1
|
Markert SM. Studying zebrafish nervous system structure and function in health and disease with electron microscopy. Dev Growth Differ 2023; 65:502-516. [PMID: 37740826 PMCID: PMC11520969 DOI: 10.1111/dgd.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Zebrafish (Danio rerio) is a well-established model for studying the nervous system. Findings in zebrafish often inform studies on human diseases of the nervous system and provide crucial insight into disease mechanisms. The functions of the nervous system often rely on communication between neurons. Signal transduction is achieved via release of signaling molecules in the form of neuropeptides or neurotransmitters at synapses. Snapshots of membrane dynamics of these processes are imaged by electron microscopy. Electron microscopy can reveal ultrastructure and thus synaptic processes. This is crucial both for mapping synaptic connections and for investigating synaptic functions. In addition, via volumetric electron microscopy, the overall architecture of the nervous system becomes accessible, where structure can inform function. Electron microscopy is thus of particular value for studying the nervous system. However, today a plethora of electron microscopy techniques and protocols exist. Which technique is most suitable highly depends on the research question and scope as well as on the type of tissue that is examined. This review gives an overview of the electron microcopy techniques used on the zebrafish nervous system. It aims to give researchers a guide on which techniques are suitable for their specific questions and capabilities as well as an overview of the capabilities of electron microscopy in neurobiological research in the zebrafish model.
Collapse
|
2
|
Tostivint H, Girardot F, Parmentier C, Pézeron G. [The caudal neurosecretory system, the other "neurohypophysial" system in fish]. Biol Aujourdhui 2023; 216:89-103. [PMID: 36744974 DOI: 10.1051/jbio/2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 02/07/2023]
Abstract
The caudal neurosecretory system (CNSS) is a neuroendocrine complex whose existence is specific to fishes. Structurally, it has many similarities with the hypothalamic-neurohypophyseal complex of other vertebrates. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most important being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is totally unknown and its role is still poorly understood. Paradoxically, it is almost no longer studied today. Recent developments in imaging and genome editing could make it possible to resume investigations on CNSS in order to solve the mysteries that still surround it.
Collapse
Affiliation(s)
- Hervé Tostivint
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Fabrice Girardot
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, IBPS, Neurosciences Paris Seine, Neuroplasticité des comportements de reproduction, 75005 Paris, France
| | - Guillaume Pézeron
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| |
Collapse
|
3
|
Annona G, Ferran JL, De Luca P, Conte I, Postlethwait JH, D’Aniello S. Expression Pattern of nos1 in the Developing Nervous System of Ray-Finned Fish. Genes (Basel) 2022; 13:918. [PMID: 35627303 PMCID: PMC9140475 DOI: 10.3390/genes13050918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022] Open
Abstract
Fish have colonized nearly all aquatic niches, making them an invaluable resource to understand vertebrate adaptation and gene family evolution, including the evolution of complex neural networks and modulatory neurotransmitter pathways. Among ancient regulatory molecules, the gaseous messenger nitric oxide (NO) is involved in a wide range of biological processes. Because of its short half-life, the modulatory capability of NO is strictly related to the local activity of nitric oxide synthases (Nos), enzymes that synthesize NO from L-arginine, making the localization of Nos mRNAs a reliable indirect proxy for the location of NO action domains, targets, and effectors. Within the diversified actinopterygian nos paralogs, nos1 (alias nnos) is ubiquitously present as a single copy gene across the gnathostome lineage, making it an ideal candidate for comparative studies. To investigate variations in the NO system across ray-finned fish phylogeny, we compared nos1 expression patterns during the development of two well-established experimental teleosts (zebrafish and medaka) with an early branching holostean (spotted gar), an important evolutionary bridge between teleosts and tetrapods. Data reported here highlight both conserved expression domains and species-specific nos1 territories, confirming the ancestry of this signaling system and expanding the number of biological processes implicated in NO activities.
