1
|
Mutte SK, Barendse P, Ugarte PB, Swarts DC. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems. Cell Rep 2025; 44:115110. [PMID: 39752253 DOI: 10.1016/j.celrep.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination. Our results reveal the widespread presence of RecA, SSB, and RecOR proteins and phyla-specific distribution for the DNA repair complexes RecBCD, AddAB, and AdnAB. Furthermore, we report co-occurrences of DNA repair proteins with immune systems, including specific CRISPR-Cas subtypes, prokaryotic Argonautes (pAgos), dGTPases, GAPS2, and Wadjet. Our results imply that while certain DNA repair proteins and immune systems might function in conjunction, no immune system strictly relies on a specific DNA repair protein. As such, these findings offer an updated perspective on the distribution of DNA repair systems and their connection to immune systems in bacteria.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands; MyGen Informatics, 6706 JE Wageningen, the Netherlands
| | - Patrick Barendse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | | | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
2
|
Mudgal S, Goyal N, Kasi M, Saginela R, Singhal A, Nandi S, Mahmud AKMF, Muniyappa K, Sinha KM. Cyclic di-AMP regulates genome stability and drug resistance in Mycobacterium through RecA-dependent and RecA-independent recombination. PNAS NEXUS 2024; 3:pgae555. [PMID: 39697181 PMCID: PMC11653572 DOI: 10.1093/pnasnexus/pgae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
In Escherichia coli, RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability. Along these lines, we previously demonstrated that the second messenger cyclic di-AMP (c-di-AMP) binds to mycobacterial RecA proteins, but not to E. coli RecA, and inhibits its DNA strand exchange activity in vitro via the disassembly of RecA nucleoprotein filaments. Herein, we demonstrate that Mycobacterium smegmatis ΔdisA cells, which lack c-di-AMP, exhibit increased DNA recombination, higher frequency of mutation, and gene duplications during RecA-dependent and RecA-independent DSB repair. We also found that c-di-AMP regulates SOS response by inhibiting RecA-mediated self-cleavage of LexA repressor and its absence enhances drug resistance in M. smegmatis ΔdisA cells. Together, our results uncover a role of c-di-AMP in the maintenance of genomic stability through modulation of DSB repair in M. smegmatis.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Nisha Goyal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Manikandan Kasi
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Saginela
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Anusha Singhal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Soumyadeep Nandi
- Department of Plant Physiology, Umeå Plant Science Centre, Umea University, Umeå 901 87, Sweden
| | - A K M Firoj Mahmud
- CLINTEC, Karolinska Institutet, Alfred Nobels alle 8, 141 52 Huddinge, Stockholm, Sweden
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| |
Collapse
|
3
|
Gao Y, Zhou S, Yang Z, Tang Z, Su Y, Duan Y, Song J, Huang Z, Wang Y. Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135624. [PMID: 39208634 DOI: 10.1016/j.jhazmat.2024.135624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Zhengqing Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| |
Collapse
|
4
|
Sharma N, van Oijen AM, Spenkelink LM, Mueller SH. Insight into Single-Molecule Imaging Techniques for the Study of Prokaryotic Genome Maintenance. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:595-614. [PMID: 39328428 PMCID: PMC11423410 DOI: 10.1021/cbmi.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 09/28/2024]
Abstract
Genome maintenance comprises a group of complex and interrelated processes crucial for preserving and safeguarding genetic information within all organisms. Key aspects of genome maintenance involve DNA replication, transcription, recombination, and repair. Improper regulation of these processes could cause genetic changes, potentially leading to antibiotic resistance in bacterial populations. Due to the complexity of these processes, ensemble averaging studies may not provide the level of detail required to capture the full spectrum of molecular behaviors and dynamics of each individual biomolecule. Therefore, researchers have increasingly turned to single-molecule approaches, as these techniques allow for the direct observation and manipulation of individual biomolecules, and offer a level of detail that is unattainable with traditional ensemble methods. In this review, we provide an overview of recent in vitro and in vivo single-molecule imaging approaches employed to study the complex processes involved in prokaryotic genome maintenance. We will first highlight the principles of imaging techniques such as total internal reflection fluorescence microscopy and atomic force microscopy, primarily used for in vitro studies, and highly inclined and laminated optical sheet and super-resolution microscopy, mainly employed in in vivo studies. We then demonstrate how applying these single-molecule techniques has enabled the direct visualization of biological processes such as replication, transcription, DNA repair, and recombination in real time. Finally, we will showcase the results obtained from super-resolution microscopy approaches, which have provided unprecedented insights into the spatial organization of different biomolecules within bacterial organisms.
