1
|
Sieme D, Engelke M, Rezaei-Ghaleh N, Becker S, Wienands J, Griesinger C. Autoinhibition in the Signal Transducer CIN85 Modulates B Cell Activation. J Am Chem Soc 2024; 146:399-409. [PMID: 38111344 PMCID: PMC10786037 DOI: 10.1021/jacs.3c09586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca2+. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both in vitro and in vivo. This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.
Collapse
Affiliation(s)
- Daniel Sieme
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Engelke
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute
of Physical Biology, Heinrich Heine University
Düsseldorf, Universitätsstraße
1, 40225 Düsseldorf, Germany
- Institute
of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Stefan Becker
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute
for Cellular and Molecular Immunology, Georg-August
University Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department
for NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
3
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Bruncsics B, Errington WJ, Sarkar CA. MVsim is a toolset for quantifying and designing multivalent interactions. Nat Commun 2022; 13:5029. [PMID: 36068204 PMCID: PMC9448752 DOI: 10.1038/s41467-022-32496-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim, an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim, we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated. Further, to illustrate the conceptual insights into multivalent systems that MVsim can provide, we apply it to quantitatively predict the ultrasensitivity and performance of multivalent-encoded protein logic gates, evaluate the inherent programmability of multispecificity for selective receptor targeting, and extract rate constants of conformational switching for the SARS-CoV-2 spike protein and model its binding to ACE2 as well as multivalent inhibitors of this interaction. MVsim and instructional tutorials are freely available at https://sarkarlab.github.io/MVsim/ .
Collapse
Affiliation(s)
- Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Wesley J Errington
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455-0215, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455-0215, USA.
| |
Collapse
|
5
|
Ochi S, Iiyama M, Oda M. Interdomain interactions in Grb2 revealed by the conformational stability and CD28 binding analysis. Biophys Chem 2022; 284:106792. [DOI: 10.1016/j.bpc.2022.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
|
6
|
Wada J, Rathnayake U, Jenkins LM, Singh A, Mohammadi M, Appella E, Randazzo PA, Samelson LE. In vitro reconstitution reveals cooperative mechanisms of adapter protein-mediated activation of phospholipase C-γ1 in T cells. J Biol Chem 2022; 298:101680. [PMID: 35124007 PMCID: PMC8908268 DOI: 10.1016/j.jbc.2022.101680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/16/2022] Open
Abstract
Activation of T cells upon engagement of the T cell antigen receptor rapidly leads to a number of phosphorylation and plasma membrane recruitment events. For example, translocation of phospholipase-Cγ1 (PLC−γ1) to the plasma membrane and its association with the transmembrane adapter protein LAT and two other adapter proteins, Gads and SLP-76, are critical events in the early T cell activation process. We have previously characterized the formation of a tetrameric LAT-Gads-SLP-76-PLC−γ1 complex by reconstitution in vitro and have also characterized the thermodynamics of tetramer formation. In the current study, we define how PLC−γ1 recruitment to liposomes, which serve as a plasma membrane surrogate, and PLC−γ1 activation are regulated both independently and additively by recruitment of PLC−γ1 to phosphorylated LAT, by formation of the LAT-Gads-SLP-76-PLC−γ1 tetramer, and by tyrosine phosphorylation of PLC−γ1. The recently solved structure of PLC−γ1 indicates that, in the resting state, several PLC−γ1 domains inhibit its enzymatic activity and contact with the plasma membrane. We propose the multiple cooperative steps that we observed likely lead to conformational alterations in the regulatory domains of PLC−γ1, enabling contact with its membrane substrate, disinhibition of PLC−γ1 enzymatic activity, and production of the phosphoinositide cleavage products necessary for T cell activation.
Collapse
|
7
|
Bruncsics B, Errington WJ, Sarkar CA. MVsim : a toolset for quantifying and designing multivalent interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.01.454686. [PMID: 34373856 PMCID: PMC8351779 DOI: 10.1101/2021.08.01.454686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim , an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim , we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated. We then quantitatively predict the ultrasensitivity and performance of multivalent-encoded protein logic gates, evaluate the inherent programmability of multispecificity for selective receptor targeting, and extract rate constants of conformational switching for the SARS-CoV-2 spike protein and model its binding to ACE2 as well as multivalent inhibitors of this interaction. MVsim is freely available at https://sarkarlab.github.io/MVsim/ .
Collapse
Affiliation(s)
- Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Wesley J. Errington
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455-0215, USA
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455-0215, USA
| |
Collapse
|
8
|
Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Cells 2021; 10:cells10010173. [PMID: 33467043 PMCID: PMC7830187 DOI: 10.3390/cells10010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
SH3 domains constitute an important class of protein modules involved in a variety of cellular functions. They participate in protein-protein interactions via their canonical ligand binding interfaces composed of several evolutionarily conserved aromatic residues forming binding grooves for typical (PxxP) and atypical (PxxxPR, RxxK, RKxxY) binding motifs. The calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1, or Caskin1, a multidomain scaffold protein regulating the cortical actin filaments, is enriched in neural synapses in mammals. Based on its known interaction partners and knock-out animal studies, Caskin1 may play various roles in neural function and it is thought to participate in several pathological processes of the brain. Caskin1 has a single, atypical SH3 domain in which key aromatic residues are missing from the canonical binding groove. No protein interacting partner for this SH3 domain has been identified yet. Nevertheless, we have recently demonstrated the specific binding of this SH3 domain to the signaling lipid mediator lysophospatidic acid (LPA) in vitro. Here we report the solution NMR structure of the human Caskin1 SH3 domain and analyze its structural features in comparison with other SH3 domains exemplifying different strategies in target selectivity. The key differences revealed by our structural study show that the canonical binding groove found in typical SH3 domains accommodating proline-rich motifs is missing in Caskin1 SH3, most likely excluding a bona fide protein target for the domain. The LPA binding site is distinct from the altered protein binding groove. We conclude that the SH3 domain of Caskin1 might mediate the association of Caskin1 with membrane surfaces with locally elevated LPA content.
