1
|
Jo CS, Hairu Z, Baek GC, Lee EJ, You CM, Hwang JS. P300 regulates Melanophilin expression by modulating TFAP2A binding through histone acetylation. J Dermatol Sci 2025:S0923-1811(25)00042-8. [PMID: 40246651 DOI: 10.1016/j.jdermsci.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Melanophilin is an effector protein that interacts with Rab27a and Myosin Va and regulates melanosome transport in melanocytes. Type 3 Griscelli syndrome, a mutation in Mlph gene, is characterized by partial pigment dilution, without any associated systemic problems. P300 plays roles in histone acetylation and changes chromatin state. There has been considerable interest in epigenetic regulation of melanocytes. However, epigenetic control of Mlph expression is still poorly understood. OBJECTIVES We investigated the underlying mechanisms by which P300 controls Mlph expression by histone acetylation. METHODS siRNA transfection was performed to knock down gene expression. We used numerous methods, including western blotting, quantitative PCR (qPCR), co-immunoprecipitation (co-IP), and chromatin immunoprecipitation (ChIP), to identify the mechanisms of epigenetic regulation via P300. RESULTS Perinuclear aggregation of melanosome is induced and Mlph expression is decreased by knockdown of P300. In this process, TFAP2A acts as a transcription factor and regulates Mlph transcription. Knockdown of P300 decreased TFAP2A binding to intron region of Mlph and H3K27ac level and then finally reduced Mlph expression. Our study revealed that P300 facilitates an open chromatin state through acetylation of H3K27 and TFAP2A could regulate Mlph expression by binding to the intron 1 region of Mlph. CONCLUSION Mlph expression is regulated by epigenetic regulation via P300 in melanocytes. These findings provide new insights into the epigenetic mechanism of melanosome transport.
Collapse
Affiliation(s)
- Chan Song Jo
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Zhao Hairu
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Gyu Cheol Baek
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Eun Jeong Lee
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Chang Mo You
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea
| | - Jae Sung Hwang
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.
| |
Collapse
|
2
|
Doughty BR, Hinks MM, Schaepe JM, Marinov GK, Thurm AR, Rios-Martinez C, Parks BE, Tan Y, Marklund E, Dubocanin D, Bintu L, Greenleaf WJ. Single-molecule states link transcription factor binding to gene expression. Nature 2024; 636:745-754. [PMID: 39567683 DOI: 10.1038/s41586-024-08219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells1. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting2,3 to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response. Although TF binding events on nucleosome-free DNA are independent, activation domains recruit cofactors that destabilize nucleosomes, driving observed TF binding cooperativity. Average TF occupancy linearly determines promoter activity, and we decompose TF strength into separable binding and activation terms. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the enhancer binding microstates and gene expression dynamics. This work provides a template for the quantitative dissection of distinct contributors to gene expression, including TF activation domains, concentration, binding affinity, binding site configuration and recruitment of chromatin regulators.
Collapse
Affiliation(s)
| | - Michaela M Hinks
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Julia M Schaepe
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | | | - Abby R Thurm
- Biophysics Program, Stanford University, Stanford, CA, USA
| | | | - Benjamin E Parks
- Computer Science Department, Stanford University, Stanford, CA, USA
| | - Yingxuan Tan
- Computer Science Department, Stanford University, Stanford, CA, USA
| | - Emil Marklund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | - William J Greenleaf
- Genetics Department, Stanford University, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Cooper DG, Erkina TY, Broyles BK, Class CA, Erkine AM. Grammar rules and exceptions for the language of transcriptional activation domains. iScience 2024; 27:111057. [PMID: 39524347 PMCID: PMC11546935 DOI: 10.1016/j.isci.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Transcriptional activation domains (ADs) of gene activators have remained enigmatic for decades as short, extremely variable, and structurally disordered sequences. Using a rational design and high throughput in vivo experimentation, we determine the grammar rules and exceptions for the language of ADs. According to identified rules, billions of highly active ADs can be composed of balanced amounts of acidic/aromatic amino acids, with either mixed composition of aromatic residues, or using only one aromatic residue mixed with acidic residues. However, equally active sequences can be composed of only aliphatic leucine and aspartic acid residues. The much rarer LD exceptions have a higher ratio of hydrophobic/acidic balance and display a specific LDL(L/D)DLL motif. For aromatic/acidic Ads, the intermixing of proline residues in context of amphipathic α-helix structures significantly increases the AD activity. The identified grammar rules and exceptions are interpreted in application to the biochemistry of AD function and eukaryotic gene expression.
Collapse
Affiliation(s)
- David G. Cooper
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Tamara Y. Erkina
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Bradley K. Broyles
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Caleb A. Class
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Alexandre M. Erkine
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
4
|
Erkine AM, Oliveira MA, Class CA. The Enigma of Transcriptional Activation Domains. J Mol Biol 2024; 436:168766. [PMID: 39214280 DOI: 10.1016/j.jmb.2024.168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Activation domains (ADs) of eukaryotic gene activators remain enigmatic for decades as short, extremely variable sequences which often are intrinsically disordered in structure and interact with an uncertain number of targets. The general absence of specificity increasingly complicates the utilization of the widely accepted mechanism of AD function by recruitment of coactivators. The long-standing enigma at the heart of molecular biology demands a fundamental rethinking of established concepts. Here, we review the experimental evidence supporting a novel mechanistic model of gene activation, based on ADs functioning via surfactant-like near-stochastic interactions with gene promoter nucleosomes. This new model is consistent with recent information-rich experimental data obtained using high-throughput synthetic biology and bioinformatics analysis methods, including machine learning. We clarify why the conventional biochemical principle of specificity for sequence, structures, and interactions fails to explain activation domain function. This perspective provides connections to the liquid-liquid phase separation model, signifies near-stochastic interactions as fundamental for the biochemical function, and can be generalized to other cellular functions.
Collapse
|
5
|
Dewing S, Phan TM, Kraft EJ, Mittal J, Showalter SA. Acetylation-Dependent Compaction of the Histone H4 Tail Ensemble. J Phys Chem B 2024; 128:10636-10649. [PMID: 39437158 PMCID: PMC11533190 DOI: 10.1021/acs.jpcb.4c05701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Acetylation of the histone H4 tail (H4Kac) has been established as a significant regulator of chromatin architecture and accessibility; however, the molecular mechanisms that underlie these observations remain elusive. Here, we characterize the ensemble features of the histone H4 tail and determine how they change following acetylation on specific sets of lysine residues. Our comprehensive account is enabled by a robust combination of experimental and computational biophysical methods that converge on molecular details including conformer size, intramolecular contacts, and secondary structure propensity. We find that acetylation significantly alters the chemical environment of basic patch residues (16-20) and leads to tail compaction that is partially mediated by transient intramolecular contacts established between the basic patch and N-terminal amino acids. Beyond acetylation, we identify that the protonation state of H18, which is affected by the acetylation state, is a critical regulator of ensemble characteristics, highlighting the potential for interplay between the sequence context and post-translational modifications to define the ensemble features of intrinsically disordered regions. This study elucidates molecular details that could link H4Kac with the regulation of chromatin architecture, illuminating a small piece of the complex network of molecular mechanisms underlying the histone code hypothesis.