Collapse
Affiliation(s)
- Giovanni Annona
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Research Infrastructure for Marine Biological Resources Department (RIMAR), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department (RIMAR), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy;
- Department of Biology, University of Napoli Federico II, 80126 Napoli, Italy
| | | | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
4
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
5
|
Wang Q, Xu Z, Ai Q. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. ACTA ACUST UNITED AC 2021; 7:716-727. [PMID: 34466676 PMCID: PMC8379419 DOI: 10.1016/j.aninu.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Fish have limited ability in endogenous biosynthesis of arginine. Arginine is an indispensable amino acid for fish, and the arginine requirement varies with fish species and fish size. Recent studies on fish have demonstrated that arginine influences nutrient metabolism, stimulates insulin release, is involved in nonspecific immune responses and antioxidant responses, and elevates disease resistance. Specifically, arginine can regulate energy homeostasis via modulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway, and also regulate protein synthesis via activating the target of rapamycin (TOR) signaling pathway. The present article reviews pertinent knowledge of arginine in fish, including dietary quantitative requirements, endogenous anabolism and catabolism, regulation of the endocrine and metabolic systems, and immune-regulatory functions under pathogenic challenge. Our findings showed that further data about the distribution of arginine after intake into specific cells, its sub-cellular sensor to initiate downstream signaling pathways, and its effects on fish mucosal immunity, especially the adaptive immune response against pathogenic infection in different species, are urgently needed.
Collapse
Affiliation(s)
- Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Nitric Oxide and the Neuroendocrine Control of the Osmotic Stress Response in Teleosts. Int J Mol Sci 2019; 20:ijms20030489. [PMID: 30678131 PMCID: PMC6386840 DOI: 10.3390/ijms20030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022] Open
Abstract
The involvement of nitric oxide (NO) in the modulation of teleost osmoresponsive circuits is suggested by the facts that NO synthase enzymes are expressed in the neurosecretory systems and may be regulated by osmotic stimuli. The present paper is an overview on the research suggesting a role for NO in the central modulation of hormone release in the hypothalamo-neurohypophysial and the caudal neurosecretory systems of teleosts during the osmotic stress response. Active NOS enzymes are constitutively expressed by the magnocellular and parvocellular hypophysiotropic neurons and the caudal neurosecretory neurons of teleosts. Moreover, their expression may be regulated in response to the osmotic challenge. Available data suggests that the regulatory role of NO appeared early during vertebrate phylogeny and the neuroendocrine modulation by NO is conservative. Nonetheless, NO seems to have opposite effects in fish compared to mammals. Indeed, NO exerts excitatory effects on the electrical activity of the caudal neurosecretory neurons, influencing the amount of peptides released from the urophysis, while it inhibits hormone release from the magnocellular neurons in mammals.
Collapse
|
7
|
Mistri A, Kumari U, Mittal S, Mittal AK. Immunohistochemical localization of nitric oxide synthase (NOS) isoforms in epidermis and gill epithelium of an angler catfish, Chaca chaca (Siluriformes, Chacidae). Tissue Cell 2018; 55:25-30. [DOI: 10.1016/j.tice.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/31/2022]
|
8
|
Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis. PLoS One 2016; 11:e0150469. [PMID: 26950213 PMCID: PMC4780830 DOI: 10.1371/journal.pone.0150469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.
Collapse
|
9
|
Rahman MS, Thomas P. Molecular characterization and hypoxia-induced upregulation of neuronal nitric oxide synthase in Atlantic croaker: Reversal by antioxidant and estrogen treatments. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:91-106. [DOI: 10.1016/j.cbpa.2015.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 01/27/2023]
|
10
|
Sandbakken M, Ebbesson L, Stefansson S, Helvik JV. Isolation and characterization of melanopsin photoreceptors of Atlantic salmon (Salmo salar). J Comp Neurol 2013; 520:3727-44. [PMID: 22522777 DOI: 10.1002/cne.23125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Melanopsins constitute a recently described group of vertebrate opsin photoreceptors that are involved in nonvisual photoreception. Here we describe the identification of six melanopsin genes of Atlantic salmon (Salmo salar), a valuable teleost model for studying nonvisual photoreception and the basis of photoperiodism. The results show that genes belonging to two different groups, the mammalian-like (Opn4m) and the Xenopus-like (Opn4x) melanopsins have been duplicated in teleosts. In addition, two pairs of salmon duplicates were identified, presumably originating from the salmon lineage whole genome duplication event. The expression pattern of melanopsins was studied by in situ hybridization. The results show that Opn4m and Opn4x melanopsins are differentially expressed in the brain and retina, indicating a functional divergence. In the retina, Opn4m and Opn4x melanopsin are differentially expressed in ganglion, amacrine, and horizontal cells. In the brain, Opn4m is expressed in the dorsal thalamus and in the nucleus lateralis tuberis of the hypothalamus, which is closely connected to and involved in the regulation of pituitary function. Opn4x melanopsins are expressed in the dopaminergic, hypophysiotrophic cell population of the suporaoptic/chiasmatic nucleus and in the serotonergic cell population of the left habenula. The results suggest that melanopsin photoreceptors can be involved in signaling of photoperiodic information through multiple pathways, involving both the retina and possibly as deep-brain photoreceptors directly transmitting photoperiodic information to the hypothalamus-pituitary axis.