Collapse
|
9
|
Chytła A, Gajdzik-Nowak W, Olszewska P, Biernatowska A, Sikorski AF, Czogalla A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules 2020; 25:molecules25214954. [PMID: 33114686 PMCID: PMC7662862 DOI: 10.3390/molecules25214954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane palmitoylated proteins (MPPs) are a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). The ubiquitous expression and multidomain structure of MPPs provide the ability to form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing the proper cell structure, polarity and cell adhesion. The formation of MPP-dependent complexes in various cell types seems to be based on similar principles, but involves members of different protein groups, such as 4.1-ezrin-radixin-moesin (FERM) domain-containing proteins, polarity proteins or other MAGUKs, showing their multifaceted nature. In this review, we discuss the function of the MPP family in the formation of multiple protein complexes. Notably, we depict their significant role for cell physiology, as the loss of interactions between proteins involved in the complex has a variety of negative consequences. Moreover, based on recent studies concerning the mechanism of membrane raft formation, we shed new light on a possible role played by MPPs in lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Weronika Gajdzik-Nowak
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Paulina Olszewska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
- Correspondence: ; Tel.: +48-71375-6356
| |
Collapse
|
10
|
Zhou P, Yan F, Miao Q, Chen Z, Wang H. Why the first self-binding peptide of human c-Src kinase does not contain class II motif but can bind to its cognate Src homology 3 domain in class II mode? J Biomol Struct Dyn 2020; 39:310-318. [DOI: 10.1080/07391102.2019.1709547] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
- Center for Information in BioMedicine, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
| | - Fugang Yan
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| | - Qingqing Miao
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| | - Zheng Chen
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| | - Heyi Wang
- Center for Informational Biology, University of Electronic Science and Technology of China (UESTC) at Qingshuihe Campus, Chengdu, China
- School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC) at Shahe Campus, Chengdu, China
| |
Collapse
|
11
|
Mechanisms of noncanonical binding dynamics in multivalent protein-protein interactions. Proc Natl Acad Sci U S A 2019; 116:25659-25667. [PMID: 31776263 DOI: 10.1073/pnas.1902909116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein multivalency can provide increased affinity and specificity relative to monovalent counterparts, but these emergent biochemical properties and their mechanistic underpinnings are difficult to predict as a function of the biophysical properties of the multivalent binding partners. Here, we present a mathematical model that accurately simulates binding kinetics and equilibria of multivalent protein-protein interactions as a function of the kinetics of monomer-monomer binding, the structure and topology of the multidomain interacting partners, and the valency of each partner. These properties are all experimentally or computationally estimated a priori, including approximating topology with a worm-like chain model applicable to a variety of structurally disparate systems, thus making the model predictive without parameter fitting. We conceptualize multivalent binding as a protein-protein interaction network: ligand and receptor valencies determine the number of interacting species in the network, with monomer kinetics and structural properties dictating the dynamics of each species. As predicted by the model and validated by surface plasmon resonance experiments, multivalent interactions can generate several noncanonical macroscopic binding dynamics, including a transient burst of high-energy configurations during association, biphasic equilibria resulting from interligand competition at high concentrations, and multiexponential dissociation arising from differential lifetimes of distinct network species. The transient burst was only uncovered when extending our analysis to trivalent interactions due to the significantly larger network, and we were able to predictably tune burst magnitude by altering linker rigidity. This study elucidates mechanisms of multivalent binding and establishes a framework for model-guided analysis and engineering of such interactions.
Collapse
|
12
|
Arbesú M, Pons M. Integrating disorder in globular multidomain proteins: Fuzzy sensors and the role of SH3 domains. Arch Biochem Biophys 2019; 677:108161. [PMID: 31678340 DOI: 10.1016/j.abb.2019.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins represent about one third of eukaryotic proteins. An additional third correspond to proteins containing folded domains as well as large intrinsically disordered regions (IDR). While IDRs may represent functionally autonomous domains, in some instances it has become clear that they provide a new layer of regulation for the activity displayed by the folded domains. The sensitivity of the conformational ensembles defining the properties of IDR to small changes in the cellular environment and the capacity to modulate this response through post-translational modifications makes IDR ideal sensors enabling continuous, integrative responses to complex cellular inputs. Folded domains (FD), on the other hand, are ideal effectors, e.g. by catalyzing enzymatic reactions or participating in binary on/off switches. In this perspective review we discuss the possible role of intramolecular fuzzy complexes to integrate the very different dynamic scales of IDR and FD, inspired on the recent observations of such dynamic complexes in Src family kinases, and we explore the possible general role of the SH3 domains connecting IDRs and FD.
Collapse
Affiliation(s)
- Miguel Arbesú
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
13
|
Andersen TCB, Kristiansen PE, Huszenicza Z, Johansson MU, Gopalakrishnan RP, Kjelstrup H, Boyken S, Sundvold-Gjerstad V, Granum S, Sørli M, Backe PH, Fulton DB, Karlsson BG, Andreotti AH, Spurkland A. The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein. J Biol Chem 2019; 294:15480-15494. [PMID: 31484725 DOI: 10.1074/jbc.ra119.008318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.
Collapse
Affiliation(s)
- Thorny Cesilie Bie Andersen
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | | | - Zsuzsa Huszenicza
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Maria U Johansson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | | | - Hanna Kjelstrup
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Scott Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Vibeke Sundvold-Gjerstad
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine Granum
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| | - Morten Sørli
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Paul Hoff Backe
- Department of Microbiology, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0424 Oslo, Norway
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - B Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, Gothenburg 413 90, Sweden
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011-1079
| | - Anne Spurkland
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
14
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 PMCID: PMC6669380 DOI: 10.3389/fimmu.2019.01704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Gerth F, Jäpel M, Sticht J, Kuropka B, Schmitt XJ, Driller JH, Loll B, Wahl MC, Pagel K, Haucke V, Freund C. Exon Inclusion Modulates Conformational Plasticity and Autoinhibition of the Intersectin 1 SH3A Domain. Structure 2019; 27:977-987.e5. [DOI: 10.1016/j.str.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
|
16
|
Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, Bochtler M, Sabała I. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep 2019; 9:5965. [PMID: 30979923 PMCID: PMC6461655 DOI: 10.1038/s41598-019-42435-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/29/2019] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus simulans lysostaphin cleaves pentaglycine cross-bridges between stem peptides in the peptidoglycan of susceptible staphylococci, including S. aureus. This enzyme consists of an N-terminal catalytic domain and a cell wall binding domain (SH3b), which anchors the protein to peptidoglycan. Although structures of SH3bs from lysostaphin are available, the binding modes of peptidoglycan to these domains are still unclear. We have solved the crystal structure of the lysostaphin SH3b domain in complex with a pentaglycine peptide representing the peptidoglycan cross-bridge. The structure identifies a groove between β1 and β2 strands as the pentaglycine binding site. The structure suggests that pentaglycine specificity of the SH3b arises partially directly by steric exclusion of Cβ atoms in the ligand and partially indirectly due to the selection of main chain conformations that are easily accessible for glycine, but not other amino acid residues. We have revealed further interactions of SH3b with the stem peptides with the support of bioinformatics tools. Based on the structural data we have attempted engineering of the domain specificity and have investigated the relevance of the introduced substitutions on the domain binding and specificity, also in the contexts of the mature lysostaphin and of its bacteriolytic activity.