Collapse
Affiliation(s)
- Nischal Sharma
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
5
|
Kozlova S, Morozova N, Ispolatov Y, Severinov K. Dependence of post-segregational killing mediated by Type II restriction-modification systems on the lifetime of restriction endonuclease effective activity. mBio 2024; 15:e0140824. [PMID: 38980007 PMCID: PMC11324026 DOI: 10.1128/mbio.01408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Plasmid-borne Type II restriction-modification (RM) systems mediate post-segregational killing (PSK). PSK is thought to be caused by the dilution of restriction and modification enzymes during cell division, resulting in accumulation of unmethylated DNA recognition sites and their cleavage by restriction endonucleases. PSK is the likely reason for stabilization of plasmids carrying RM systems in the absence of selection for plasmid maintenance. In this study, we developed a CRISPR interference-based method to eliminate RM-carrying plasmids and study PSK-related phenomena with minimal perturbation to the Escherichia coli host. Plasmids carrying the EcoRV, Eco29kI, and EcoRI RM systems were highly stable, and their loss resulted in SOS response and PSK. In contrast, plasmids carrying the Esp1396I system were poorly stabilized; their loss led to a temporary cessation of growth, followed by full recovery. We demonstrate that this unusual behavior is due to a limited lifetime of the Esp1396I restriction endonuclease activity, which, upon Esp1396I plasmid loss, disappears approximately after two cycles of cell division, i.e., before unmethylated sites appear in significant numbers. Our results indicate that whenever PSK induced by a loss of RM systems, and, possibly, other toxin-antitoxin systems, is considered, the lifetimes of individual system components and the growth rate of host cells shall be taken in account. Mathematical modeling shows, that unlike the situation with classical toxin-antitoxin systems, RM system-mediated PSK is possible when the lifetimes of restriction endonuclease and methyltransferase activities are similar, as long as the toxic restriction endonuclease activity persists for more than two chromosome replication cycles.IMPORTANCEIt is widely accepted that many Type II restriction-modification (RM) systems mediate post-segregational killing (PSK) if plasmids that encode them are lost. In this study, we harnessed an inducible CRISPR-Cas system to remove RM plasmids from Escherichia coli cells to study PSK while minimally perturbing cell physiology. We demonstrate that PSK depends on restriction endonuclease activity lifetime and is not observed when it is less than two replication cycles. We present a mathematical model that explains experimental data and shows that unlike the case of toxin-antitoxin-mediated PSK, the loss of an RM system induced PSK even when the RM enzymes have identical lifetimes.
Collapse
Affiliation(s)
- Svetlana Kozlova
- Skolkovo Institute of
Science and Technology, Center for Molecular and Cellular
Biology, Moscow,
Russia
| | - Natalia Morozova
- Peter the Great St.
Petersburg Polytechnic University,
St. Petersburg, Russia
| | - Yaroslav Ispolatov
- Physics Department,
University of Santiago of Chile, Center for Interdisciplinary Research
in Astrophysics and Space Science,
Santiago, Chile
| | - Konstantin Severinov
- Waksman Institute for
Microbiology and Department of Molecular Biology and Biochemistry,
Rutgers, State University of New
Jersey, Piscataway, New
Jersey, USA
- Institute of Gene
Biology, Moscow,
Russia
| |
Collapse
|
6
|
Liljegren MM, Gama JA, Johnsen PJ, Harms K. The recombination initiation functions DprA and RecFOR suppress microindel mutations in Acinetobacter baylyi ADP1. Mol Microbiol 2024; 122:1-10. [PMID: 38760330 DOI: 10.1111/mmi.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Short-Patch Double Illegitimate Recombination (SPDIR) has been recently identified as a rare mutation mechanism. During SPDIR, ectopic DNA single-strands anneal with genomic DNA at microhomologies and get integrated during DNA replication, presumably acting as primers for Okazaki fragments. The resulting microindel mutations are highly variable in size and sequence. In the soil bacterium Acinetobacter baylyi, SPDIR is tightly controlled by genome maintenance functions including RecA. It is thought that RecA scavenges DNA single-strands and renders them unable to anneal. To further elucidate the role of RecA in this process, we investigate the roles of the upstream functions DprA, RecFOR, and RecBCD, all of which load DNA single-strands with RecA. Here we show that all three functions suppress SPDIR mutations in the wildtype to levels below the detection limit. While SPDIR mutations are slightly elevated in the absence of DprA, they are strongly increased in the absence of both DprA and RecA. This SPDIR-avoiding function of DprA is not related to its role in natural transformation. These results suggest a function for DprA in combination with RecA to avoid potentially harmful microindel mutations, and offer an explanation for the ubiquity of dprA in the genomes of naturally non-transformable bacteria.