Collapse
Affiliation(s)
- Sophia
M. Dewing
- Center
for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, 77 Pollock Rd, University Park, Pennsylvania 16802, United States
| | - Tien M. Phan
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Engineering Building, College Station, Texas 77843-3122, United States
| | - Emma J. Kraft
- Department
of Chemistry, The Pennsylvania State University, 376 Science Drive, University Park, Pennsylvania 16802, United States
| | - Jeetain Mittal
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Engineering Building, College Station, Texas 77843-3122, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College
Station, Texas 77843, United States
| | - Scott A. Showalter
- Center
for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, 77 Pollock Rd, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, 376 Science Drive, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Zhang S, Feng X, Li CH, Zheng YM, Wang MY, Li JJ, Dai YP, Jing N, Zhou JW, Wang G. Mediator MED23 controls oligodendrogenesis and myelination by modulating Sp1/P300-directed gene programs. Cell Discov 2024; 10:102. [PMID: 39402028 PMCID: PMC11473658 DOI: 10.1038/s41421-024-00730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/26/2024] [Indexed: 10/17/2024] Open
Abstract
Gaining the molecular understanding for myelination development and regeneration has been a long-standing goal in neurological research. Mutations in the transcription cofactor Mediator Med23 subunit are often associated with intellectual disability and white matter defects, although the precise functions and mechanisms of Mediator in myelination remain unclear. In this study, we generated a mouse model carrying an Med23Q649R mutation that has been identified in a patient with hypomyelination features. The MED23Q649R mouse model develops white matter thinning and cognitive decline, mimicking common clinical phenotypes. Further, oligodendrocyte-lineage specific Med23 knockout mice verified the important function of MED23 in regulating central nervous system myelination and postinjury remyelination. Utilizing the in vitro cellular differentiation assay, we found that the oligodendrocyte progenitor cells, either carrying the Q649R mutation or lacking Med23, exhibit significant deficits in their capacity to differentiate into mature oligodendrocytes. Gene profiling combined with reporter assays demonstrated that Mediator Med23 controls Sp1-directed gene programs related to oligodendrocyte differentiation and cholesterol metabolism. Integrative analysis demonstrated that Med23 modulates the P300 binding to Sp1-targeted genes, thus orchestrating the H3K27 acetylation and enhancer activation for the oligodendrocyte lineage progression. Collectively, our findings identified the critical role for the Mediator Med23 in oligodendrocyte fate determination and provide mechanistic insights into the myelination pathogenesis associated with MED23 mutations.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Feng
- Laboratory Animal Resource Center, Fudan University, Shanghai, China
| | - Chong-Hui Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuan-Ming Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Ya Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jun-Jie Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Peng Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Doughty BR, Hinks MM, Schaepe JM, Marinov GK, Thurm AR, Rios-Martinez C, Parks BE, Tan Y, Marklund E, Dubocanin D, Bintu L, Greenleaf WJ. Single-molecule chromatin configurations link transcription factor binding to expression in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578660. [PMID: 38352517 PMCID: PMC10862896 DOI: 10.1101/2024.02.02.578660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The binding of multiple transcription factors (TFs) to genomic enhancers activates gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state, and gene expression levels remain opaque. We applied single-molecule footprinting (SMF) to measure the simultaneous occupancy of TFs, nucleosomes, and components of the transcription machinery on engineered enhancer/promoter constructs with variable numbers of TF binding sites for both a synthetic and an endogenous TF. We find that activation domains enhance a TF's capacity to compete with nucleosomes for binding to DNA in a BAF-dependent manner, TF binding on nucleosome-free DNA is consistent with independent binding between TFs, and average TF occupancy linearly contributes to promoter activation rates. We also decompose TF strength into separable binding and activation terms, which can be tuned and perturbed independently. Finally, we develop thermodynamic and kinetic models that quantitatively predict both the binding microstates observed at the enhancer and subsequent time-dependent gene expression. This work provides a template for quantitative dissection of distinct contributors to gene activation, including the activity of chromatin remodelers, TF activation domains, chromatin acetylation, TF concentration, TF binding affinity, and TF binding site configuration.
Collapse
Affiliation(s)
| | - Michaela M Hinks
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - Georgi K Marinov
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Abby R Thurm
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin E Parks
- Computer Science Department, Stanford University, Stanford, CA 94305, USA
| | - Yingxuan Tan
- Computer Science Department, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Danilo Dubocanin
- Genetics Department, Stanford University, Stanford, CA 94305, USA
| | - Lacramioara Bintu
- Bioengineering Department, Stanford University, Stanford, CA 94305, USA
| | - William J Greenleaf
- Genetics Department, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94205, USA
| |
Collapse
|
8
|
Mulet-Lazaro R, Delwel R. From Genotype to Phenotype: How Enhancers Control Gene Expression and Cell Identity in Hematopoiesis. Hemasphere 2023; 7:e969. [PMID: 37953829 PMCID: PMC10635615 DOI: 10.1097/hs9.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
Blood comprises a wide array of specialized cells, all of which share the same genetic information and ultimately derive from the same precursor, the hematopoietic stem cell (HSC). This diversity of phenotypes is underpinned by unique transcriptional programs gradually acquired in the process known as hematopoiesis. Spatiotemporal regulation of gene expression depends on many factors, but critical among them are enhancers-sequences of DNA that bind transcription factors and increase transcription of genes under their control. Thus, hematopoiesis involves the activation of specific enhancer repertoires in HSCs and their progeny, driving the expression of sets of genes that collectively determine morphology and function. Disruption of this tightly regulated process can have catastrophic consequences: in hematopoietic malignancies, dysregulation of transcriptional control by enhancers leads to misexpression of oncogenes that ultimately drive transformation. This review attempts to provide a basic understanding of enhancers and their role in transcriptional regulation, with a focus on normal and malignant hematopoiesis. We present examples of enhancers controlling master regulators of hematopoiesis and discuss the main mechanisms leading to enhancer dysregulation in leukemia and lymphoma.
Collapse
Affiliation(s)
- Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
9
|
Nakadai T, Shimada M, Ito K, Cevher MA, Chu CS, Kumegawa K, Maruyama R, Malik S, Roeder RG. Two target gene activation pathways for orphan ERR nuclear receptors. Cell Res 2023; 33:165-183. [PMID: 36646760 PMCID: PMC9892517 DOI: 10.1038/s41422-022-00774-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2022] [Indexed: 01/18/2023] Open
Abstract
Estrogen-related receptors (ERRα/β/γ) are orphan nuclear receptors that function in energy-demanding physiological processes, as well as in development and stem cell maintenance, but mechanisms underlying target gene activation by ERRs are largely unknown. Here, reconstituted biochemical assays that manifest ERR-dependent transcription have revealed two complementary mechanisms. On DNA templates, ERRs activate transcription with just the normal complement of general initiation factors through an interaction of the ERR DNA-binding domain with the p52 subunit of initiation factor TFIIH. On chromatin templates, activation by ERRs is dependent on AF2 domain interactions with the cell-specific coactivator PGC-1α, which in turn recruits the ubiquitous p300 and MED1/Mediator coactivators. This role of PGC-1α may also be fulfilled by other AF2-interacting coactivators like NCOA3, which is shown to recruit Mediator selectively to ERRβ and ERRγ. Importantly, combined genetic and RNA-seq analyses establish that both the TFIIH and the AF2 interaction-dependent pathways are essential for ERRβ/γ-selective gene expression and pluripotency maintenance in embryonic stem cells in which NCOA3 is a critical coactivator.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Murat Alper Cevher
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Liu J, Li B, Yang L, Ren N, Xu M, Huang Q. Increasing Genome Editing Efficiency of Cas9 Nucleases by the Simultaneous Use of Transcriptional Activators and Histone Acetyltransferase Activator. CRISPR J 2022; 5:854-867. [PMID: 36374245 DOI: 10.1089/crispr.2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The CRISPR-Cas9 system shows diverse levels of genome editing activities on eukaryotic chromatin, and high-efficiency sgRNA targets are usually desired in application. In this study, we show that chromatin open status is a pivotal determinant of the Cas9 editing activity in mammalian cells, and increasing chromatin accessibility can efficiently improve Cas9 genome editing. However, the strategy that increases chromatin openness by fusing the VP64 transcriptional activation domain at the C-terminus of Cas9 can only promote genome editing activity slightly at most tested CRISPR-Cas9 targets in Lenti-X 293T cells. Under the enlightenment that histone acetylation increases eukaryotic chromatin accessibility, we developed a composite strategy to further improve genome editing by activating histone acetylation. We demonstrate that promoting histone acetylation using the histone acetyltransferase activator YF-2 can improve the genome editing by Cas9 and, more robustly, by the Cas9 transcriptional activator (Cas9-AD). This strategy holds great potential to enhance CRISPR-Cas9 genome editing and to enable broader CRISPR gRNA target choices for experiments in eukaryotes.