Collapse
Affiliation(s)
- Paweł Mitkowski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Filip Stefaniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dorota Niedziałek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
17
|
Yablonski D. Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Front Immunol 2019; 10:1704. [PMID: 31402911 DOI: 10.3389/fimmu.2019.01704/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 05/22/2023] Open
Abstract
Antigen receptor signaling pathways are organized by adaptor proteins. Three adaptors, LAT, Gads, and SLP-76, form a heterotrimeric complex that mediates signaling by the T cell antigen receptor (TCR) and by the mast cell high affinity receptor for IgE (FcεRI). In both pathways, antigen recognition triggers tyrosine phosphorylation of LAT and SLP-76. The recruitment of SLP-76 to phospho-LAT is bridged by Gads, a Grb2 family adaptor composed of two SH3 domains flanking a central SH2 domain and an unstructured linker region. The LAT-Gads-SLP-76 complex is further incorporated into larger microclusters that mediate antigen receptor signaling. Gads is positively regulated by dimerization, which promotes its cooperative binding to LAT. Negative regulation occurs via phosphorylation or caspase-mediated cleavage of the linker region of Gads. FcεRI-mediated mast cell activation is profoundly impaired in LAT- Gads- or SLP-76-deficient mice. Unexpectedly, the thymic developmental phenotype of Gads-deficient mice is much milder than the phenotype of LAT- or SLP-76-deficient mice. This distinction suggests that Gads is not absolutely required for TCR signaling, but may modulate its sensitivity, or regulate a particular branch of the TCR signaling pathway; indeed, the phenotypic similarity of Gads- and Itk-deficient mice suggests a functional connection between Gads and Itk. Additional Gads binding partners include costimulatory proteins such as CD28 and CD6, adaptors such as Shc, ubiquitin regulatory proteins such as USP8 and AMSH, and kinases such as HPK1 and BCR-ABL, but the functional implications of these interactions are not yet fully understood. No interacting proteins or function have been ascribed to the evolutionarily conserved N-terminal SH3 of Gads. Here we explore the biochemical and functional properties of Gads, and its role in regulating allergy, T cell development and T-cell mediated immunity.
Collapse
Affiliation(s)
- Deborah Yablonski
- The Immune Cell Signaling Lab, Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Cooperative assembly of a four-molecule signaling complex formed upon T cell antigen receptor activation. Proc Natl Acad Sci U S A 2018; 115:E11914-E11923. [PMID: 30510001 DOI: 10.1073/pnas.1817142115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T cell antigen receptor encounters foreign antigen during the immune response. Receptor engagement leads to activation of specific protein tyrosine kinases, which then phosphorylate multiple enzymes and adapter proteins. One such enzyme, phospholipase-Cγ1, is responsible for cleavage of a plasma membrane lipid substrate, a phosphoinositide, into two second messengers, diacylglycerol, which activates several enzymes including protein kinase C, and an inositol phosphate, which induces intracellular calcium elevation. In T cells, phospholipase-Cγ1 is recruited to the plasma membrane as part of a four-protein complex containing three adapter molecules. We have used recombinant proteins and synthetic phosphopeptides to reconstitute this quaternary complex in vitro. Extending biophysical tools to study concurrent interactions of the four protein components, we demonstrated the formation and determined the composition of the quaternary complex using multisignal analytical ultracentrifugation, and we characterized the thermodynamic driving forces of assembly by isothermal calorimetry. We demonstrate that the four proteins reversibly associate in a circular arrangement of binding interfaces, each protein interacting with two others. Three interactions are of high affinity, and the fourth is of low affinity, with the assembly of the quaternary complex exhibiting significant enthalpy-entropy compensation as in an entropic switch. Formation of this protein complex enables subsequent recruitment of additional molecules needed to activate phospholipase-Cγ1. Understanding the formation of this complex is fundamental to full characterization of a central pathway in T cell activation. Such knowledge is critical to developing ways in which this pathway can be selectively inhibited.
Collapse
|
19
|
Kokoszka ME, Kall SL, Khosla S, McGinnis JE, Lavie A, Kay BK. Identification of two distinct peptide-binding pockets in the SH3 domain of human mixed-lineage kinase 3. J Biol Chem 2018; 293:13553-13565. [PMID: 29980598 PMCID: PMC6120190 DOI: 10.1074/jbc.ra117.000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3; also known as MAP3K11) is a Ser/Thr protein kinase widely expressed in normal and cancerous tissues, including brain, lung, liver, heart, and skeletal muscle tissues. Its Src homology 3 (SH3) domain has been implicated in MLK3 autoinhibition and interactions with other proteins, including those from viruses. The MLK3 SH3 domain contains a six-amino-acid insert corresponding to the n-Src insert, suggesting that MLK3 may bind additional peptides. Here, affinity selection of a phage-displayed combinatorial peptide library for MLK3's SH3 domain yielded a 13-mer peptide, designated "MLK3 SH3-interacting peptide" (MIP). Unlike most SH3 domain peptide ligands, MIP contained a single proline. The 1.2-Å crystal structure of the MIP-bound SH3 domain revealed that the peptide adopts a β-hairpin shape, and comparison with a 1.5-Å apo SH3 domain structure disclosed that the n-Src loop in SH3 undergoes an MIP-induced conformational change. A 1.5-Å structure of the MLK3 SH3 domain bound to a canonical proline-rich peptide from hepatitis C virus nonstructural 5A (NS5A) protein revealed that it and MIP bind the SH3 domain at two distinct sites, but biophysical analyses suggested that the two peptides compete with each other for SH3 binding. Moreover, SH3 domains of MLK1 and MLK4, but not MLK2, also bound MIP, suggesting that the MLK1-4 family may be differentially regulated through their SH3 domains. In summary, we have identified two distinct peptide-binding sites in the SH3 domain of MLK3, providing critical insights into mechanisms of ligand binding by the MLK family of kinases.