Collapse
Affiliation(s)
- Mikkel M Liljegren
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - João A Gama
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Skutel M, Yanovskaya D, Demkina A, Shenfeld A, Musharova O, Severinov K, Isaev A. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Nucleic Acids Res 2024; 52:5195-5208. [PMID: 38567730 PMCID: PMC11109961 DOI: 10.1093/nar/gkae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.
Collapse
Affiliation(s)
- Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Yanovskaya
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Alina Demkina
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Olga Musharova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Moscow, Russia
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Piscataway, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
9
|
Nautiyal A, Thakur M. Prokaryotic DNA Crossroads: Holliday Junction Formation and Resolution. ACS OMEGA 2024; 9:12515-12538. [PMID: 38524412 PMCID: PMC10956419 DOI: 10.1021/acsomega.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024]
Abstract
Cells are continually exposed to a multitude of internal and external stressors, which give rise to various types of DNA damage. To protect the integrity of their genetic material, cells are equipped with a repertoire of repair proteins that engage in various repair mechanisms, facilitated by intricate networks of protein-protein and protein-DNA interactions. Among these networks is the homologous recombination (HR) system, a molecular repair mechanism conserved in all three domains of life. On one hand, HR ensures high-fidelity, template-dependent DNA repair, while on the other hand, it results in the generation of combinatorial genetic variations through allelic exchange. Despite substantial progress in understanding this pathway in bacteria, yeast, and humans, several critical questions remain unanswered, including the molecular processes leading to the exchange of DNA segments, the coordination of protein binding, conformational switching during branch migration, and the resolution of Holliday Junctions (HJs). This Review delves into our current understanding of the HR pathway in bacteria, shedding light on the roles played by various proteins or their complexes at different stages of HR. In the first part of this Review, we provide a brief overview of the end resection processes and the strand-exchange reaction, offering a concise depiction of the mechanisms that culminate in the formation of HJs. In the latter half, we expound upon the alternative methods of branch migration and HJ resolution more comprehensively and holistically, considering the historical research timelines. Finally, when we consolidate our knowledge about HR within the broader context of genome replication and the emergence of resistant species, it becomes evident that the HR pathway is indispensable for the survival of bacteria in diverse ecological niches.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manoj Thakur
- Sri
Venkateswara College, Benito Juarez Road, University of Delhi, New Delhi 110021, India
| |
Collapse
|
10
|
Amundsen SK, Smith GR. RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease. Microbiol Mol Biol Rev 2023; 87:e0004123. [PMID: 38047637 PMCID: PMC10732027 DOI: 10.1128/mmbr.00041-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.
Collapse
Affiliation(s)
| | - Gerald R. Smith
- Fred Hutchinson Cancer Center Seattle, Seattle, Washington, USA
| |
Collapse
|
11
|
Wu S, Chen Y, Chen Z, Wei F, Zhou Q, Li P, Gu Q. Reactive oxygen species and gastric carcinogenesis: The complex interaction between Helicobacter pylori and host. Helicobacter 2023; 28:e13024. [PMID: 37798959 DOI: 10.1111/hel.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
12
|
Hou Z, Xu Z, Wu M, Ma L, Sui L, Bian P, Wang T. Enhancement of Repeat-Mediated Deletion Rearrangement Induced by Particle Irradiation in a RecA-Dependent Manner in Escherichia coli. BIOLOGY 2023; 12:1406. [PMID: 37998005 PMCID: PMC10669199 DOI: 10.3390/biology12111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Repeat-mediated deletion (RMD) rearrangement is a major source of genome instability and can be deleterious to the organism, whereby the intervening sequence between two repeats is deleted along with one of the repeats. RMD rearrangement is likely induced by DNA double-strand breaks (DSBs); however, it is unclear how the complexity of DSBs influences RMD rearrangement. Here, a transgenic Escherichia coli strain K12 MG1655 with a lacI repeat-controlled amp activation was used while taking advantage of particle irradiation, such as proton and carbon irradiation, to generate different complexities of DSBs. Our research confirmed the enhancement of RMD under proton and carbon irradiation and revealed a positive correlation between RMD enhancement and LET. In addition, RMD enhancement could be suppressed by an intermolecular homologous sequence, which was regulated by its composition and length. Meanwhile, RMD enhancement was significantly stimulated by exogenous λ-Red recombinase. Further results investigating its mechanisms showed that the enhancement of RMD, induced by particle irradiation, occurred in a RecA-dependent manner. Our finding has a significant impact on the understanding of RMD rearrangement and provides some clues for elucidating the repair process and possible outcomes of complex DNA damage.