Collapse
Affiliation(s)
- Junhao Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Lele Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Naixia Ren
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Meichen Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Chen Q, Yang B, Liu X, Zhang XD, Zhang L, Liu T. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Am J Cancer Res 2022; 12:4935-4948. [PMID: 35836809 PMCID: PMC9274749 DOI: 10.7150/thno.73223] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023] Open
Abstract
The histone acetyltransferases CBP and p300, often referred to as CBP/p300 due to their sequence homology and functional overlap and co-operation, are emerging as critical drivers of oncogenesis in the past several years. CBP/p300 induces histone H3 lysine 27 acetylation (H3K27ac) at target gene promoters, enhancers and super-enhancers, thereby activating gene transcription. While earlier studies indicate that CBP/p300 deletion/loss can promote tumorigenesis, CBP/p300 have more recently been shown to be over-expressed in cancer cells and drug-resistant cancer cells, activate oncogene transcription and induce cancer cell proliferation, survival, tumorigenesis, metastasis, immune evasion and drug-resistance. Small molecule CBP/p300 histone acetyltransferase inhibitors, bromodomain inhibitors, CBP/p300 and BET bromodomain dual inhibitors and p300 protein degraders have recently been discovered. The CBP/p300 inhibitors and degraders reduce H3K27ac, down-regulate oncogene transcription, induce cancer cell growth inhibition and cell death, activate immune response, overcome drug resistance and suppress tumor progression in vivo. In addition, CBP/p300 inhibitors enhance the anticancer efficacy of chemotherapy, radiotherapy and epigenetic anticancer agents, including BET bromodomain inhibitors; and the combination therapies exert substantial anticancer effects in mouse models of human cancers including drug-resistant cancers. Currently, two CBP/p300 inhibitors are under clinical evaluation in patients with advanced and drug-resistant solid tumors or hematological malignancies. In summary, CBP/p300 have recently been identified as critical tumorigenic drivers, and CBP/p300 inhibitors and protein degraders are emerging as promising novel anticancer agents for clinical translation.
Collapse
Affiliation(s)
- Qingjuan Chen
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Binhui Yang
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Xiaochen Liu
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, China
| | - Xu D. Zhang
- School of Medicine and Public Health, Priority Research Centre for Cancer Research, University of Newcastle, Callaghan, Newcastle, NSW 2308, Australia.,Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Children's Cancer Institute Australia, Randwick, Sydney, NSW 2031, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia.,✉ Corresponding authors: E-mail: (Xu D. Zhang), (Lirong Zhang); (Tao Liu)
| |
Collapse
|
12
|
Friis Theisen F, Salladini E, Davidsen R, Jo Rasmussen C, Staby L, Kragelund BB, Skriver K. αα-hub coregulator structure and flexibility determine transcription factor binding and selection in regulatory interactomes. J Biol Chem 2022; 298:101963. [PMID: 35452682 PMCID: PMC9127584 DOI: 10.1016/j.jbc.2022.101963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.
Collapse
Affiliation(s)
- Frederik Friis Theisen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Edoardo Salladini
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Davidsen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Jo Rasmussen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Staby
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Alerasool N, Leng H, Lin ZY, Gingras AC, Taipale M. Identification and functional characterization of transcriptional activators in human cells. Mol Cell 2022; 82:677-695.e7. [PMID: 35016035 DOI: 10.1016/j.molcel.2021.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Transcription is orchestrated by thousands of transcription factors (TFs) and chromatin-associated proteins, but how these are causally connected to transcriptional activation is poorly understood. Here, we conduct an unbiased proteome-scale screen to systematically uncover human proteins that activate transcription in a natural chromatin context. By combining interaction proteomics and chemical inhibitors, we delineate the preference of these transcriptional activators for specific co-activators, highlighting how even closely related TFs can function via distinct cofactors. We also identify potent transactivation domains among the hits and use AlphaFold2 to predict and experimentally validate interaction interfaces of two activation domains with BRD4. Finally, we show that many novel activators are partners in fusion events in tumors and functionally characterize a myofibroma-associated fusion between SRF and C3orf62, a potent p300-dependent activator. Our work provides a functional catalog of potent transactivators in the human proteome and a platform for discovering transcriptional regulators at genome scale.
Collapse
Affiliation(s)
- Nader Alerasool
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - He Leng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
14
|
Leonen CJA, Shimada M, Weller CE, Nakadai T, Hsu PL, Tyson EL, Mishra A, Shelton PM, Sadilek M, Hawkins RD, Zheng N, Roeder RG, Chatterjee C. Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts. eLife 2021; 10:67952. [PMID: 34747692 PMCID: PMC8626089 DOI: 10.7554/elife.67952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
The post-translational modification of histones by the small ubiquitin-like modifier (SUMO) protein has been associated with gene regulation, centromeric localization, and double-strand break repair in eukaryotes. Although sumoylation of histone H4 was specifically associated with gene repression, this could not be proven due to the challenge of site-specifically sumoylating H4 in cells. Biochemical crosstalk between SUMO and other histone modifications, such as H4 acetylation and H3 methylation, that are associated with active genes also remains unclear. We addressed these challenges in mechanistic studies using an H4 chemically modified at Lys12 by SUMO-3 (H4K12su) and incorporated into mononucleosomes and chromatinized plasmids for functional studies. Mononucleosome-based assays revealed that H4K12su inhibits transcription-activating H4 tail acetylation by the histone acetyltransferase p300, as well as transcription-associated H3K4 methylation by the extended catalytic module of the Set1/COMPASS (complex of proteins associated with Set1) histone methyltransferase complex. Activator- and p300-dependent in vitro transcription assays with chromatinized plasmids revealed that H4K12su inhibits both H4 tail acetylation and RNA polymerase II-mediated transcription. Finally, cell-based assays with a SUMO-H4 fusion that mimics H4 tail sumoylation confirmed the negative crosstalk between histone sumoylation and acetylation/methylation. Thus, our studies establish the key role for histone sumoylation in gene silencing and its negative biochemical crosstalk with active transcription-associated marks in human cells.
Collapse
Affiliation(s)
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
| | - Caroline E Weller
- Department of Chemistry, University of Washington, Seattle, United States
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States.,Project for Cancer Epigenomics, Cancer Institute of JFCR, Tokyo, Japan
| | - Peter L Hsu
- Department of Pharmacology, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Elizabeth L Tyson
- Department of Chemistry, University of Washington, Seattle, United States
| | - Arpit Mishra
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, United States
| | - Patrick Mm Shelton
- Department of Chemistry, University of Washington, Seattle, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, United States
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, United States
| |
Collapse
|
15
|
Zúñiga-Muñoz A, García-Niño WR, Carbó R, Navarrete-López LÁ, Buelna-Chontal M. The regulation of protein acetylation influences the redox homeostasis to protect the heart. Life Sci 2021; 277:119599. [PMID: 33989666 DOI: 10.1016/j.lfs.2021.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
The cellular damage caused by redox imbalance is involved in the pathogenesis of many cardiovascular diseases. Besides, redox imbalance is related to the alteration of protein acetylation processes, causing not only chromatin remodeling but also disturbances in so many processes where protein acetylation is involved, such as metabolism and signal transduction. The modulation of acetylases and deacetylases enzymes aids in maintaining the redox homeostasis, avoiding the deleterious cellular effects associated with the dysregulation of protein acetylation. Of note, regulation of protein acetylation has shown protective effects to ameliorate cardiovascular diseases. For instance, HDAC inhibition has been related to inducing cardiac protective effects and it is an interesting approach to the management of cardiovascular diseases. On the other hand, the upregulation of SIRT protein activity has also been implicated in the relief of cardiovascular diseases. This review focuses on the major protein acetylation modulators described, involving pharmacological and bioactive compounds targeting deacetylase and acetylase enzymes contributing to heart protection through redox homeostasis.