Collapse
Affiliation(s)
| | - Stefanie L Kall
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | | | | | - Arnon Lavie
- Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607
| | - Brian K Kay
- From the Departments of Biological Sciences and
| |
Collapse
|
20
|
Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 2017; 25:1598-1610.e3. [DOI: 10.1016/j.str.2017.07.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
|
21
|
Sukenik S, Frushicheva MP, Waknin-Lellouche C, Hallumi E, Ifrach T, Shalah R, Beach D, Avidan R, Oz I, Libman E, Aronheim A, Lewinson O, Yablonski D. Dimerization of the adaptor Gads facilitates antigen receptor signaling by promoting the cooperative binding of Gads to the adaptor LAT. Sci Signal 2017; 10:10/498/eaal1482. [PMID: 28951535 DOI: 10.1126/scisignal.aal1482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accurate assembly of signalosomes centered on the adaptor protein LAT (linker of activated T cells) is required for antigen receptor signaling in T cells and mast cells. During signalosome assembly, members of the growth factor receptor-bound protein 2 (Grb2) family of cytosolic adaptor proteins bind cooperatively to LAT through interactions with its phosphorylated tyrosine (pTyr) residues. We demonstrated the Src homology 2 (SH2) domain-mediated dimerization of the Grb2 family member, Grb2-related adaptor downstream of Shc (Gads). Gads dimerization was mediated by an SH2 domain interface, which is distinct from the pTyr binding pocket and which promoted cooperative, preferential binding of paired Gads to LAT. This SH2 domain-intrinsic mechanism of cooperativity, which we quantified by mathematical modeling, enabled Gads to discriminate between dually and singly phosphorylated LAT molecules. Mutational inactivation of the dimerization interface reduced cooperativity and abrogated Gads signaling in T cells and mast cells. The dimerization-dependent, cooperative binding of Gads to LAT may increase antigen receptor sensitivity by reducing signalosome formation at incompletely phosphorylated LAT molecules, thereby prioritizing the formation of complete signalosomes.
Collapse
Affiliation(s)
- Sigalit Sukenik
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Maria P Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Cecilia Waknin-Lellouche
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Enas Hallumi
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Talia Ifrach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Rose Shalah
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Dvora Beach
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Reuven Avidan
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ilana Oz
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Evgeny Libman
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ami Aronheim
- Department of Cell Biology and Cancer Science, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Oded Lewinson
- Department of Biochemistry, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Deborah Yablonski
- Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel.
| |
Collapse
|
22
|
LFA-1 activates focal adhesion kinases FAK1/PYK2 to generate LAT-GRB2-SKAP1 complexes that terminate T-cell conjugate formation. Nat Commun 2017; 8:16001. [PMID: 28699640 PMCID: PMC5510181 DOI: 10.1038/ncomms16001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/23/2017] [Indexed: 01/27/2023] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1) affinity and avidity changes have been assumed to mediate adhesion to intercellular adhesion molecule-1 for T-cell conjugation to dendritic cells (DC). Although the T-cell receptor (TCR) and LFA-1 can generate intracellular signals, the immune cell adaptor protein linker for the activation of T cells (LAT) couples the TCR to downstream events. Here, we show that LFA-1 can mediate both adhesion and de-adhesion, dependent on receptor clustering. Although increased affinity mediates adhesion, LFA-1 cross-linking induced the association and activation of the protein-tyrosine kinases FAK1/PYK1 that phosphorylated LAT selectively on a single Y-171 site for the binding to adaptor complex GRB-2-SKAP1. LAT-GRB2-SKAP1 complexes were distinct from canonical LAT-GADs-SLP-76 complexes. LFA-1 cross-linking increased the presence of LAT-GRB2-SKAP1 complexes relative to LAT-GADs-SLP-76 complexes. LFA-1-FAK1 decreased T-cell-dendritic cell (DC) dwell times dependent on LAT-Y171, leading to reduced DO11.10 T cell binding to DCs and proliferation to OVA peptide. Overall, our findings outline a new model for LFA-1 in which the integrin can mediate both adhesion and de-adhesion events dependent on receptor cross-linking. The T-cell integrin LFA-1 binds ICAM-1 on antigen presenting cells to affect TCR-MHC interactions. Here the authors show detailed mechanics of how LFA-1 ligation affects T-cell conjugation to dendritic cells to regulate adhesion and de-adhesion of these cells in the context of antigen presentation.
Collapse
|
23
|
Arya R, Dangi RS, Makwana PK, Kumar A, Upadhyay SK, Sundd M. Grb2 carboxyl-terminal SH3 domain can bivalently associate with two ligands, in an SH3 dependent manner. Sci Rep 2017; 7:1284. [PMID: 28455498 PMCID: PMC5430726 DOI: 10.1038/s41598-017-01364-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
Src homology domain containing leukocyte protein of 65 kDa (SLP65), the growth factor receptor binding protein 2 (Grb2), and the guanine nucleotide exchange factor for the Rho family GTPases (Vav), self associate in unstimulated B cells as components of the preformed B cell receptor transducer module, in an SH3-dependent manner. The complex enables the B cell to promptly respond to BCR aggregation, resulting in signal amplification. It also facilitates Vav translocation to the membrane rafts, for activation. Here we uncover the molecular mechanism by which the complex may be formed in the B cell. The C-terminal SH3 domain (SH3C) of Grb2 bivalently interacts with the atypical non-PxxP proline rich region of SLP65, and the N-terminal SH3 domain (SH3N) of Vav, both the interactions crucial for the proper functioning of the B cell. Most surprisingly, the two ligands bind the same ligand binding site on the surface of Grb2 SH3C. Addition of SLP65 peptide to the Grb2-Vav complex abrogates the interaction completely, displacing Vav. However, the addition of Vav SH3N to the SLP65-Grb2 binary complex, results in a trimeric complex. Extrapolating these results to the in vivo conditions, Grb2 should bind the SLP65 transducer module first, and then Vav should associate.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - Rohit Singh Dangi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Pinakin K Makwana
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Ambrish Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Santosh Kumar Upadhyay
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110 020, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
24
|
Kelil A, Dubreuil B, Levy ED, Michnick SW. Exhaustive search of linear information encoding protein-peptide recognition. PLoS Comput Biol 2017; 13:e1005499. [PMID: 28426660 PMCID: PMC5417721 DOI: 10.1371/journal.pcbi.1005499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/04/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022] Open
Abstract
High-throughput in vitro methods have been extensively applied to identify linear information that encodes peptide recognition. However, these methods are limited in number of peptides, sequence variation, and length of peptides that can be explored, and often produce solutions that are not found in the cell. Despite the large number of methods developed to attempt addressing these issues, the exhaustive search of linear information encoding protein-peptide recognition has been so far physically unfeasible. Here, we describe a strategy, called DALEL, for the exhaustive search of linear sequence information encoded in proteins that bind to a common partner. We applied DALEL to explore binding specificity of SH3 domains in the budding yeast Saccharomyces cerevisiae. Using only the polypeptide sequences of SH3 domain binding proteins, we succeeded in identifying the majority of known SH3 binding sites previously discovered either in vitro or in vivo. Moreover, we discovered a number of sites with both non-canonical sequences and distinct properties that may serve ancillary roles in peptide recognition. We compared DALEL to a variety of state-of-the-art algorithms in the blind identification of known binding sites of the human Grb2 SH3 domain. We also benchmarked DALEL on curated biological motifs derived from the ELM database to evaluate the effect of increasing/decreasing the enrichment of the motifs. Our strategy can be applied in conjunction with experimental data of proteins interacting with a common partner to identify binding sites among them. Yet, our strategy can also be applied to any group of proteins of interest to identify enriched linear motifs or to exhaustively explore the space of linear information encoded in a polypeptide sequence. Finally, we have developed a webserver located at http://michnick.bcm.umontreal.ca/dalel, offering user-friendly interface and providing different scenarios utilizing DALEL. Here we describe the first strategy for the exhaustive search of the linear information encoding protein-peptide recognition; an approach that has previously been physically unfeasible because the combinatorial space of polypeptide sequences is too vast. The search covers the entire space of sequences with no restriction on motif length or composition, and includes all possible combinations of amino acids at distinct positions of each sequence, as well as positions with correlated preferences for amino acids.