Collapse
Affiliation(s)
- Mari Sandbakken
- Department of Biology, University of Bergen, High Technology Centre N-5020 Bergen, Norway
| | | | | | | |
Collapse
|
11
|
Peter VS. Nitric oxide rectifies acid-base disturbance and modifies thyroid hormone activity during net confinement of air-breathing fish (Anabas testudineus Bloch). Gen Comp Endocrinol 2013; 181:115-21. [PMID: 23153653 DOI: 10.1016/j.ygcen.2012.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/31/2012] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO), a short-lived freely diffusible radical gas that acts as an important biological signal, regulates an impressive spectrum of physiological functions in vertebrates including fishes. The action of NO, however, on thyroid hormone status and its role in the integration of acid-base, osmotic and metabolic balances during stress are not yet delineated in fish. Sodium nitroprusside (SNP), a NO donor, was employed in the present study to investigate the role of NO in the stressed air-breathing fish Anabas testudineus. Short-term SNP treatment (1 mM; 30 min) interacted negatively with thyroid axis, as evident in the fall of plasma thyroxine in both stressed and non-stressed fish. In contrast, the cortisol responsiveness to NO was negligible. SNP challenge produced systemic alkalosis, hypocapnia and hyperglycemia in non-stressed fish. Remarkable acid-base compensation was found in fish kept for 60 min net confinement where a rise in blood pH and HCO(3) content occurred with a reduction in PCO(2) content. SNP challenge in these fish, on the contrary, produced a rise in oxygen load together with hypocapnia but without an effect on HCO(3) content, indicating a modulator role of NO in respiratory gas transport during stress response. SNP treatment reduced Na(+), K(+) ATPase activity in the gill, intestine and liver of both stressed and non-stressed fish, and this suggests that stress state has little effect on the NO-driven osmotic competence of these organs. On the other hand, a modulatory effect of NO was found in the kidney which showed a differential response to SNP, emphasizing a key role of NO in kidney ion transport and its sensitivity to stressful condition. H(+)-ATPase activity, an index of H(+) secretion, downregulated in all the organs of both non-stressed and stressed fish except in the gill of non-stressed fish and this supports a role for NO in promoting alkalosis. The data indicate that, (1) NO interacts antagonistically with T(4), (2) modifies respiratory gas transport and (3) integrates acid-base and osmotic actions during stress response in air-breathing fish. Collectively, this first evidence in fish indicate that NO can promote compensatory physiologic modification and that can reduce the magnitude of stress-induced acid-base and osmotic disturbance and that suggests a role for NO in the ease and ease response of this fish.
Collapse
Affiliation(s)
- Valsa S Peter
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India.
| |
Collapse
|
12
|
Aubin-Horth N, Letcher BH, Hofmann HA. Gene-expression signatures of Atlantic salmon's plastic life cycle. Gen Comp Endocrinol 2009; 163:278-84. [PMID: 19401203 PMCID: PMC2706306 DOI: 10.1016/j.ygcen.2009.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 12/19/2022]
Abstract
How genomic expression differs as a function of life history variation is largely unknown. Atlantic salmon exhibits extreme alternative life histories. We defined the gene-expression signatures of wild-caught salmon at two different life stages by comparing the brain expression profiles of mature sneaker males and immature males, and early migrants and late migrants. In addition to life-stage-specific signatures, we discovered a surprisingly large gene set that was differentially regulated-at similar magnitudes, yet in opposite direction-in both life history transitions. We suggest that this co-variation is not a consequence of many independent cellular and molecular switches in the same direction but rather represents the molecular equivalent of a physiological shift orchestrated by one or very few master regulators.