Collapse
Affiliation(s)
- Alejandra Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Wylly-Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Roxana Carbó
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Luis-Ángel Navarrete-López
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico.
| |
Collapse
|
16
|
Kim DY, Kim JM. Multi-omics integration strategies for animal epigenetic studies - A review. Anim Biosci 2021; 34:1271-1282. [PMID: 33902167 PMCID: PMC8255897 DOI: 10.5713/ab.21.0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Korea
| |
Collapse
|
17
|
Kamimura YR, Kanai M. Chemical Insights into Liquid-Liquid Phase Separation in Molecular Biology. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yugo R. Kamimura
- Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Transcription co-activator P300 activates Elk1-aPKC-ι signaling mediated epithelial-to-mesenchymal transition and malignancy in hepatocellular carcinoma. Oncogenesis 2020; 9:32. [PMID: 32144235 PMCID: PMC7060348 DOI: 10.1038/s41389-020-0212-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) plays an important role in invasion and metastasis of hepatocellular carcinoma (HCC). Our previous study found that atypical protein kinase C-ι (aPKC-ι) promoted the EMT process in HCC. However, how the aPKC-ι signaling pathway is regulated in HCC has not been elucidated. In this study, vector transfection was utilized to study the invasion of HCC cells, and the mechanism between P300 and aPKC-ι signaling pathways in regulating the EMT process of HCC was further elucidated in vitro and in vivo. We found both P300 and aPKC-ι were highly expressed in HCC and they were correlated with tumor progression and poor survival in HCC patients. P300 knockdown inhibited EMT, invasion and other malignant events of HCC cells but promoted cell apoptosis and cycle arrest. However, the effects mediated by P300 knockdown were abolished by aPKC-ι overexpression. Further studies showed that P300 upregulates aPKC-ι expression through increasing the transcription of Elk1, a transcriptional activator of aPKC-ι, and stabilizing Elk1 protein and its phosphorylation. In conclusion, our work uncovered the molecular mechanism by which oncogenic aPKC-ι is upregulated in HCC and suggests that P300, like aPKC-ι, may be used as a prognostic biomarker and therapeutic target in patients with HCC.
Collapse
|
19
|
Liu Z, He Y, Lian X, Zou H, Huang Y, Wang N, Hu J, Cui X, Zhao J, Zhang W, Gu W, Pang L, Qi Y. Prognostic role of upregulated P300 expression in human cancers: A clinical study of synovial sarcoma and a meta-analysis. Exp Ther Med 2019; 18:3161-3171. [PMID: 31572557 DOI: 10.3892/etm.2019.7906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 03/21/2019] [Indexed: 11/05/2022] Open
Abstract
E1A binding protein p300 (P300) is a member of the histone acetyltransferase family of transcriptional co-activators, which are associated with various types of cancer. Numerous studies have evaluated the diagnostic value of P300, but their results are not consistent. Therefore, a clinical study and a meta-analysis were performed in the present study to investigate the prognostic value of P300 expression in human malignant neoplasms. Immunohistochemical (IHC) analysis was used to assess P300 expression in 43 paraffin-embedded primary synovial sarcoma (SS) samples. For the meta-analysis, eligible studies published until January 21, 2018 were identified by searching the PubMed, EMBASE and Web of Science databases. The IHC analysis indicated a high P300 expression rate in 33.3% (10/30) of biphasic SS (BSSs) and in 60% (6/10) of monophasic fibrous SS tissues. In BSS, the expression rate was significantly higher in the epithelial component (80.0%, 24/30) than that in the spindle-cell component (30.0%, 9/30; P<0.05). The meta-analysis indicated that high expression of P300 was associated with poor overall survival (OS) in digestive system malignant neoplasms (HR=1.54, 95% CI: 1.20-2.23), as well as with poor progression-free survival, recurrence-free survival and disease-free survival combined (HR=1.84, 95% CI: 1.36-2.47). Analysis of subgroups by ethnicity demonstrated that high expression of P300 was associated with poor OS in Asians (HR=1.72, 95% CI: 1.20-2.47) but favourable OS in Caucasians (HR=0.59, 95% CI: 0.47-0.73). Furthermore, high expression of P300 was associated with clinical stage [Relative Risk (RR)=1.30, 95% CI: 1.07-1.58], lymph node metastasis (RR=1.30, 95% CI: 1.03-1.64) and depth of invasion (RR=1.31, 95% CI: 1.07-1.60). P300 expression may therefore be a useful biomarker for predicting patient prognosis in various types of human cancer.
Collapse
Affiliation(s)
- Zihan Liu
- Department of Pathology, Shihezi University School of Medicine and The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Yonglai He
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Xiaojuan Lian
- Department of Blood Cancers, Jiangjin Central Hosptial of Chongqing, Chongqing 400042, P.R. China
| | - Hong Zou
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Yalan Huang
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Ning Wang
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Jianming Hu
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Xiaobin Cui
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Jin Zhao
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Wenjie Zhang
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane QLD 4072, Australia
| | - Lijuan Pang
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| | - Yan Qi
- Department of Emergency, Jinshan Branch Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200233, P.R. China
| |
Collapse
|
20
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
21
|
Erkine AM. 'Nonlinear' Biochemistry of Nucleosome Detergents. Trends Biochem Sci 2018; 43:951-959. [PMID: 30297207 DOI: 10.1016/j.tibs.2018.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022]
Abstract
The transcriptional activation domains (TADs) are critical for life, yet intrinsically disordered polypeptides with no specific consensus sequence, interacting with multiple targets via low-specificity fuzzy contacts. The recent integration of machine learning approaches in biochemistry allows analysis of large experimental datasets of functional TADs as a whole and clear observation of TAD features. The emerging picture describes TADs as sequences without consensus but with a variety of detergent-like mini-motifs enriched in negatively charged and aromatic amino acids. Comparison of the canonical direct coactivator recruitment model and a new model describing TADs as nucleosome detergents that trigger chromatin remodeling during gene activation helps solve a fundamental enigma of molecular biology spanning 30 years.
Collapse
|
22
|
Liu S, Xue C, Fang Y, Chen G, Peng X, Zhou Y, Chen C, Liu G, Gu M, Wang K, Zhang W, Wu Y, Gong Z. Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice. Mol Cell Proteomics 2018; 17:1922-1936. [PMID: 30021883 DOI: 10.1074/mcp.ra118.000640] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Lysine crotonylation (Kcr) is a newly discovered posttranslational modification (PTM) existing in mammals. A global crotonylome analysis was undertaken in rice (Oryza sativa L. japonica) using high accuracy nano-LC-MS/MS in combination with crotonylated peptide enrichment. A total of 1,265 lysine crotonylation sites were identified on 690 proteins in rice seedlings. Subcellular localization analysis revealed that 51% of the crotonylated proteins identified were localized in chloroplasts. The photosynthesis-associated proteins were also mostly enriched in total crotonylated proteins. In addition, a genomic localization analysis of histone Kcr by ChIP-seq was performed to assess the relevance between histone Kcr and the genome. Of the 10,923 identified peak regions, the majority (86.7%) of the enriched peaks were located in gene body, especially exons. Furthermore, the degree of histone Kcr modification was positively correlated with gene expression in genic regions. Compared with other published histone modification data, the Kcr was co-located with the active histone modifications. Interestingly, histone Kcr-facilitated expression of genes with existing active histone modifications. In addition, 77% of histone Kcr modifications overlapped with DNase hypersensitive sites (DHSs) in intergenic regions of the rice genome and might mark other cis-regulatory DNA elements that are different from IPA1, a transcription activator in rice seedlings. Overall, our results provide a comprehensive understanding of the biological functions of the crotonylome and new active histone modification in transcriptional regulation in plants.
