, Department of Experimental Zoology, P.O. Box 35, H-8237 Tihany, Hungary.
| | | | | |
Collapse
|
4
|
Moroz LL, Kohn AB. Do different neurons age differently? Direct genome-wide analysis of aging in single identified cholinergic neurons. Front Aging Neurosci 2010; 2. [PMID: 20725513 PMCID: PMC2910937 DOI: 10.3389/neuro.24.006.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/27/2010] [Indexed: 11/24/2022] Open
Abstract
Aplysia californica is a powerful experimental system to study the entire scope of genomic and epigenomic regulation at the resolution of single functionally characterized neurons and is an emerging model in the neurobiology of aging. First, we have identified and cloned a number of evolutionarily conserved genes that are age-related, including components of apoptosis and chromatin remodeling. Second, we performed gene expression profiling of different identified cholinergic neurons between young and aged animals. Our initial analysis indicates that two cholinergic neurons (R2 and LPl1) revealed highly differential genome-wide changes following aging suggesting that on the molecular scale different neurons indeed age differently. Each of the neurons tested has a unique subset of genes differentially expressed in older animals, and the majority of differently expressed genes (including those related to apoptosis and Alzheimer's disease) are found in aging neurons of one but not another type. The performed analysis allows us to implicate (i) cell specific changes in histones, (ii) DNA methylation and (iii) regional relocation of RNAs as key processes underlying age-related changes in neuronal functions and synaptic plasticity. These mechanisms can fine-tune the dynamics of long-term chromatin remodeling, or control weakening and the loss of synaptic connections in aging. At the same time our genomic tests revealed evolutionarily conserved gene clusters associated with aging (e.g., apoptosis-, telomere- and redox-dependent processes, insulin and estrogen signaling and water channels).
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, Evelyn F and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | |
Collapse
|
5
|
Barbas D, Zappulla JP, Angers S, Bouvier M, Mohamed HA, Byrne JH, Castellucci VF, DesGroseillers L. An aplysia dopamine1-like receptor: molecular and functional characterization. J Neurochem 2005; 96:414-27. [PMID: 16336222 DOI: 10.1111/j.1471-4159.2005.03561.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Aplysia, the neurotransmitter dopamine is involved in the regulation of various physiological processes and motor functions, like feeding behaviour, and in the siphon-gill withdrawal reflex. In this paper, we report the characterization of the first Aplysia D1-like dopamine receptor (Apdop1) mainly expressed in the CNS, heart and buccal mass. Following expression of the Apdop1 receptor in HEK293 cells, a higher level of cAMP was observed in the absence of the receptor ligand, showing that Apdop1 is constitutively active. This activity was blocked by the inverse agonist flupentixol. Application of dopamine (EC50 of 35 nm) or serotonin (EC50 of 36 microm) to Apdop1-transfected HEK293 cells further increased the level of cAMP, suggesting that the receptor is linked to the stimulatory Gs protein pathway. When expressed in cultured sensory neurons, Apdop1 immunoreactivity was observed in the cell body and neurites. Control sensory neurons responded to dopamine with a decrease in excitability mediated by a pertusis toxin-sensitive G protein. Expression of Apdop1 produced an increase in hyperpolarization in the absence of agonist and an increase in membrane excitability following stimulation by dopamine. In the presence of pertussis toxin to inhibit the Gi protein inhibitory pathway responsible for decrease in excitability mechanism, Stimulation of membrane excitability was observed. Apdop1 sensitivity to dopamine makes it a potential modulator of operant conditioning procedure.
Collapse
Affiliation(s)
- Demian Barbas
- Département de biochimie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Álvarez RA, Villalobos MGP, Rosete GC, Sosa LR, Aréchiga H. Dopaminergic modulation of neurosecretory cells in the crayfish. Cell Mol Neurobiol 2005; 25:345-70. [PMID: 16047546 PMCID: PMC11529563 DOI: 10.1007/s10571-005-3064-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 12/16/2004] [Indexed: 11/25/2022]
Abstract
The main aims of this paper are (a) to locate possible dopaminergic neurons in the eyestalk with anti-tyrosine hydroxylase antibodies, (b) to search for the presence of dopamine (DA) in the nervous structures of the eyestalk, (c) to explore its release, and (d) to test the effect of DA on neurosecretory cells in the eyestalk. Experiments were performed in adult crayfishes Procambarus clarkii, in isolated optic peduncle. Immunocytochemistry was made with the antibody against its precursor synthesizing enzyme tyrosine-hydroxylase. The content and release studies of DA were made using high performance liquid chromatography (HPLC). Extracellular and intracellular recordings were conducted with conventional recording techniques. A large number (approximately 2000) of immunopositive somata of different sizes and shapes were identified in various regions of the eyestalk. The majority of somata are of the smallest size (5-25 microm diameter). DA content in the eyestalk was 5.6 +/- 0.1 pmol per structure; the greatest content is in the MT (over 60%). A basal level release of DA was observed. Incubation of eyestalks in solution containing a high K+ concentration increased the DA release (79%). Two effects of DA on the excitability of X-organ neurons were observed; an excitatory effect on neurons of approximately 25 microm somata diameter and another inhibitory effect in the group of approximately 35-microm somata diameter neurons. The excitation occurs with a depolarization and decrement of membrane conductance in the cell soma while the inhibition occurs with a hyperpolarization and increment of membrane conductance in soma. We concluded the following: (1) Dopamine is present in each optic ganglia of the crayfish eyestalk. (2) There is a basal release of DA from the isolated eyestalk. (3) DA release is enhanced threefold by eyestalk incubation in 40 mM [K+] solution. (4) DA selectively excites a population of neurons with low-speed conduction axons, and small somata in the X-organ-sinus gland system, while inhibiting another population characterized by higher axonal conduction speed and large somata. (5) These observations support a role for DA as a neurotransmitter or neuromodulator in the X-organ neurons of the crayfish eyestalk.
Collapse
Affiliation(s)
- Ramón Alvarado Álvarez
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM. 1er. Piso Unidad de Posgrado, Ciudad Universitaria, México
| | | | - Gabina Calderón Rosete
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM. 1er. Piso Unidad de Posgrado, Ciudad Universitaria, México
| | - Leonardo Rodríguez Sosa
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM. 1er. Piso Unidad de Posgrado, Ciudad Universitaria, México
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM. 1er. Piso Unidad de Posgrado, Ciudad Universitaria, México
| | - Hugo Aréchiga
- División de Estudios de Posgrado e Investigación, Facultad de Medicina, UNAM. 1er. Piso Unidad de Posgrado, Ciudad Universitaria, México
| |
Collapse
|