Collapse
Affiliation(s)
- Nadia Aubin-Horth
- Département de Sciences biologiques, Université de Montréal, 90 Vincent D’Indy, Montréal, Québec, Canada
| | - Benjamin H. Letcher
- S.O. Conte Anadromous Fish Research Center, United States Geological Survey, Leetown Science Center, Turners Falls, Massachusetts, United States of America
| | - Hans A. Hofmann
- Section of Integrative Biology, Institute for Cellular & Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
13
|
Olson KR, Donald JA. Nervous control of circulation--the role of gasotransmitters, NO, CO, and H2S. Acta Histochem 2009; 111:244-56. [PMID: 19128825 DOI: 10.1016/j.acthis.2008.11.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The origins and actions of gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) in the mammalian cardiovascular system have received considerable attention and it is evident that these three "gasotransmitters" perform a variety of homeostatic functions. The origins, actions and disposition of these gasotransmitters in the piscine vasculature are far from resolved. In most fish examined to date, NO or NO donors are generally in vitro and in vivo vasodilators acting via soluble guanylyl cyclase, although there is evidence for NO-mediated vasoconstriction. Injection of sodium nitroprusside into trout causes hypotension that is attributed to a reduction in systemic resistance. Unlike mammals, NO does not appear to have an endothelial origin in fish blood vessels as an endothelial NO synthase has not identified. However, neural NO synthase is prevalent in perivascular nerves and is the most likely source of NO for cardiovascular control in fish. CO is a vasodilator in lamprey and trout vessels, and it, like NO, appears to exert its action, at least in part, via guanylyl cyclase and potassium channel activation. Inhibition of CO production increases resting tone in trout vessels suggestive of tonic CO activity, but little else is known about the origin or control of CO in the fish vasculature. H(2)S is synthesized by fish vessels and its constrictory, dilatory, or even multi-phasic actions, are both species- and vessel-specific. A small component of H(2)S-mediated basal activity may be endothelial in origin, but to a large extent H(2)S affects vascular smooth muscle directly and the mechanisms are unclear. H(2)S injected into the dorsal aorta of unanesthetized trout often produces oscillations in arterial blood pressure suggestive of H(2)S activity in the central nervous system as well as peripheral vasculature. Collectively, these studies hint at significant involvement of the gasotransmitters in piscine cardiovascular function and hopefully provide a variety of avenues for future research.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA.
| | | |
Collapse
|
14
|
Giraldez-Perez RM, Gaytan SP, Torres B, Pasaro R. Co-localization of nitric oxide synthase and choline acetyltransferase in the brain of the goldfish (Carassius auratus). J Chem Neuroanat 2009; 37:1-17. [DOI: 10.1016/j.jchemneu.2008.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/17/2008] [Accepted: 08/17/2008] [Indexed: 11/25/2022]
|
15
|
Marley R, Lu W, Balment RJ, McCrohan CR. Evidence for nitric oxide role in the caudal neurosecretory system of the European flounder, Platichthys flesus. Gen Comp Endocrinol 2007; 153:251-61. [PMID: 17362951 DOI: 10.1016/j.ygcen.2007.01.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 01/26/2007] [Accepted: 01/28/2007] [Indexed: 11/19/2022]
Abstract
A neuromodulatory role for nitric oxide has been reported for magnocellular neuroendocrine cells in mammalian hypothalamus. We examined its potential as a local intercellular messenger in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) of the euryhaline flounder. Immunocytochemistry using an antibody raised against human neuronal nitric oxide synthase (NOS) indicated the presence of NOS in the Dahlgren cells. Quantitative RT-PCR, using a flounder-specific probe, revealed NOS mRNA expression in the CNSS. In July, though not in September, NOS mRNA expression was significantly higher in fish fully adapted to seawater, compared to freshwater-adapted fish. Following acute transfer of fish from freshwater to seawater, NOS mRNA expression was elevated at 8h and then recovered by 24h. In pharmacological experiments in vitro, application of NO donors (SNAP, SNP) caused an increase in electrical activity (firing frequency) of Dahlgren cells, recruitment of previously silent cells, together with a greater proportion of cells showing phasic (irregular) activity. The NOS substrate, l-arginine, led to increased firing frequency, cell recruitment and enhanced bursting activity. However, this effect was not blocked by the NOS inhibitor L-NAME. These findings suggest that NO acts as a modulator within the CNSS, potentially enhancing electrical activity and hence secretory output. A role in supporting adaptation to hyperosmotic conditions is also indicated.