Collapse
Affiliation(s)
- Zhiyang Hou
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Zelin Xu
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| | - Mengying Wu
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| | - Liqiu Ma
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China;
- National Innovation Center of Radiation Application, Beijing 102413, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China;
- National Innovation Center of Radiation Application, Beijing 102413, China
| | - Po Bian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| | - Ting Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (Z.H.); (Z.X.); (M.W.); (P.B.)
| |
Collapse
|
13
|
Lee SJ, Ahn SY, Oh HB, Kim SY, Song WS, Yoon SI. Structural and Biochemical Analysis of the Recombination Mediator Protein RecR from Campylobacter jejuni. Int J Mol Sci 2023; 24:12947. [PMID: 37629127 PMCID: PMC10454854 DOI: 10.3390/ijms241612947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The recombination mediator complex RecFOR, consisting of the RecF, RecO, and RecR proteins, is needed to initiate homologous recombination in bacteria by positioning the recombinase protein RecA on damaged DNA. Bacteria from the phylum Campylobacterota, such as the pathogen Campylobacter jejuni, lack the recF gene and trigger homologous recombination using only RecR and RecO. To elucidate the functional properties of C. jejuni RecR (cjRecR) in recombination initiation that differ from or are similar to those in RecF-expressing bacteria, we determined the crystal structure of cjRecR and performed structure-based binding analyses. cjRecR forms a rectangular ring-like tetrameric structure and coordinates a zinc ion using four cysteine residues, as observed for RecR proteins from RecF-expressing bacteria. However, the loop of RecR that has been shown to recognize RecO and RecF in RecF-expressing bacteria is substantially shorter in cjRecR as a canonical feature of Campylobacterota RecR proteins, indicating that cjRecR lost a part of the loop in evolution due to the lack of RecF and has a low RecO-binding affinity. Furthermore, cjRecR features a larger positive patch and exhibits substantially higher ssDNA-binding affinity than RecR from RecF-expressing bacteria. Our study provides a framework for a deeper understanding of the RecOR-mediated recombination pathway.
Collapse
Affiliation(s)
- Su-jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Si Yeon Ahn
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Yeon Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung-il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
14
|
Cox MM, Goodman MF, Keck JL, van Oijen A, Lovett ST, Robinson A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol Mol Biol Rev 2023; 87:e0007822. [PMID: 37212693 PMCID: PMC10304936 DOI: 10.1128/mmbr.00078-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
When replication forks encounter template lesions, one result is lesion skipping, where the stalled DNA polymerase transiently stalls, disengages, and then reinitiates downstream to leave the lesion behind in a postreplication gap. Despite considerable attention in the 6 decades since postreplication gaps were discovered, the mechanisms by which postreplication gaps are generated and repaired remain highly enigmatic. This review focuses on postreplication gap generation and repair in the bacterium Escherichia coli. New information to address the frequency and mechanism of gap generation and new mechanisms for their resolution are described. There are a few instances where the formation of postreplication gaps appears to be programmed into particular genomic locations, where they are triggered by novel genomic elements.
Collapse
Affiliation(s)
- Michael M. Cox
- Department of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Myron F. Goodman
- Department of Biological Sciences, University of Southern California, University Park, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, University Park, Los Angeles, California, USA
| | - James L. Keck
- Department of Biological Chemistry, University of Wisconsin—Madison School of Medicine, Madison, Wisconsin, USA
| | - Antoine van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Susan T. Lovett
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Andrew Robinson
- Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
15
|
Briaud P, Gautier T, Rong V, Mereghetti L, Lanotte P, Hiron A. The Streptococcus agalactiae Exonuclease ExoVII Is Required for Resistance to Exogenous DNA-Damaging Agents. J Bacteriol 2023; 205:e0002423. [PMID: 37162366 PMCID: PMC10294681 DOI: 10.1128/jb.00024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Streptococcus agalactiae is a human pathogen responsible for severe invasive infections in newborns. In this bacterium, XseB, a part of the ExoVII exonuclease, was shown to be specifically more abundant in the hypervirulent ST-17 strains. In Escherichia coli, ExoVII is associated either with mismatch repair or with recombinational DNA repair and is redundant with other exonucleases. In this study, the biological role of S. agalactiae ExoVII was examined. The ΔexoVII mutant strain was subjected to different DNA-damaging agents, as well as a large set of mutants impaired either in the mismatch repair pathway or in processes of recombinational DNA repair. Our results clarified the role of this protein in Gram-positive bacteria as we showed that ExoVII is not significantly involved in mismatch repair but is involved in bacterial recovery after exposure to exogenous DNA-damaging agents such as ciprofloxacin, UV irradiation, or hydrogen peroxide. We found that ExoVII is more particularly important for resistance to ciprofloxacin, likely as part of the RecF DNA repair pathway. Depending on the tested agent, ExoVII appeared to be fully redundant or nonredundant with another exonuclease, RecJ. The importance of each exonuclease, ExoVII or RecJ, in the process of DNA repair is thus dependent on the considered DNA lesion. IMPORTANCE This study examined the role of the ExoVII exonuclease of Streptococcus agalactiae within the different DNA repair processes. Our results concluded that ExoVII is involved in bacterial recovery after exposure to different exogenous DNA-damaging agents but not in the mismatch repair pathway. We found that ExoVII is particularly important for resistance to ciprofloxacin, likely as part of the RecF DNA repair pathway.