Collapse
Affiliation(s)
- Abdellali Kelil
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D. Levy
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephen W. Michnick
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
A lack of peptide binding and decreased thermostability suggests that the CASKIN2 scaffolding protein SH3 domain may be vestigial. BMC STRUCTURAL BIOLOGY 2016; 16:14. [PMID: 27619958 PMCID: PMC5020537 DOI: 10.1186/s12900-016-0065-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 11/10/2022]
Abstract
Background CASKIN2 is a neuronal signaling scaffolding protein comprised of multiple ankyrin repeats, two SAM domains, and one SH3 domain. The CASKIN2 SH3 domain for an NMR structural determination because its peptide-binding cleft appeared to deviate from the repertoire of aromatic enriched amino acids that typically bind polyproline-rich sequences. Results The structure demonstrated that two non-canonical basic amino acids (K290/R319) in the binding cleft were accommodated well in the SH3 fold. An K290Y/R319W double mutant restoring the typical aromatic amino acids found in the binding cleft resulted in a 20 °C relative increase in the thermal stability. Considering the reduced stability, we speculated that the CASKIN2 SH3 could be a nonfunctional remnant in this scaffolding protein. Conclusions While the NMR structure demonstrates that the CASKIN2 SH3 domain is folded, its cleft has suffered two substitutions that prevent it from binding typical polyproline ligands. This observation led us to additionally survey and describe other SH3 domains in the Protein Data Bank that may have similarly lost their ability to promote protein-protein interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12900-016-0065-5) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Kazlauskas A, Schmotz C, Kesti T, Hepojoki J, Kleino I, Kaneko T, Li SSC, Saksela K. Large-Scale Screening of Preferred Interactions of Human Src Homology-3 (SH3) Domains Using Native Target Proteins as Affinity Ligands. Mol Cell Proteomics 2016; 15:3270-3281. [PMID: 27440912 DOI: 10.1074/mcp.m116.060483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
The Src Homology-3 (SH3) domains are ubiquitous protein modules that mediate important intracellular protein interactions via binding to short proline-rich consensus motifs in their target proteins. The affinity and specificity of such core SH3 - ligand contacts are typically modest, but additional binding interfaces can give rise to stronger and more specific SH3-mediated interactions. To understand how commonly such robust SH3 interactions occur in the human protein interactome, and to identify these in an unbiased manner we have expressed 324 predicted human SH3 ligands as full-length proteins in mammalian cells, and screened for their preferred SH3 partners using a phage display-based approach. This discovery platform contains an essentially complete repertoire of the ∼300 human SH3 domains, and involves an inherent binding threshold that ensures selective identification of only SH3 interactions with relatively high affinity. Such strong and selective SH3 partners could be identified for only 19 of these 324 predicted ligand proteins, suggesting that the majority of human SH3 interactions are relatively weak, and thereby have capacity for only modest inherent selectivity. The panel of exceptionally robust SH3 interactions identified here provides a rich source of leads and hypotheses for further studies. However, a truly comprehensive characterization of the human SH3 interactome will require novel high-throughput methods based on function instead of absolute binding affinity.
Collapse
Affiliation(s)
- Arunas Kazlauskas
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Constanze Schmotz
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Kesti
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Hepojoki
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iivari Kleino
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tomonori Kaneko
- §Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Shawn S C Li
- §Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kalle Saksela
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland;
| |
Collapse
|
27
|
Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Proc Natl Acad Sci U S A 2016; 113:E3862-71. [PMID: 27317745 DOI: 10.1073/pnas.1518469113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.
Collapse
|
28
|
Gkourtsa A, van den Burg J, Avula T, Hochstenbach F, Distel B. Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167-3 SH3 domain. Microbiol Res 2016; 190:27-36. [PMID: 27393996 DOI: 10.1016/j.micres.2016.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Src-homology 3 (SH3) domains are small protein-protein interaction modules. While most SH3 domains bind to proline-x-x-proline (PxxP) containing motifs in their binding partners, some SH3 domains recognize motifs other than proline-based sequences. Recently, we showed that the SH3 domain of Candida albicans Rvs167-3 binds peptides enriched in hydrophobic residues and containing a single proline residue (RΦxΦxΦP, where x is any amino acid and Φ is a hydrophobic residue). Here, we demonstrate that the proline in this motif is not required for Rvs167-3 SH3 recognition. Through mutagenesis studies we show that binding of the peptide ligand involves the conserved tryptophan in the canonical PxxP binding pocket as well as residues in the extended n-Src loop of Rvs167-3 SH3. Our studies establish a novel, proline-independent, binding sequence for Rvs167-3 SH3 (RΦxΦxΦ) that is comprised of a positively charged residue (arginine) and three hydrophobic residues.