Collapse
Affiliation(s)
- Shuai Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chao Xue
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yuan Fang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Xiaojun Peng
- ¶Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Yong Zhou
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Guanqing Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Kai Wang
- ‖Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenli Zhang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiyun Gong
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
23
|
Kaypee S, Sahadevan SA, Patil S, Ghosh P, Roy NS, Roy S, Kundu TK. Mutant and Wild-Type Tumor Suppressor p53 Induces p300 Autoacetylation. iScience 2018; 4:260-272. [PMID: 30240745 PMCID: PMC6147029 DOI: 10.1016/j.isci.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/18/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
The transcriptional co-activator p300 is essential for p53 transactivation, although its precise role remains unclear. We report that p53 activates the acetyltransferase activity of p300 through the enhancement of p300 autoacetylation. Autoacetylated p300 accumulates near the transcription start sites accompanied by a similar enrichment of activating histone marks near those sites. Abrogation of p53-p300 interaction by a site-directed peptide inhibitor abolished p300-mediated histone acetylation, suggesting a crucial role played by the activation in p53-mediated gene regulation. Gain-of-function mutant p53, known to impart aggressive proliferative properties in tumor cells, also activates p300 autoacetylation. The same peptide abolished many of the gain-of-function properties of mutant p53 as well. Reversal of gain-of-function properties of mutant p53 suggests that molecules targeting the p53-p300 interface may be good candidates for anti-tumor drugs. Wild-type and mutant p53 are potent inducers of p300 autoacetylation p53 activates p300 catalytic activity by altering its structural conformation Induction of p300 autoacetylation possibly enhances p53-targeted gene expression Mutant-p53-induced p300 autoacetylation could be critical for tumorigenicity
Collapse
Affiliation(s)
- Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Smitha Asoka Sahadevan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Shilpa Patil
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Piya Ghosh
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | | | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
24
|
Dhar S, Gursoy-Yuzugullu O, Parasuram R, Price BD. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0284. [PMID: 28847821 DOI: 10.1098/rstb.2016.0284] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) within the complex architecture of the genome requires co-ordination between the DNA repair machinery and chromatin remodelling complexes. This co-ordination is essential to process damaged chromatin and create open chromatin structures which are required for repair. Initially, there is a PARP-dependent recruitment of repressors, including HP1 and several H3K9 methyltransferases, and exchange of histone H2A.Z by the NuA4-Tip60 complex. This creates repressive chromatin at the DSB in which the tail of histone H4 is bound to the acidic patch on the nucleosome surface. These repressor complexes are then removed, allowing rapid acetylation of the H4 tail by Tip60. H4 acetylation blocks interaction between the H4 tail and the acidic patch on adjacent nucleosomes, decreasing inter-nucleosomal interactions and creating open chromatin. Further, the H4 tail is now free to recruit proteins such as 53BP1 to DSBs, a process modulated by H4 acetylation, and provides binding sites for bromodomain proteins, including ZMYND8 and BRD4, which are important for DSB repair. Here, we will discuss how the H4 tail functions as a dynamic hub that can be programmed through acetylation to alter chromatin packing and recruit repair proteins to the break site.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Surbhi Dhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02132, USA
| |
Collapse
|
25
|
Dutta A, Abmayr SM, Workman JL. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function. Mol Cell 2017; 63:547-552. [PMID: 27540855 DOI: 10.1016/j.molcel.2016.06.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs.
Collapse
Affiliation(s)
- Arnob Dutta
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
26
|
Ling F, Tang Y, Li M, Li QS, Li X, Yang L, Zhao W, Jin CC, Zeng Z, Liu C, Wu CF, Chen WW, Lin X, Wang YL, Threadgill MD. Mono-ADP-ribosylation of histone 3 at arginine-117 promotes proliferation through its interaction with P300. Oncotarget 2017; 8:72773-72787. [PMID: 29069825 PMCID: PMC5641168 DOI: 10.18632/oncotarget.20347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Relatively little attention has been paid to ADP-ribosylated modifications of histones, especially to mono-ADP-ribosylation. As an increasing number of mono-ADP-ribosyltransferases have been identified in recent studies, the functions of mono-ADP-ribosylated proteins have aroused research interest. In particular, histones are substrates of some mono-ADP-ribosyltransferases and mono-ADP-ribosylated histone have been detected in physiological or pathological processes. In this research, arginine-117 (Arg-117; R-117) of hsitone3(H3) is identified as the a site of mono-ADP-ribosylation in colon carcinoma(the first such site to be identified); this posttranslational modification may promote the proliferation of colon carcinoma cells in vitro and in vivo. Using a point-mutant lentivirus transfection and using an activator of P300 allowed us to observe the mono-ADP-ribosylation at H3R117 and enhancement of the activity of P300 to up-regulate the level of acetylated β-catenin, which could increase the expression of c-myc and cyclin D1.
Collapse
Affiliation(s)
- Feng Ling
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Cong-Cong Jin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Zhen Zeng
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Cheng-Fang Wu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Wen-Wen Chen
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xiao Lin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
27
|
Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 2017; 18:643-658. [PMID: 28804139 DOI: 10.1038/nrg.2017.57] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chromatin, the template for epigenetic regulation, is a highly dynamic entity that is constantly reshaped during early development and differentiation. Epigenetic modification of chromatin provides the necessary plasticity for cells to respond to environmental and positional cues, and enables the maintenance of acquired information without changing the DNA sequence. The mechanisms involve, among others, chemical modifications of chromatin, changes in chromatin constituents and reconfiguration of chromatin interactions and 3D structure. New advances in genome-wide technologies have paved the way towards an integrative view of epigenome dynamics during cell state transitions, and recent findings in embryonic stem cells highlight how the interplay between different epigenetic layers reshapes the transcriptional landscape.
Collapse
Affiliation(s)
- Yaser Atlasi
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
28
|
Amamoto Y, Aoi Y, Nagashima N, Suto H, Yoshidome D, Arimura Y, Osakabe A, Kato D, Kurumizaka H, Kawashima SA, Yamatsugu K, Kanai M. Synthetic Posttranslational Modifications: Chemical Catalyst-Driven Regioselective Histone Acylation of Native Chromatin. J Am Chem Soc 2017; 139:7568-7576. [DOI: 10.1021/jacs.7b02138] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yoshifumi Amamoto
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Aoi
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Nagashima
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Suto
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Yoshidome
- Schrödinger K. K., 17F Marunouchi
Trust Tower North, 1-8-1 Marunouchi Chiyoda-ku, Tokyo 100-0005, Japan
| | - Yasuhiro Arimura
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Daiki Kato
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory
of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku,
Tokyo 162-8480, Japan
| | - Shigehiro A. Kawashima
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenzo Yamatsugu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Kim SW, Lee KJ, Kim S, Kim J, Cho K, Ro HS, Park HS. Genetic incorporation of N ε-acetyllysine reveals a novel acetylation-sumoylation switch in yeast. Biochim Biophys Acta Gen Subj 2017; 1861:3030-3037. [PMID: 28188860 DOI: 10.1016/j.bbagen.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
The lysine acetylation of proteins plays a key role in regulating protein functions, thereby controlling a wide range of cellular processes. Despite the prevalence and significance of lysine acetylation in eukaryotes, however, its systematic study has been challenged by the technical limitations of conventional approaches for selective lysine acetylation in vivo. Here, we report the in vivo study of lysine acetylation via the genetic incorporation of Nε-acetyllysine in yeast. We demonstrate that a newly discovered acetylation-sumoylation switch precisely controls the localization and cellular function of the yeast septin protein, Cdc11, during the cell cycle. This approach should facilitate the comprehensive in vivo study of lysine acetylation across a wide range of proteins in eukaryotic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinil Kim
- Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jihyo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyukwang Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeon-Su Ro
- Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
30
|
Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 2016; 18:90-101. [PMID: 27924077 DOI: 10.1038/nrm.2016.140] [Citation(s) in RCA: 715] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eight types of short-chain Lys acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and β-hydroxybutyrylation. Emerging evidence suggests that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this Review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, the acylation 'reader' proteins that mediate the effects of different acylations and their physiological functions, which include signal-dependent gene activation, spermatogenesis, tissue injury and metabolic stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by the metabolism of the different acyl-CoA forms, which in turn modulates the regulation of gene expression.