Collapse
Affiliation(s)
- P. Briaud
- Université de Tours, INRAE, ISP, Tours, France
| | - T. Gautier
- Université de Tours, INRAE, ISP, Tours, France
| | - V. Rong
- Université de Tours, INRAE, ISP, Tours, France
| | - L. Mereghetti
- Université de Tours, INRAE, ISP, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - P. Lanotte
- Université de Tours, INRAE, ISP, Tours, France
- CHRU de Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - A. Hiron
- Université de Tours, INRAE, ISP, Tours, France
| |
Collapse
|
16
|
Henry C, Kaur G, Cherry ME, Henrikus SS, Bonde N, Sharma N, Beyer H, Wood EA, Chitteni-Pattu S, van Oijen A, Robinson A, Cox M. RecF protein targeting to post-replication (daughter strand) gaps II: RecF interaction with replisomes. Nucleic Acids Res 2023; 51:5714-5742. [PMID: 37125644 PMCID: PMC10287930 DOI: 10.1093/nar/gkad310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
The bacterial RecF, RecO, and RecR proteins are an epistasis group involved in loading RecA protein into post-replication gaps. However, the targeting mechanism that brings these proteins to appropriate gaps is unclear. Here, we propose that targeting may involve a direct interaction between RecF and DnaN. In vivo, RecF is commonly found at the replication fork. Over-expression of RecF, but not RecO or a RecF ATPase mutant, is extremely toxic to cells. We provide evidence that the molecular basis of the toxicity lies in replisome destabilization. RecF over-expression leads to loss of genomic replisomes, increased recombination associated with post-replication gaps, increased plasmid loss, and SOS induction. Using three different methods, we document direct interactions of RecF with the DnaN β-clamp and DnaG primase that may underlie the replisome effects. In a single-molecule rolling-circle replication system in vitro, physiological levels of RecF protein trigger post-replication gap formation. We suggest that the RecF interactions, particularly with DnaN, reflect a functional link between post-replication gap creation and gap processing by RecA. RecF's varied interactions may begin to explain how the RecFOR system is targeted to rare lesion-containing post-replication gaps, avoiding the potentially deleterious RecA loading onto thousands of other gaps created during replication.
Collapse
Affiliation(s)
- Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Gurleen Kaur
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Megan E Cherry
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nina J Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Nischal Sharma
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Hope A Beyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706-1544, USA
| |
Collapse
|
17
|
Henry C, Mbele N, Cox MM. RecF protein targeting to postreplication (daughter strand) gaps I: DNA binding by RecF and RecFR. Nucleic Acids Res 2023; 51:5699-5713. [PMID: 37125642 PMCID: PMC10287957 DOI: 10.1093/nar/gkad311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
In bacteria, the repair of post-replication gaps by homologous recombination requires the action of the recombination mediator proteins RecF, RecO and RecR. Whereas the role of the RecOR proteins to displace the single strand binding protein (SSB) and facilitate RecA loading is clear, how RecF mediates targeting of the system to appropriate sites remains enigmatic. The most prominent hypothesis relies on specific RecF binding to gap ends. To test this idea, we present a detailed examination of RecF and RecFR binding to more than 40 DNA substrates of varying length and structure. Neither RecF nor the RecFR complex exhibited specific DNA binding that can explain the targeting of RecF(R) to post-replication gaps. RecF(R) bound to dsDNA and ssDNA of sufficient length with similar facility. DNA binding was highly ATP-dependent. Most measured Kd values fell into a range of 60-180 nM. The addition of ssDNA extensions on duplex substrates to mimic gap ends or CPD lesions produces only subtle increases or decreases in RecF(R) affinity. Significant RecFR binding cooperativity was evident with many DNA substrates. The results indicate that RecF or RecFR targeting to post-replication gaps must rely on factors not yet identified, perhaps involving interactions with additional proteins.