Collapse
Affiliation(s)
- Richard Marley
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
16
|
McCrohan CR, Lu W, Brierley MJ, Dow L, Balment RJ. Fish caudal neurosecretory system: a model for the study of neuroendocrine secretion. Gen Comp Endocrinol 2007; 153:243-50. [PMID: 17316635 DOI: 10.1016/j.ygcen.2006.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/05/2006] [Accepted: 12/26/2006] [Indexed: 11/30/2022]
Abstract
The caudal neurosecretory system (CNSS) is unique to fish and has suggested homeostatic roles in osmoregulation and reproduction. Magnocellular neuroendocrine Dahlgren cells, located in the terminal segments of the spinal cord, project to a neurohaemal organ, the urophysis, from which neuropeptides are released. In the euryhaline flounder Platichthys flesus Dahlgren cells synthesise at least four peptides, including urotensins I and II and CRF. These peptides are differentially expressed with co-localisation of up to three in a single cell. Dahlgren cells display a range of electrical firing patterns, including characteristic bursting activity, which is dependent on L-type Ca(2+) and Ca-activated K(+)channels. Activity is modulated by a range of extrinsic and intrinsic neuromodulators. This includes autoregulation by the secreted peptides themselves, leading to enhanced bursting. Electrophysiological and mRNA expression studies have examined changes in response to altered physiological demands. Bursting activity is more robust and more Dahlgren cells are recruited in seawater compared to freshwater adapted fish and this is mirrored by a reduction in mRNA expression for L-type Ca(2+) and Ca-activated K(+) channels. Acute seawater/freshwater transfer experiments support a role for UII in adaptation to hyperosmotic conditions. Responses to stress suggest a shared role for CRF and UI, released from the CNSS. We hypothesise that the Dahlgren cell population is reprogrammed, both in anticipation of and in response to changed physiological demands, and this is seen as changes in gene expression profile and electrical activity. The CNSS shows striking parallels with the hypothalamic-neurohypophysial system, providing a highly accessible system for studies of neuroendocrine mechanisms. Furthermore, the presence of homologues of urotensins throughout the vertebrates has sparked new interest in these peptides and their functional evolution.
Collapse
Affiliation(s)
- Catherine R McCrohan
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
17
|
Nitric oxide and the zebrafish (Danio rerio): Developmental neurobiology and brain neurogenesis. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1872-2423(07)01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Hyndman KA, Choe KP, Havird JC, Rose RE, Piermarini PM, Evans DH. Neuronal nitric oxide synthase in the gill of the killifish, Fundulus heteroclitus. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:510-9. [PMID: 16814584 DOI: 10.1016/j.cbpb.2006.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/03/2006] [Accepted: 05/12/2006] [Indexed: 11/30/2022]
Abstract
Neuronal NOS (nNOS) is a constitutively expressed enzyme that catalyzes the oxidation of L-arginine and water to L-citrulline and the gas nitric oxide (NO). Nitric oxide is involved in regulation of a variety of processes, including: vascular tone, neurotransmission, and ion balance in mammals and fishes. In this study, we have cloned and characterized a putative NOS homologue from the brain of the euryhaline killifish, Fundulus heteroclitus. Killifish NOS has 75% amino acid identity to human nNOS, and phylogenetic analysis groups the killifish sequence with the mammalian nNOS, suggesting that it is a mammalian orthologue. Relative quantitative reverse transcriptase-PCR demonstrated that killifish nNOS mRNA is highly expressed in the brain and gill followed by the stomach, kidney, opercular epithelium, intestine and heart. Immunohistochemistry localized nNOS to nerve fibers and epithelial cells adjacent to mitochondrion-rich cells (ion transporting cell) in the gill, suggesting that nNOS production of NO may contribute to regulation of vascular tone and/or MRC function in the teleost gill.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Toda N, Ayajiki K. Phylogenesis of constitutively formed nitric oxide in non-mammals. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 157:31-80. [PMID: 17236649 DOI: 10.1007/112_0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is widely recognized that nitric oxide (NO) in mammalian tissues is produced from L-arginine via catalysis by NO synthase (NOS) isoforms such as neuronal NOS (nNOS) and endothelial NOS (eNOS) that are constitutively expressed mainly in the central and peripheral nervous system and vascular endothelial cells, respectively. This review concentrates only on these constitutive NOS (cNOS) isoforms while excluding information about iNOS, which is induced mainly in macrophages upon stimulation by cytokines and polysaccharides. The NO signaling pathway plays a crucial role in the functional regulation of mammalian