Collapse
Affiliation(s)
- Areti Gkourtsa
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Janny van den Burg
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Teja Avula
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Frans Hochstenbach
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. J Biol Chem 2015; 290:26422-9. [PMID: 26354432 DOI: 10.1074/jbc.r115.665869] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the cloning of the critical adapter, LAT (linker for activation of T cells), more than 15 years ago, a combination of multiple scientific approaches and techniques continues to provide valuable insights into the formation, composition, regulation, dynamics, and function of LAT-based signaling complexes. In this review, we will summarize current views on the assembly of signaling complexes nucleated by LAT. LAT forms numerous interactions with other signaling molecules, leading to cooperativity in the system. Furthermore, oligomerization of LAT by adapter complexes enhances intracellular signaling and is physiologically relevant. These results will be related to data from super-resolution microscopy studies that have revealed the smallest LAT-based signaling units and nanostructure.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Robert L Kortum
- the Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Nathan P Coussens
- the Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Valarie A Barr
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256
| | - Lawrence E Samelson
- From the Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256,
| |
Collapse
|
30
|
Witsenburg JJ, Sinzinger MD, Stoevesandt O, Ruttekolk IR, Roth G, Adjobo-Hermans MJW, Brock R. A peptide-functionalized polymer as a minimal scaffold protein to enhance cluster formation in early T cell signal transduction. Chembiochem 2015; 16:602-10. [PMID: 25663649 DOI: 10.1002/cbic.201402622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 12/28/2022]
Abstract
In cellular signal transduction, scaffold proteins provide binding sites to organize signaling proteins into supramolecular complexes and act as nodes in the signaling network. Furthermore, multivalent interactions between the scaffold and other signaling proteins contribute to the formation of protein microclusters. Such microclusters are prominent in early T cell signaling. Here, we explored the minimal structural requirement for a scaffold protein by coupling multiple copies of a proline-rich peptide corresponding to an interaction motif for the SH3 domain of the adaptor protein GADS to an N-(2-hydroxypropyl)methacrylamide polymer backbone. When added to GADS-containing cell lysates, these scaffolds (but not individual peptides) promoted the binding of GADS to peptide microarrays. This can be explained by the cross-linking of GADS into larger complexes. Furthermore, following import into Jurkat T cell leukemia cells, this synthetic scaffold enhanced the formation of microclusters of signaling proteins.
Collapse
Affiliation(s)
- J Joris Witsenburg
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen (The Netherlands)
| | | | | | | | | | | | | |
Collapse
|
31
|
The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro. Biosci Rep 2014; 34:e00157. [PMID: 25343306 PMCID: PMC4266924 DOI: 10.1042/bsr20140149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex. MBP interacts with Fyn kinase during oligodendrocyte development and myelination. We show that there is no binding-induced PPII formation in the primary ligand segment, and that a region upstream is required for in vitro interaction.
Collapse
|
32
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
33
|
Yu H, Zhou P, Deng M, Shang Z. Indirect Readout in Protein-Peptide Recognition: A Different Story from Classical Biomolecular Recognition. J Chem Inf Model 2014; 54:2022-32. [DOI: 10.1021/ci5000246] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Peng Zhou
- Center
of Bioinformatics (COBI), School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | | | | |
Collapse
|
34
|
Kundu K, Costa F, Backofen R. A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains. Bioinformatics 2013; 29:i335-43. [PMID: 23813002 PMCID: PMC3694653 DOI: 10.1093/bioinformatics/btt220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MOTIVATION State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. RESULTS Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). AVAILABILITY The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kousik Kundu
- Bioinformatics Group, Department of Computer Science, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
| | | | | |
Collapse
|
35
|
Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Cell Signal 2013; 25:2702-8. [DOI: 10.1016/j.cellsig.2013.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 08/30/2013] [Indexed: 01/17/2023]
|
36
|
Han KQ, Wu G, Lv F. Development of QSAR-Improved Statistical Potential for the Structure-Based Analysis of ProteinPeptide Binding Affinities. Mol Inform 2013; 32:783-92. [DOI: 10.1002/minf.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
|
37
|
Schwarten M, Sólyom Z, Feuerstein S, Aladağ A, Hoffmann S, Willbold D, Brutscher B. Interaction of Nonstructural Protein 5A of the Hepatitis C Virus with Src Homology 3 Domains Using Noncanonical Binding Sites. Biochemistry 2013; 52:6160-8. [DOI: 10.1021/bi400363v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Melanie Schwarten
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Zsófia Sólyom
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Sophie Feuerstein
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| | - Amine Aladağ
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Silke Hoffmann
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Institute
of Complex Systems (ICS-6) Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Bernhard Brutscher
- Institut
de Biologie Structurale, Université Grenoble 1, 41 rue Jules
Horowitz, 38027 Grenoble Cedex 1, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
- Centre National de Recherche Scientifique (CNRS), Grenoble, France
| |
Collapse
|
38
|
Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 2012; 367:2556-73. [PMID: 22889907 DOI: 10.1098/rstb.2012.0107] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Src homology 2 (SH2) domains mediate selective protein-protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
39
|
Secondary structure, a missing component of sequence-based minimotif definitions. PLoS One 2012; 7:e49957. [PMID: 23236358 PMCID: PMC3517595 DOI: 10.1371/journal.pone.0049957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022] Open
Abstract
Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis of occurrences of minimotifs in structured and disordered regions of proteins, and review of the literature support a new model for minimotif definitions that includes sequence, structure, and function.
Collapse
|
40
|
Lange A, Ismail MB, Rivière G, Hologne M, Lacabanne D, Guillière F, Lancelin JM, Krimm I, Walker O. Competitive binding of UBPY and ubiquitin to the STAM2 SH3 domain revealed by NMR. FEBS Lett 2012; 586:3379-84. [PMID: 22841719 DOI: 10.1016/j.febslet.2012.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
To date, the signal transducing adaptor molecule 2 (STAM2) was shown to harbour two ubiquitin binding domains (UBDs) known as the VHS and UIM domains, while the SH3 domain of STAM2 was reported to interact with deubiquitinating enzymes (DUBs) like UBPY and AMSH. In the present study, NMR evidences the interaction of the STAM2 SH3 domain with ubiquitin, demonstrating that SH3 constitutes the third UBD of STAM2. Furthermore, we show that a UBPY-derived peptide can outcompete ubiquitin for SH3 binding and vice versa. These results suggest that the SH3 domain of STAM2 plays versatile roles in the context of ubiquitin mediated receptor sorting.