Collapse
Affiliation(s)
- Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Neema Mbele
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| |
Collapse
|
18
|
Islam F, Purkait D, Mishra PP. Insights into the Dynamics and Helicase Activity of RecD2 of Deinococcus radiodurans during DNA Repair: A Single-Molecule Perspective. J Phys Chem B 2023; 127:4351-4363. [PMID: 37163679 DOI: 10.1021/acs.jpcb.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While the double helix is the most stable conformation of DNA inside cells, its transient unwinding and subsequent partial separation of the two complementary strands yields an intermediate single-stranded DNA (ssDNA). The ssDNA is involved in all major DNA transactions such as replication, transcription, recombination, and repair. The process of DNA unwinding and translocation is shouldered by helicases that transduce the chemical energy derived from nucleotide triphosphate (NTP) hydrolysis to mechanical energy and utilize it to destabilize hydrogen bonds between complementary base pairs. Consequently, a comprehensive understanding of the molecular mechanisms of these enzymes is essential. In the last few decades, a combination of single-molecule techniques (force-based manipulation and visualization) have been employed to study helicase action. These approaches have allowed researchers to study the single helicase-DNA complex in real-time and the free energy landscape of their interaction together with the detection of conformational intermediates and molecular heterogeneity during the course of helicase action. Furthermore, the unique ability of these techniques to resolve helicase motion at nanometer and millisecond spatial and temporal resolutions, respectively, provided surprising insights into their mechanism of action. This perspective outlines the contribution of single-molecule methods in deciphering molecular details of helicase activities. It also exemplifies how each technique was or can be used to study the helicase action of RecD2 in recombination DNA repair.
Collapse
Affiliation(s)
- Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
19
|
Nirwal S, Czarnocki-Cieciura M, Chaudhary A, Zajko W, Skowronek K, Chamera S, Figiel M, Nowotny M. Mechanism of RecF-RecO-RecR cooperation in bacterial homologous recombination. Nat Struct Mol Biol 2023; 30:650-660. [PMID: 37081315 DOI: 10.1038/s41594-023-00967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
In bacteria, one type of homologous-recombination-based DNA-repair pathway involves RecFOR proteins that bind at the junction between single-stranded (ss) and double-stranded (ds) DNA. They facilitate the replacement of SSB protein, which initially covers ssDNA, with RecA, which mediates the search for homologous sequences. However, the molecular mechanism of RecFOR cooperation remains largely unknown. We used Thermus thermophilus proteins to study this system. Here, we present a cryo-electron microscopy structure of the RecF-dsDNA complex, and another reconstruction that shows how RecF interacts with two different regions of the tetrameric RecR ring. Lower-resolution reconstructions of the RecR-RecO subcomplex and the RecFOR-DNA assembly explain how RecO is positioned to interact with ssDNA and SSB, which is proposed to lock the complex on a ssDNA-dsDNA junction. Our results integrate the biochemical data available for the RecFOR system and provide a framework for its complete understanding.
Collapse
Affiliation(s)
- Shivlee Nirwal
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Anuradha Chaudhary
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
20
|
Bell JC, Dombrowski CC, Plank JL, Jensen RB, Kowalczykowski SC. BRCA2 chaperones RAD51 to single molecules of RPA-coated ssDNA. Proc Natl Acad Sci U S A 2023; 120:e2221971120. [PMID: 36976771 PMCID: PMC10083600 DOI: 10.1073/pnas.2221971120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Mutations in the breast cancer susceptibility gene, BRCA2, greatly increase an individual's lifetime risk of developing breast and ovarian cancers. BRCA2 suppresses tumor formation by potentiating DNA repair via homologous recombination. Central to recombination is the assembly of a RAD51 nucleoprotein filament, which forms on single-stranded DNA (ssDNA) generated at or near the site of chromosomal damage. However, replication protein-A (RPA) rapidly binds to and continuously sequesters this ssDNA, imposing a kinetic barrier to RAD51 filament assembly that suppresses unregulated recombination. Recombination mediator proteins-of which BRCA2 is the defining member in humans-alleviate this kinetic barrier to catalyze RAD51 filament formation. We combined microfluidics, microscopy, and micromanipulation to directly measure both the binding of full-length BRCA2 to-and the assembly of RAD51 filaments on-a region of RPA-coated ssDNA within individual DNA molecules designed to mimic a resected DNA lesion common in replication-coupled recombinational repair. We demonstrate that a dimer of RAD51 is minimally required for spontaneous nucleation; however, growth self-terminates below the diffraction limit. BRCA2 accelerates nucleation of RAD51 to a rate that approaches the rapid association of RAD51 to naked ssDNA, thereby overcoming the kinetic block imposed by RPA. Furthermore, BRCA2 eliminates the need for the rate-limiting nucleation of RAD51 by chaperoning a short preassembled RAD51 filament onto the ssDNA complexed with RPA. Therefore, BRCA2 regulates recombination by initiating RAD51 filament formation.