tissues and organs. Evidence has also been accumulated for the role of NO in invertebrates and non-mammalian vertebrates. Expression of nNOS in the brain and peripheral nervous system is widely determined by staining with NADPH (reduced nicotinamide adenine dinucleotide phosphate) diaphorase or NOS immunoreactivity, and functional roles of NO formed by nNOS are evidenced in the early phylogenetic stages (invertebrates and fishes). On the other hand, the endothelium mainly produces vasodilating prostanoids rather than NO or does not liberate endothelium-derived relaxing factor (EDRF) (fishes), and the ability of endothelial cells to liberate NO is observed later in phylogenetic stages (amphibians). This review article summarizes various types of interesting information obtained from lower organisms (invertebrates, fishes, amphibians, reptiles, and birds) about the properties and distribution of nNOS and eNOS and also the roles of NO produced by the cNOS as an important intercellular signaling molecule.
Collapse
Affiliation(s)
- N Toda
- Toyama Institute for Cardiovascular Pharmacology Research, 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
20
|
Bordieri L, Bonaccorsi di Patti MC, Miele R, Cioni C. Partial cloning of neuronal nitric oxide synthase (nNOS) cDNA and regional distribution of nNOS mRNA in the central nervous system of the Nile tilapia Oreochromis niloticus. ACTA ACUST UNITED AC 2005; 142:123-33. [PMID: 16274840 DOI: 10.1016/j.molbrainres.2005.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/23/2005] [Accepted: 09/29/2005] [Indexed: 01/21/2023]
Abstract
A constitutive NOS complementary DNA (cDNA) was partially cloned by RT-PCR from the brain of a teleost, the Nile tilapia (Oreochromis niloticus), using degenerate primers against conserved regions of NOS. The predicted 206-long amino acid sequence showed a high degree of identity with other vertebrate neuronal NOS (nNOS) protein sequences. In addition, phylogenetic analysis revealed that Nile tilapia NOS clustered with other known nNOS. Using the coupled reaction of semi-quantitative RT-PCR and Southern blotting, the basal tissue expression pattern of the cloned nNOS gene was investigated in discrete areas of the central nervous system (CNS) and in the heart and skeletal muscle tissue. As revealed, expression of nNOS transcripts was detected in all the CNS regions examined, whereas nNOS gene was not expressed in the heart and skeletal muscle. The distribution pattern of nNOS gene expression showed the highest expression levels in the forebrain followed by the optic tectum, the brainstem and the spinal cord, whereas scarce expression was detected in the cerebellum. Cellular expression of nNOS mRNA was analyzed in the CNS by means of in situ hybridization. According to the RT-PCR results, most nNOS mRNA expressing neurons are localized in the telencephalon and diencephalon, whereas in the mesencephalic optic tectum, the brainstem and the spinal cord, nNOS mRNA expressing neurons are relatively more scattered. A very low hybridization signal was detected in the cerebellar cortex. These results suggest that NO is involved in numerous brain functions in teleosts.
Collapse
Affiliation(s)
- Loredana Bordieri
- Department of Animal and Human Biology, "La Sapienza" University, via A. Borelli, 50 00161 Rome, Italy
| | | | | | | |
Collapse
|
21
|
Aubin-Horth N, Landry CR, Letcher BH, Hofmann HA. Alternative life histories shape brain gene expression profiles in males of the same population. Proc Biol Sci 2005; 272:1655-62. [PMID: 16087419 PMCID: PMC1559854 DOI: 10.1098/rspb.2005.3125] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 12/16/2022] Open
Abstract
Atlantic salmon (Salmo salar) undergo spectacular marine migrations before homing to spawn in natal rivers. However, males that grow fastest early in life can adopt an alternative 'sneaker' tactic by maturing earlier at greatly reduced size without leaving freshwater. While the ultimate evolutionary causes have been well studied, virtually nothing is known about the molecular bases of this developmental plasticity. We investigate the nature and extent of coordinated molecular changes that accompany such a fundamental transformation by comparing the brain transcription profiles of wild mature sneaker males to age-matched immature males (future large anadromous males) and immature females. Of the ca. 3000 genes surveyed, 15% are differentially expressed in the brains of the two male types. These genes are involved in a wide range of processes, including growth, reproduction and neural plasticity. Interestingly, despite the potential for wide variation in gene expression profiles among individuals sampled in nature, consistent patterns of gene expression were found for individuals of the same reproductive tactic. Notably, gene expression patterns in immature males were different both from immature females and sneakers, indicating that delayed maturation and sea migration by immature males, the 'default' life cycle, may actually result from an active inhibition of development into a sneaker.