Collapse
|
31
|
Erkina TY, Erkine AM. Nucleosome distortion as a possible mechanism of transcription activation domain function. Epigenetics Chromatin 2016; 9:40. [PMID: 27679670 PMCID: PMC5029090 DOI: 10.1186/s13072-016-0092-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 11/24/2022] Open
Abstract
After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation.
Collapse
Affiliation(s)
- Tamara Y Erkina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| | - Alexandre M Erkine
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN 46208 USA
| |
Collapse
|
32
|
Xia H, Gong Z, Lian Y, Zhou J, Wang X. Gene Expression Profile Regulated by CREB in K562 Cell Line. Transplant Proc 2016; 48:2221-34. [PMID: 27569974 DOI: 10.1016/j.transproceed.2016.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is a member of the CREB/activation transcription factor 1 family that binds to an octanucleotide cAMP response element consensus sequence in promoters of target genes. METHODS CREB has been shown to regulate a variety of cellular functions, including cell proliferation, survival, apoptosis, differentiation, metabolism, hematopoiesis, immune response, and neuronal activity. CREB was also identified as a proto-oncogene involving in transformation by promoting abnormal proliferation and survival of myeloid cells. To understand the mechanism of CREB functions in leukemogenesis, the transcriptional profiles from a K562 cell line in which CREB was knocked down were analyzed with the use of bioinformatics methods. RESULTS DAVID Bioinformatics Resources and Gene Set Enrichment Analysis (GSEA) were performed to identify the targets that are regulated by CREB. A total of 692 genes were up-regulated and 364 genes down-regulated. The up-regulated genes were significantly enriched in pathways of cancer and chronic myeloid leukemia. GSEA analysis showed expression of Notch1 pathway to be decreased and hypoxia-inducible factor (HIF) pathway to be activated. CONCLUSIONS Our results identified candidate gene sets that could be used to guide research on discovering the mechanism of CREB during leukemogenesis.
Collapse
Affiliation(s)
- H Xia
- Department of Blood Transfusion, Dongtai People's Hospital of Jiangsu Province, Dongtai, Jiangsu, People's Republic of China.
| | - Z Gong
- Department of Hematology, Dongtai People's Hospital of Jiangsu Province, Dongtai, Jiangsu, People's Republic of China
| | - Y Lian
- Department of Central Laboratory, Dongtai People's Hospital of Jiangsu Province, Dongtai, Jiangsu, People's Republic of China
| | - J Zhou
- Department of Cardiology, Dongtai People's Hospital of Jiangsu Province, Dongtai, Jiangsu, People's Republic of China
| | - X Wang
- Department of Hematology, Dongtai People's Hospital of Jiangsu Province, Dongtai, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Qiao Y, Qian Y, Wang J, Tang X. Melanoma cell adhesion molecule stimulates yes-associated protein transcription by enhancing CREB activity via c-Jun/c-Fos in hepatocellular carcinoma cells. Oncol Lett 2016; 11:3702-3708. [PMID: 27284374 PMCID: PMC4887844 DOI: 10.3892/ol.2016.4442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/22/2016] [Indexed: 12/14/2022] Open
Abstract
Dysfunction of the yes-associated protein (YAP) signaling pathway has previously been associated with liver tumorigenesis. Recently, the membrane protein melanoma cell adhesion molecule (MCAM) was identified as a novel, hepatocellular carcinoma (HCC)-specific YAP target protein that promotes carcinogenesis in HCC. However, whether MCAM conversely regulates YAP remains unknown. The aim of the current study was to demonstrate whether and how MCAM regulates YAP in HCC cells. The present study demonstrated that MCAM has a positive effect on the regulation of YAP activity and expression. Mechanistically, MCAM stimulated YAP transcription through its downstream effector c-Jun/c-Fos heterodimer. Gain and loss of function analysis by the present study indicated that c-Jun/c-Fos is capable of inducing cAMP response element-binding protein activation, which is a transcription factor that directly binds to the YAP promoter. Finally, it was identified that an impaired transformative phenotype in MCAM- or c-Jun/c-Fos-depleted HCC cells could be partially rescued by simultaneous overexpression of YAP, suggesting that YAP may function as a downstream effector of the MCAM-c-Jun/c-Fos signaling pathway. Collectively, a complete, positive, auto-regulatory loop was established by the present study, in which YAP is not only an upstream regulator, but also a downstream target of MCAM in HCC cells.
Collapse
Affiliation(s)
- Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yunxia Qian
- Shanghai Yueke Bio-Technology Co., Ltd., Shanghai 201200, P.R. China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China; Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Xun Tang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
34
|
Li W, Notani D, Rosenfeld MG. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 2016; 17:207-23. [PMID: 26948815 DOI: 10.1038/nrg.2016.4] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Networks of regulatory enhancers dictate distinct cell identities and cellular responses to diverse signals by instructing precise spatiotemporal patterns of gene expression. However, 35 years after their discovery, enhancer functions and mechanisms remain incompletely understood. Intriguingly, recent evidence suggests that many, if not all, functional enhancers are themselves transcription units, generating non-coding enhancer RNAs. This observation provides a fundamental insight into the inter-regulation between enhancers and promoters, which can both act as transcription units; it also raises crucial questions regarding the potential biological roles of the enhancer transcription process and non-coding enhancer RNAs. Here, we review research progress in this field and discuss several important, unresolved questions regarding the roles and mechanisms of enhancers in gene regulation.
Collapse
Affiliation(s)
- Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Dimple Notani
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92037-0648, USA
| |
Collapse
|
35
|
Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain. Proc Natl Acad Sci U S A 2016; 113:E744-53. [PMID: 26802126 DOI: 10.1073/pnas.1515465113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity. We identify a conserved PC motif adjacent to the chromodomain required for CBP binding and show that PC binding inhibits acetylation of histone H3. CBP autoacetylation impairs PC binding in vitro, and PC is preferentially associated with unacetylated CBP in vivo. PC knockdown elevates the acetylated H3K27 (H3K27ac) level globally and at promoter regions of some genes that are bound by both PC and CBP. Conversely, PC overexpression decreases the H3K27ac level in vivo and also suppresses CBP-dependent Polycomb phenotypes caused by overexpression of Trithorax, an antagonist of Polycomb silencing. We find that PC is physically associated with the initiating form of RNA polymerase II (Pol II) and that many promoters co-occupied by PC and CBP are associated with paused Pol II, suggesting that PC may play a role in Pol II pausing. These results suggest that PC/PRC1 inhibition of CBP HAT activity plays a role in regulating transcription of both repressed and active PC-regulated genes.
Collapse
|
36
|
Ray A, Rana S, Banerjee D, Mitra A, Datta R, Naskar S, Sarkar S. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment. Toxicol Appl Pharmacol 2015; 290:54-65. [PMID: 26612707 DOI: 10.1016/j.taap.2015.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/30/2023]
Abstract
Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy.
Collapse
Affiliation(s)
- Aramita Ray
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| | - Santanu Rana
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| | - Durba Banerjee
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| | - Arkadeep Mitra
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| | - Ritwik Datta
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| | - Shaon Naskar
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| | - Sagartirtha Sarkar
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
37
|
Shi D, Dai C, Qin J, Gu W. Negative regulation of the p300-p53 interplay by DDX24. Oncogene 2015; 35:528-36. [PMID: 25867071 PMCID: PMC4603993 DOI: 10.1038/onc.2015.77] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/15/2022]
Abstract
Numerous studies indicate that p300 acts as a key transcriptional cofactor in vivo, at least, in part, through modulating activities of p53 by acetylation. Nevertheless, the regulation of the p53-p300 interplay is not completely understood. Here, we have identified the DEAD box RNA helicase DDX24 as a novel regulator of the p300-p53 axis. We found that DDX24 interacts with p300, and this interaction leads to suppression of p300 mediated acetylation of p53. Notably, RNAi-mediated knockdown of endogenous DDX24 significantly increases the acetylation levels of endogenous p53 in human cancer cells and subsequently promotes p53-mediated activation of its transcriptional targets such as p21 and PUMA. In contrast, DDX24 expression inhibits the p300-p53 interaction and suppresses p300-mediated acetylation of p53. Moreover, DDX24 is overexpressed in human cancer cells and reduction of DDX24 protein levels by RNAi induces cell cycle arrest and senescence in a p53 dependent manner. These results reveal DDX24 as an important regulator of p300 and suggest that the modulation of the p53-p300 interplay by DDX24 is critical in controlling p53 activities in human cancer cells.