Collapse
Affiliation(s)
- Jason C. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Christopher C. Dombrowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Jody L. Plank
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| | - Ryan B. Jensen
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520
| | - Stephen C. Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA95616
| |
Collapse
|
21
|
Cho C, Lee D, Jeong D, Kim S, Kim MK, Srinivasan S. Characterization of radiation-resistance mechanism in Spirosoma montaniterrae DY10 T in terms of transcriptional regulatory system. Sci Rep 2023; 13:4739. [PMID: 36959250 PMCID: PMC10036542 DOI: 10.1038/s41598-023-31509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
To respond to the external environmental changes for survival, bacteria regulates expression of a number of genes including transcription factors (TFs). To characterize complex biological phenomena, a biological system-level approach is necessary. Here we utilized six computational biology methods to infer regulatory network and to characterize underlying biologically mechanisms relevant to radiation-resistance. In particular, we inferred gene regulatory network (GRN) and operons of radiation-resistance bacterium Spirosoma montaniterrae DY10[Formula: see text] and identified the major regulators for radiation-resistance. Our results showed that DNA repair and reactive oxygen species (ROS) scavenging mechanisms are key processes and Crp/Fnr family transcriptional regulator works as a master regulatory TF in early response to radiation.
Collapse
Affiliation(s)
- Changyun Cho
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dohoon Lee
- Bioinformatics Institute, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 FOUR Intelligence Computing, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung Kyum Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Republic of Korea.
| |
Collapse
|
22
|
Zahradka K, Repar J, Đermić D, Zahradka D. Chromosome Segregation and Cell Division Defects in Escherichia coli Recombination Mutants Exposed to Different DNA-Damaging Treatments. Microorganisms 2023; 11:microorganisms11030701. [PMID: 36985274 PMCID: PMC10051365 DOI: 10.3390/microorganisms11030701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Homologous recombination repairs potentially lethal DNA lesions such as double-strand DNA breaks (DSBs) and single-strand DNA gaps (SSGs). In Escherichia coli, DSB repair is initiated by the RecBCD enzyme that resects double-strand DNA ends and loads RecA recombinase to the emerging single-strand (ss) DNA tails. SSG repair is mediated by the RecFOR protein complex that loads RecA onto the ssDNA segment of gaped duplex. In both repair pathways, RecA catalyses reactions of homologous DNA pairing and strand exchange, while RuvABC complex and RecG helicase process recombination intermediates. In this work, we have characterised cytological changes in various recombination mutants of E. coli after three different DNA-damaging treatments: (i) expression of I-SceI endonuclease, (ii) γ-irradiation, and (iii) UV-irradiation. All three treatments caused severe chromosome segregation defects and DNA-less cell formation in the ruvABC, recG, and ruvABC recG mutants. After I-SceI expression and γ-irradiation, this phenotype was efficiently suppressed by the recB mutation, indicating that cytological defects result mostly from incomplete DSB repair. In UV-irradiated cells, the recB mutation abolished cytological defects of recG mutants and also partially suppressed the cytological defects of ruvABC recG mutants. However, neither recB nor recO mutation alone could suppress the cytological defects of UV-irradiated ruvABC mutants. The suppression was achieved only by simultaneous inactivation of the recB and recO genes. Cell survival and microscopic analysis suggest that chromosome segregation defects in UV-irradiated ruvABC mutants largely result from defective processing of stalled replication forks. The results of this study show that chromosome morphology is a valuable marker in genetic analyses of recombinational repair in E. coli.
Collapse
Affiliation(s)
- Ksenija Zahradka
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jelena Repar
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Damir Đermić
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Davor Zahradka
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Vugic D, Dumoulin I, Martin C, Minello A, Alvaro-Aranda L, Gomez-Escudero J, Chaaban R, Lebdy R, von Nicolai C, Boucherit V, Ribeyre C, Constantinou A, Carreira A. Replication gap suppression depends on the double-strand DNA binding activity of BRCA2. Nat Commun 2023; 14:446. [PMID: 36707518 PMCID: PMC9883520 DOI: 10.1038/s41467-023-36149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Replication stress (RS) is a major source of genomic instability and is intrinsic to cancer cells. RS is also the consequence of chemotherapeutic drugs for treating cancer. However, adaptation to RS is also a mechanism of resistance to chemotherapy. BRCA2 deficiency results in replication stress in human cells. BRCA2 protein's main functions include DNA repair by homologous recombination (HR) both at induced DNA double-strand breaks (DSB) and spontaneous replicative lesions. At stalled replication forks, BRCA2 protects the DNA from aberrant nucleolytic degradation and is thought to limit the appearance of ssDNA gaps by arresting replication and via post-replicative HR. However, whether and how BRCA2 acts to limit the formation of ssDNA gaps or mediate their repair, remains ill-defined. Here, we use breast cancer variants affecting different domains of BRCA2 to shed light on this function. We demonstrate that the N-terminal DNA binding domain (NTD), and specifically, its dsDNA binding activity, is required to prevent and repair/fill-in ssDNA gaps upon nucleotide depletion but not to limit PARPi-induced ssDNA gaps. Thus, these findings suggest that nucleotide depletion and PARPi trigger gaps via distinct mechanisms and that the NTD of BRCA2 prevents nucleotide depletion-induced ssDNA gaps.