Collapse
Affiliation(s)
- Anja Lange
- Université de Lyon, Université Claude Bernard Lyon1, CNRS, UMR 5280 Institut des Sciences Analytiques, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. FEBS Lett 2012; 586:2619-30. [DOI: 10.1016/j.febslet.2012.04.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023]
|
42
|
Saksela K, Permi P. SH3 domain ligand binding: What's the consensus and where's the specificity? FEBS Lett 2012; 586:2609-14. [PMID: 22710157 DOI: 10.1016/j.febslet.2012.04.042] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
An increasing number of SH3 domain-ligand interactions continue to be described that involve the conserved peptide-binding surface of SH3, but structurally deviate substantially from canonical docking of consensus motif-containing SH3 ligands. Indeed, it appears that that the relative frequency and importance of these types of interactions may have been underestimated. Instead of atypical, we propose referring to such peptides as type I or II (depending on the binding orientation) non-consensus ligands. Here we discuss the structural basis of non-consensus SH3 ligand binding and the dominant role of the SH3 domain specificity zone in selective target recognition, and review some of the best-characterized examples of such interactions.
Collapse
Affiliation(s)
- Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and HUSLAB, University of Helsinki Central Hospital, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
43
|
Carducci M, Perfetto L, Briganti L, Paoluzi S, Costa S, Zerweck J, Schutkowski M, Castagnoli L, Cesareni G. The protein interaction network mediated by human SH3 domains. Biotechnol Adv 2011; 30:4-15. [PMID: 21740962 DOI: 10.1016/j.biotechadv.2011.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/31/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
Families of conserved protein domains, specialized in mediating interactions with short linear peptide motifs, are responsible for the formation of a variety of dynamic complexes in the cell. An important subclass of these motifs are characterized by a high proline content and play a pivotal role in biological processes requiring the coordinated assembly of multi-protein complexes. This is achieved via interaction of proteins containing modules such as Src Homology-3 (SH3) or WW domains and specific proline rich patterns. Here we make available via a publicly accessible database a synopsis of our current understanding of the interaction landscape of the human SH3 protein family. This is achieved by integrating an information extraction strategy with a new experimental approach. In a first approach we have used a text mining strategy to capture a large number of manuscripts reporting interactions between SH3 domains and target peptides. Relevant information was annotated in the MINT database. In a second experimental approach we have used a variant of the WISE (Whole Interactome Scanning Experiment) strategy to probe a large number of naturally occurring and chemically-synthesized peptides arrayed at high density on a glass surface. By this method we have tested 60 human SH3 domains for their ability to bind a collection of 9192 poly-proline containing peptides immobilized on a glass chip. To evaluate the quality of the resulting interaction dataset, we retested some of the interactions on a smaller scale and performed a series of pull down experiments on native proteins. Peptide chips, pull down assays, SPOT synthesis and phage display experiments have allowed us to further characterize the specificity and promiscuity of proline-rich binding domains and to map their interaction network. Both the information captured from the literature and the interactions inferred from the peptide chip experiments were collected and stored in the PepspotDB (http://mint.bio.uniroma2.it/PepspotDB/).
Collapse
Affiliation(s)
- Martina Carducci
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ozawa T, Okazaki K, Kitaura K. Importance of CH/π hydrogen bonds in recognition of the core motif in proline-recognition domains: an ab initio fragment molecular orbital study. J Comput Chem 2011; 32:2774-82. [PMID: 21710635 DOI: 10.1002/jcc.21857] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/07/2022]
Abstract
We examined CH/π hydrogen bonds in protein/ligand complexes involving at least one proline residue using the ab initio fragment molecular orbital (FMO) method and the program CHPI. FMO calculations were carried out at the Hartree-Fock (HF)/6-31G*, HF/6-31G**, second-order Møller-Plesset perturbation (MP2)/6-31G*, and MP2/6-31G** levels for three Src homology 3 (SH3) domains and five proline-recognition domains (PRDs) complexed with their corresponding ligand peptides. PRDs use a conserved set of aromatic residues to recognize proline-rich sequences of specific ligands. Many CH/π hydrogen bonds were identified in these complexes. CH/π hydrogen bonds occurred, in particular, in the central part of the proline-rich motifs. Our results suggest that CH/π hydrogen bonds are important in the recognition of SH3 and PRDs by their ligand peptides and play a vital role in the signal transduction system. Combined use of the FMO method and CHPI analysis is a valuable tool for the study of protein/protein and protein/ligand interactions and may be useful in rational drug design.
Collapse
Affiliation(s)
- Tomonaga Ozawa
- Central Research Laboratory, Kissei Pharmaceutical Company Ltd, Azumino-city, Nagano, 399-8304, Japan.