Collapse
Affiliation(s)
- D Shi
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - C Dai
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - J Qin
- Departments of Biochemistry and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - W Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
38
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
39
|
Methods to study histone chaperone function in nucleosome assembly and chromatin transcription. Methods Mol Biol 2015; 1288:375-94. [PMID: 25827892 DOI: 10.1007/978-1-4939-2474-5_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone chaperones are histone interacting proteins that are involved in various stages of histone metabolism in the cell such as histone storage, transport, nucleosome assembly and disassembly. Histone assembly and disassembly are essential processes in certain DNA-templated phenomena such as replication, repair and transcription in eukaryotes. Since the first histone chaperone Nucleoplasmin was discovered in Xenopus, a plethora of histone chaperones have been identified, characterized and their functional significance elucidated in the last 35 years or so. Some of the histone chaperone containing complexes such as FACT have been described to play a significant role in nucleosome disassembly during transcription elongation. We have reported earlier that human Nucleophosmin (NPM1), a histone chaperone belonging to the Nucleoplasmin family, is a co-activator of transcription. In this chapter, we describe several methods that are used to study the histone chaperone activity of proteins and their role in transcription.
Collapse
|
40
|
Chen MK, Cai MY, Luo RZ, Tian X, Liao QM, Zhang XY, Han JD. Overexpression of p300 correlates with poor prognosis in patients with cutaneous squamous cell carcinoma. Br J Dermatol 2014; 172:111-9. [PMID: 24975674 DOI: 10.1111/bjd.13226] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND It has been suggested that the p300 transcriptional coactivator participates in the regulation of a wide range of cell biological processes, and mutations in p300 have been identified in various cancers. OBJECTIVES To investigate p300 expression in cutaneous squamous cell carcinoma (cSCC) tissues and its effect on the outcome of patients with cSCC. METHODS Immunohistochemistry (IHC) was performed on a tissue microarray to investigate p300 expression levels in cSCC tissues. Receiver operating characteristic (ROC) curve analysis, Kaplan-Meier plots and a Cox proportional hazards regression model were used to analyse the data. RESULTS Based on the ROC curves, we defined the cut-off score for high p300 expression as > 55% of tumour cells positively stained. High expression of p300 was observed in 86 of 165 (52·1%) of the cSCC samples and six of 30 (20%) of the adjacent normal skin tissue samples (P < 0·001). High expression of p300 was positively correlated with lymph node metastasis (P = 0·006) and advanced clinical stage (P < 0·001). In univariate survival analysis, high expression of p300 was correlated with poor patient outcomes in terms of recurrence-free survival (P = 0·006) and overall survival (P < 0·001). Moreover, p300 expression was evaluated as an independent prognostic factor in a multivariate analysis (P = 0·004). CONCLUSIONS Our results indicate that high p300 expression is associated with aggressive features of cSCC and suggest that p300 expression, as examined by IHC, will be a promising biomarker for predicting clinical outcomes in patients with cSCC.
Collapse
Affiliation(s)
- M-K Chen
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, Zhongshan Er Road, Guangzhou, Guangdong, 510080, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Siggens L, Ekwall K. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Intern Med 2014; 276:201-14. [PMID: 24605849 DOI: 10.1111/joim.12231] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The organization of the genome into functional units, such as enhancers and active or repressed promoters, is associated with distinct patterns of DNA and histone modifications. The Encyclopedia of DNA Elements (ENCODE) project has advanced our understanding of the principles of genome, epigenome and chromatin organization, identifying hundreds of thousands of potential regulatory regions and transcription factor binding sites. Part of the ENCODE consortium, GENCODE, has annotated the human genome with novel transcripts including new noncoding RNAs and pseudogenes, highlighting transcriptional complexity. Many disease variants identified in genome-wide association studies are located within putative enhancer regions defined by the ENCODE project. Understanding the principles of chromatin and epigenome organization will help to identify new disease mechanisms, biomarkers and drug targets, particularly as ongoing epigenome mapping projects generate data for primary human cell types that play important roles in disease.
Collapse
Affiliation(s)
- L Siggens
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
42
|
Shandilya J, Senapati P, Hans F, Menoni H, Bouvet P, Dimitrov S, Angelov D, Kundu TK. Centromeric histone variant CENP-A represses acetylation-dependent chromatin transcription that is relieved by histone chaperone NPM1. J Biochem 2014; 156:221-7. [PMID: 24839294 DOI: 10.1093/jb/mvu034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mammalian centromeric histone H3 variant, CENP-A, is involved in maintaining the functional integrity and epigenetic inheritance of the centromere. CENP-A causes transcriptional repression of centromeric chromatin through an unknown mechanism. Here, we report that reconstituted CENP-A nucleosomes are amenable to ATP-dependent SWI/SNF-mediated remodelling but are less permissive to acetylation and acetylation-dependent in vitro chromatin transcription. Remarkably, the transcriptional repression of the CENP-A chromatinized template could be relieved by the ectopic addition of histone chaperone, nucleophosmin.
Collapse
Affiliation(s)
- Jayasha Shandilya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| | - Parijat Senapati
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| | - Fabienne Hans
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| | - Hervé Menoni
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| | - Philippe Bouvet
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| | - Stefan Dimitrov
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| | - Dimitar Angelov
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India; Université Joseph Fourier-Grenoble 1, Institut National de la Santé et de la Recherche Médicale, Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9; Université de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5239, Ecole Normale Supérieure de Lyon, Lyon; and Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, 69364 Lyon, France
| |
Collapse
|
43
|
Dou YL, Lin JP, Liu FE, Wang LY, Shu HH, Jiang N, Xie Y, Duan Q. Midazolam inhibits the proliferation of human head and neck squamous carcinoma cells by downregulating p300 expression. Tumour Biol 2014; 35:7499-504. [PMID: 24789432 DOI: 10.1007/s13277-014-1991-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/17/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yun-Ling Dou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China,
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Banerjee A, Majumder P, Sanyal S, Singh J, Jana K, Das C, Dasgupta D. The DNA intercalators ethidium bromide and propidium iodide also bind to core histones. FEBS Open Bio 2014; 4:251-9. [PMID: 24649406 PMCID: PMC3958746 DOI: 10.1016/j.fob.2014.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/17/2023] Open
Abstract
Eukaryotic DNA is compacted in the form of chromatin, in a complex with histones and other non-histone proteins. The intimate association of DNA and histones in chromatin raises the possibility that DNA-interactive small molecules may bind to chromatin-associated proteins such as histones. Employing biophysical and biochemical techniques we have characterized the interaction of a classical intercalator, ethidium bromide (EB) and its structural analogue propidium iodide (PI) with hierarchical genomic components: long chromatin, chromatosome, core octamer and chromosomal DNA. Our studies show that EB and PI affect both chromatin structure and function, inducing chromatin compaction and disruption of the integrity of the chromatosome. Calorimetric studies and fluorescence measurements of the ligands demonstrated and characterized the association of these ligands with core histones and the intact octamer in absence of DNA. The ligands affect acetylation of histone H3 at lysine 9 and acetylation of histone H4 at lysine 5 and lysine 8 ex vivo. PI alters the post-translational modifications to a greater extent than EB. This is the first report showing the dual binding (chromosomal DNA and core histones) property of a classical intercalator, EB, and its longer analogue, PI, in the context of chromatin.