Collapse
Affiliation(s)
- Nadia Aubin-Horth
- Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | | | |
Collapse
|
22
|
Ebbesson LOE, Tipsmark CK, Holmqvist B, Nilsen T, Andersson E, Stefansson SO, Madsen SS. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase. J Exp Biol 2005; 208:1011-7. [PMID: 15767302 DOI: 10.1242/jeb.01488] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We investigated the relationship between nitric oxide (NO) and Na+,K+-ATPase (NKA) in the gill of anadromous Atlantic salmon. Cells containing NO-producing enzymes were revealed by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry, which can be used as an indicator of NOS activity, i.e. NO production. Antibodies against the two constitutive NOS isoforms, neuronal and endothelial NOS, both produced immunoreactivity restricted to large cells at the base and along the secondary lamellae. NADPHd-positive cells showed a corresponding distribution. Antibodies against the inducible NOS isoform only labeled small cells located deep in the filament. Using in situ hybridization and NKA immunoreactivity, cells expressing Na+,K+-ATPaseα-subunit mRNA were found to have a similar distribution to the NOS cells. Double labeling for NOS immunoreactivity and NKA α-subunit mRNA revealed cellular colocalization of NKA α-subunit mRNA and nNOS protein in putative chloride cells at the base of the lamellae and interlamellar space. Along the lamellae, some NOS- or NKA-immunoreactive cells possessed a relatively lower expression of NKA α-subunit mRNA in smolts. A clear increase in NADPHd staining in the gill was demonstrated from parr to smolt. The regulatory role of NO on gill NKA activity was studied in vitrousing sodium nitroprusside (SNP; 1 mmol l-1) and PAPA-NONOate(NOC-15; 0.5 mmol l-1) as NO donors. Both SNP and NOC-15 inhibited gill NKA activity by 30% when compared to controls. The study shows that NO systems are abundant in the gill of Atlantic salmon, that NO may be produced preferentially by a constitutive NOS isoform, and suggests that NO influence on gill functions is mediated via intracellular, possibly both auto/paracrine,inhibition of Na+,K+-ATPase activity in chloride cells. Furthermore, the increase in NADPHd in the gill during smoltification suggests a regulatory role of NO in the attenuation of the smoltification-related increase in Na+,K+-ATPase activity prior to entering seawater.
Collapse
Affiliation(s)
- Lars O E Ebbesson
- Department of Biology, University of Bergen, Bergen High Technology Centre, N-5020 Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bordieri L, Cioni C. Co-localization of neuronal nitric oxide synthase with arginine–vasotocin in the preoptic–hypothalamo–hypophyseal system of the teleost Oreochromis niloticus. Brain Res 2004; 1015:181-5. [PMID: 15223383 DOI: 10.1016/j.brainres.2004.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2004] [Indexed: 11/15/2022]
Abstract
This study provides evidence that, in the preoptic-hypothalamo-hypophysial system of the teleost Oreochromis niloticus, several sub-populations of arginine-vasotocin (AVT)-producing neurons and neurosecretory fibers terminals express neuronal nitric oxide synthase (nNOS)-like molecules. The co-localization between nNOS and AVT was demonstrated by means of double immunofluorescence staining with the confocal microscope. This study is the first to provide evidence that nNOS may be co-localized with AVT in neurons of a non-mammalian vertebrate.
Collapse
Affiliation(s)
- Loredana Bordieri
- Department of Animal and Human Biology, La Sapienza University, via A. Borelli, 50 00161 Rome, Italy
| | | |
Collapse
|