| | | | | |
Collapse
|
45
|
Primeau M, Ouadda ABD, Lamarche-Vane N. Cdc42 GTPase-activating protein (CdGAP) interacts with the SH3D domain of Intersectin through a novel basic-rich motif. FEBS Lett 2011; 585:847-53. [DOI: 10.1016/j.febslet.2011.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/24/2011] [Accepted: 02/10/2011] [Indexed: 12/26/2022]
|
46
|
Kaneko T, Sidhu SS, Li SSC. Evolving specificity from variability for protein interaction domains. Trends Biochem Sci 2011; 36:183-90. [PMID: 21227701 DOI: 10.1016/j.tibs.2010.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/18/2022]
Abstract
An important question in modular domain-peptide interactions, which play crucial roles in many biological processes, is how the diverse specificities exhibited by different members of a domain family are encoded in a common scaffold. Analysis of the Src homology (SH) 2 family has revealed that its specificity is determined, in large part, by the configuration of surface loops that regulate ligand access to binding pockets. In a distinct manner, SH3 domains employ loops for ligand recognition. The PDZ domain, in contrast, achieves specificity by co-evolution of binding-site residues. Thus, the conformational and sequence variability afforded by surface loops and binding sites provides a general mechanism by which to encode the wide spectrum of specificities observed for modular protein interaction domains.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | |
Collapse
|
47
|
Berlin I, Schwartz H, Nash PD. Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8·STAM complex. J Biol Chem 2010; 285:34909-21. [PMID: 20736164 PMCID: PMC2966105 DOI: 10.1074/jbc.m109.016287] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/02/2010] [Indexed: 11/06/2022] Open
Abstract
Reversible ubiquitination of activated receptor complexes signals their sorting between recycling and degradation and thereby dictates receptor fate. The deubiquitinating enzyme ubiquitin-specific protease 8 (USP8/UBPy) has been previously implicated in the regulation of the epidermal growth factor receptor (EGFR); however, the molecular mechanisms governing its recruitment and activity in this context remain unclear. Herein, we investigate the role of USP8 in countering ligand-induced ubiquitination and down-regulation of EGFR and characterize a subset of protein-protein interaction determinants critical for this function. USP8 depletion accelerates receptor turnover, whereas loss of hepatocyte growth factor-regulated substrate (Hrs) rescues this phenotype, indicating that USP8 protects EGFR from degradation via an Hrs-dependent pathway. Catalytic inactivation of USP8 incurs EGFR hyperubiquitination and promotes receptor localization to endosomes marked by high ubiquitin content. These phenotypes require the central region of USP8, containing three extended Arg-X-X-Lys (RXXK) motifs that specify direct low affinity interactions with the SH3 domain(s) of ESCRT-0 proteins, STAM1/2. The USP8·STAM complex critically impinges on receptor ubiquitination status and modulates ubiquitin dynamics on EGFR-positive endosomes. Consequently, USP8-mediated deubiquitination slows progression of EGFR past the early-to-recycling endosome circuit in a manner dependent upon the RXXK motifs. Collectively, these findings demonstrate a role for the USP8·STAM complex as a protective mechanism regulating early endosomal sorting of EGFR between pathways destined for lysosomal degradation and recycling.
Collapse
Affiliation(s)
- Ilana Berlin
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Heather Schwartz
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Piers D. Nash
- From the Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
48
|
Kaieda S, Matsui C, Mimori-Kiyosue Y, Ikegami T. Structural basis of the recognition of the SAMP motif of adenomatous polyposis coli by the Src-homology 3 domain. Biochemistry 2010; 49:5143-53. [PMID: 20509626 DOI: 10.1021/bi100563z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elucidation of the basis of interactions between biological molecules is essential for the understanding of living systems. Src-homology 3 (SH3) domains play critical roles in interaction networks of proteins by recognizing a proline-rich sequence motif, PxxP. There are, however, several SH3 domains that specifically bind to polypeptide chains without the conventional recognition sequence. The SH3 domain of DDEF1 associates with the SAMP motifs of the adenomatous polyposis coli (APC) tumor suppressor. The SAMP motifs are indispensable for the normal function of APC in tumor suppression. Here we present the structural basis of the interaction between the DDEF1-SH3 domain and the APC-SAMP motifs. We determined the solution structures of the DDEF1-SH3 domain both in a free state and in a complex with APC-SAMP. As the affinity of the interaction was not sufficiently high for the determination of the complex structure in solution by conventional methods, we utilized a fusion protein of the DDEF1-SH3 domain and APC-SAMP. The structures revealed that the SAMP motif adopts a class II polyproline type II helix even though it does not contain the PxxP motif and that a characteristically large hydrophobic pocket of the SH3 domain confers high selectivity to the interaction. Furthermore, investigation into the backbone dynamics of the free and bound systems by NMR spin relaxation experiments demonstrated that the DDEF1-SH3 domain exhibits high flexibility at the peptide recognition site in the absence of the ligand and that most residues of the APC-SAMP motif display extensive local motions even in the stable complex.
Collapse
Affiliation(s)
- Shuji Kaieda
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
49
|
Liu BA, Jablonowski K, Shah EE, Engelmann BW, Jones RB, Nash PD. SH2 domains recognize contextual peptide sequence information to determine selectivity. Mol Cell Proteomics 2010; 9:2391-404. [PMID: 20627867 DOI: 10.1074/mcp.m110.001586] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selective ligand recognition by modular protein interaction domains is a primary determinant of specificity in signaling pathways. Src homology 2 (SH2) domains fulfill this capacity immediately downstream of tyrosine kinases, acting to recruit their host polypeptides to ligand proteins harboring phosphorylated tyrosine residues. The degree to which SH2 domains are selective and the mechanisms underlying selectivity are fundamental to understanding phosphotyrosine signaling networks. An examination of interactions between 50 SH2 domains and a set of 192 phosphotyrosine peptides corresponding to physiological motifs within FGF, insulin, and IGF-1 receptor pathways indicates that individual SH2 domains have distinct recognition properties and exhibit a remarkable degree of selectivity beyond that predicted by previously described binding motifs. The underlying basis for such selectivity is the ability of SH2 domains to recognize both permissive amino acid residues that enhance binding and non-permissive amino acid residues that oppose binding in the vicinity of the essential phosphotyrosine. Neighboring positions affect one another so local sequence context matters to SH2 domains. This complex linguistics allows SH2 domains to distinguish subtle differences in peptide ligands. This newly appreciated contextual dependence substantially increases the accessible information content embedded in the peptide ligands that can be effectively integrated to determine binding. This concept may serve more broadly as a paradigm for subtle recognition of physiological ligands by protein interaction domains.
Collapse
Affiliation(s)
- Bernard A Liu
- Ben May Department for Cancer Research and Committee on Cancer Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
50
|
Saiepour L, Fuchs C, Patrizi A, Sassoè-Pognetto M, Harvey RJ, Harvey K. Complex role of collybistin and gephyrin in GABAA receptor clustering. J Biol Chem 2010; 285:29623-31. [PMID: 20622020 DOI: 10.1074/jbc.m110.121368] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gephyrin and collybistin are key components of GABA(A) receptor (GABA(A)R) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABA(A)R subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABA(A)R α2 and α3 subunit intracellular M3-M4 domain (but not α1, α4, α5, α6, β1-3, or γ1-3) with gephyrin. Curiously, GABA(A)R α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABA(A)R α2 also overlap at the start of the gephyrin E domain. This suggests that although GABA(A)R α3 interacts with gephyrin, GABA(A)R α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABA(A)R α2 and collybistin or GABA(A)R α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABA(A)R α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABA(A)R α2 is capable of "activating " collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABA(A)R α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABA(A)R and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABA(A)Rs, but not GlyRs or other GABA(A)R subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABA(A)Rs containing the α2 subunit.
Collapse
Affiliation(s)
- Leila Saiepour
- Department of Pharmacology, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | | | | | | | |
Collapse
|