Collapse
Affiliation(s)
- Amrita Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Parijat Majumder
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Sulagna Sanyal
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Jasdeep Singh
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Chandrima Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Dipak Dasgupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| |
Collapse
|
45
|
Zhang B, Wang O, Qin J, Liu S, Sun S, Liu H, Kuang J, Jiang G, Zhang W. cis-Acting elements and trans-acting factors in the transcriptional regulation of raf kinase inhibitory protein expression. PLoS One 2013; 8:e83097. [PMID: 24386147 PMCID: PMC3873293 DOI: 10.1371/journal.pone.0083097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 11/01/2013] [Indexed: 12/16/2022] Open
Abstract
The Raf kinase inhibitory protein (RKIP) is down-regulated in multiple types of human cancers. Decreased RKIP transcription activity may be one of the major mechanisms responsible for the downregulation of RKIP expression in human diseases. To test this hypothesis, we need to gain basic knowledge of the transcriptional regulation of RKIP. To achieve this objective, we made a systematic effort to identify cis-acting elements and trans-acting factors that control RKIP promoter activity. We found that full RKIP promoter activity requires the region −56 to +261 relative to the transcription start site. Within the full promoter region, there are two motifs rich in G/C that responded to transcription factor Sp1, one cAMP-responsive element that responded to the transcription factor CREB, and one docking site for the histone acetylase p300. In human melanoma A375 cells and human cervical cancer HeLa cells, mutation or deletion of each of these cis-acting elements decreased promoter activity. In A375 cells, knockdown of the corresponding transcription factors Sp1, CREB, or p300 decreased RKIP promoter activity, whereas overexpression of CREB and p300 increased RKIP promoter activity. The results obtained with HeLa cells also supported the idea that Sp1 and CREB play positive roles in the regulation of RKIP transcription. These findings suggest that regulators of the expression or activity of Sp1, CREB, and p300 are involved in regulating RKIP transcription.
Collapse
Affiliation(s)
- Boyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ou Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingchao Qin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shuaishuai Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huitu Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
- * E-mail: (GJ); (WZ)
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail: (GJ); (WZ)
| |
Collapse
|
46
|
Feng Y, Wu H, Xu Y, Zhang Z, Liu T, Lin X, Feng XH. Zinc finger protein 451 is a novel Smad corepressor in transforming growth factor-β signaling. J Biol Chem 2013; 289:2072-83. [PMID: 24324267 DOI: 10.1074/jbc.m113.526905] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ZNF451 is a transcriptional cofactor localized to promyelocytic leukemia bodies. Here, we present evidence demonstrating that ZNF451 physically interacts with Smad3/4 and functionally inhibits TGF-β signaling. Increased expression of ZNF451 attenuates TGF-β-induced growth inhibitory and gene transcriptional responses, whereas depletion of ZNF451 enhances TGF-β responses. Mechanistically, ZNF451 blocks the ability of Smad3/4 to recruit p300 in response to TGF-β, which causes reduction of histone H3K9 acetylation on the promoters of TGF-β target genes. Taken together, ZNF451 acts as a transcriptional corepressor for Smad3/4 and negatively regulates TGF-β signaling.
Collapse
Affiliation(s)
- Yili Feng
- From the Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China and
| | | | | | | | | | | | | |
Collapse
|
47
|
Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH, Roeder RG. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 2013; 152:1021-36. [PMID: 23452851 DOI: 10.1016/j.cell.2013.01.052] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/31/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Histone modifications regulate chromatin-dependent processes, yet the mechanisms by which they contribute to specific outcomes remain unclear. H3K4me3 is a prominent histone mark that is associated with active genes and promotes transcription through interactions with effector proteins that include initiation factor TFIID. We demonstrate that H3K4me3-TAF3 interactions direct global TFIID recruitment to active genes, some of which are p53 targets. Further analyses show that (1) H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; (2) H3K4me3, through TAF3 interactions, can act either independently or cooperatively with the TATA box to direct PIC formation and transcription; and (3) H3K4me3-TAF3/TFIID interactions regulate gene-selective functions of p53 in response to genotoxic stress. Our findings indicate a mechanism by which H3K4me3 directs PIC assembly for the rapid induction of specific p53 target genes.
Collapse
Affiliation(s)
- Shannon M Lauberth
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Xiao XS, Cai MY, Chen JW, Guan XY, Kung HF, Zeng YX, Xie D. High Expression of p300 in Human Breast Cancer Correlates with Tumor Recurrence and Predicts Adverse Prognosis. Chin J Cancer Res 2013; 23:201-7. [PMID: 23467396 DOI: 10.1007/s11670-011-0201-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/04/2011] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Transcriptional coactivator p300 has been shown to play a variety of roles in the transcription process and mutation of p300 has been found in certain types of human cancers. However, the expression dynamics of p300 in breast cancer (BC) and its effect on BC patients' prognosis are poorly understood. METHODS In the present study, the methods of tissue microarray and immunohistochemistry (IHC) were used to investigate the protein expression of p300 in BCs. Receiver operating characteristic (ROC) curve analysis, Spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were utilized to analyze the data. RESULTS Based on the ROC curve analysis, the cutoff value for p300 high expression was defined when the H score for p300 was more than 105. High expression of p300 could be observed in 105/193 (54.4%) of BCs, in 6/25 (24.0%) of non-malignant breast tissues, respectively (P=0.004). Further correlation analysis showed that high expression of p300 was positively correlated with higher histological grade, advanced clinical stage and tumor recurrence (P<0.05). In univariate survival analysis, a significant association between high expression of p300 and shortened patients' survival and poor progression-free survival was found (P<0.05). Importantly, p300 expression was evaluated as an independent prognostic factor in multivariate analysis (P<0.05). CONCLUSION Our findings provide a basis for the concept that high expression of p300 in BC may be important in the acquisition of a recurrence phenotype, suggesting that p300 high expression, as examined by IHC, is an independent biomarker for poor prognosis of patients with BC.
Collapse
Affiliation(s)
- Xiang-Sheng Xiao
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China ; Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Minor Groove Binder Distamycin Remodels Chromatin but Inhibits Transcription. PLoS One 2013; 8:e57693. [PMID: 23460895 PMCID: PMC3584068 DOI: 10.1371/journal.pone.0057693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/28/2013] [Indexed: 11/19/2022] Open
|
50
|
Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Tony Kong AN. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem (Cham) 2013; 329:133-62. [PMID: 22836898 PMCID: PMC3924422 DOI: 10.1007/128_2012_340] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress is caused by an imbalance of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and the antioxidative stress defense systems in cells. ROS/RNS or carcinogen metabolites can attack intracellular proteins, lipids, and nucleic acids, which can result in genetic mutations, carcinogenesis, and other diseases. Nrf2 plays a critical role in the regulation of many antioxidative stress/antioxidant and detoxification enzyme genes, such as glutathione S-transferases (GSTs), NAD(P)H:quinone oxidoreductase 1 (NQO1), UDP-glucuronyl transferases (UGTs), and heme oxygenase-1 (HO-1), directly via the antioxidant response element (ARE). Recently, many studies have shown that dietary phytochemicals possess cancer chemopreventive potential through the induction of Nrf2-mediated antioxidant/detoxification enzymes and anti-inflammatory signaling pathways to protect organisms against cellular damage caused by oxidative stress. In addition, carcinogenesis can be caused by epigenetic alterations such as DNA methylation and histone modifications in tumor-suppressor genes and oncogenes. Interestingly, recent studies have shown that several naturally occurring dietary phytochemicals can epigenetically modify the chromatin, including reactivating Nrf2 via demethylation of CpG islands and the inhibition of histone deacetylases (HDACs) and/or histone acetyltransferases (HATs). The advancement and development of dietary phytochemicals in cancer chemoprevention research requires the integration of the known, and as-yet-unknown, compounds with the Nrf2-mediated antioxidant, detoxification, and anti-inflammatory systems and their in vitro and in vivo epigenetic mechanisms; human clinical efficacy studies must also be performed.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Limin Shu
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Tin Oo Khor
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jong Hun Lee
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Francisco Fuentes
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA, Departamento de Agricultura del Desierto y Biotecnología, Universidad Arturo Prat, Casilla 121, Iquique, Chile
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|