Collapse
Affiliation(s)
- Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Jesus Gomez-Escudero
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rady Chaaban
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rana Lebdy
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Catharina von Nicolai
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain.
| |
Collapse
|
24
|
ATPase Activity of Bacillus subtilis RecA Affects the Dynamic Formation of RecA Filaments at DNA Double Strand Breaks. mSphere 2022; 7:e0041222. [PMID: 36321831 PMCID: PMC9769622 DOI: 10.1128/msphere.00412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RecA plays a central role in DNA repair and is a main actor involved in homologous recombination (HR). In vivo, RecA forms filamentous structures termed "threads," which are essential for HR, but whose nature is still ill defined. We show that RecA from Bacillus subtilis having lower ATP binding activity can still form nucleoprotein filaments in vitro, features lower dsDNA binding activity, but still retains most of wild type RecA activity in vivo. Contrarily, loss of ATPase activity strongly reduced formation of nucleoprotein filaments in vitro, and effectivity to repair double strand breaks (DSBs) in vivo. In the presence of wild type RecA protein, additionally expressed RecA with lowered ATPbinding activity only moderately affected RecA dynamics, while loss of ATPase activity leads to a large reduction of the formation of threads, as well as of their dynamic changes observed in a seconds-scale. Single molecule tracking of RecA revealed incorporation of freely diffusing and nonspecifically DNA-bound molecules into threads upon induction of a single DSB. This change of dynamics was highly perturbed in the absence of ATPase activity, revealing that filamentous forms of RecA as well as their dynamics depend on ATPase activity. Based on the idea that ATPase activity of RecA is most important for DNA strand exchange activity, our data suggest that extension and retraction of threads due is to many local strand invasion events during the search for sequences homologous to the induced DNA break site. IMPORTANCE Single-strand (ss) DNA binding ATPase RecA is the central recombinase in homologous recombination, and therefore essential for DNA repair pathways involving DNA strand exchange reactions. In several bacterial, RecA forms filamentous structures along the long axis of cells after induction of double strand breaks (DSBs) in the chromosome. These striking assemblies likely reflect RecA/ssDNA nucleoprotein filaments, which can extend and remodel within a time frame of few minutes. We show that ATPase activity of RecA is pivotal for these dynamic rearrangements, which include recruitment of freely diffusing molecules into low-mobile molecules within filaments. Our data suggest that ssDNA binding- and unbinding reactions are at the heart of RecA dynamics that power the dynamics of subcellular filamentous assemblies, leading to strand exchange reactions over a distance of several micrometers.
Collapse
|
25
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
26
|
Purkait D, Islam F, Mishra PP. A single-molecule approach to unravel the molecular mechanism of the action of Deinococcus radiodurans RecD2 and its interaction with SSB and RecA in DNA repair. Int J Biol Macromol 2022; 221:653-664. [PMID: 36096248 DOI: 10.1016/j.ijbiomac.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
Helicases are ATP-driven molecular machines that directionally remodel nucleic acid polymers in all three domains of life. They are responsible for resolving double-stranded DNA (dsDNA) into single-strands, which is essential for DNA replication, nucleotide excision repair, and homologous recombination. RecD2 from Deinococcus radiodurans (DrRecD2) has important contributions to the organism's unusually high tolerance to gamma radiation and hydrogen peroxide. Although the results from X-ray Crystallography studies have revealed the structural characteristics of the protein, direct experimental evidence regarding the dynamics of the DNA unwinding process by DrRecD2 in the context of other accessory proteins is yet to be found. In this study, we have probed the exact binding event and processivity of DrRecD2 at single-molecule resolution using Protein-induced fluorescence enhancement (smPIFE) and Forster resonance energy transfer (smFRET). We have found that the protein prefers to bind at the 5' terminal end of the single-stranded DNA (ssDNA) by Drift and has helicase activity even in absence of ATP. However, a faster and iterative mode of DNA unwinding was evident in presence of ATP. The rate of translocation of the protein was found to be slower on dsDNA compared to ssDNA. We also showed that DrRecD2 is recruited at the binding site by the single-strand binding protein (SSB) and during the unwinding, it can displace RecA from ssDNA.
Collapse
Affiliation(s)
- Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India
| | - Padmaja P Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
27
|
Savitskaya VY, Monakhova MV, Iakushkina IV, Borovikova II, Kubareva EA. Neisseria gonorrhoeae: DNA Repair Systems and Their Role in Pathogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:965-982. [PMID: 36180987 DOI: 10.1134/s0006297922090097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Neisseria gonorrhoeae (a Gram-negative diplococcus) is a human pathogen and causative agent of gonorrhea, a sexually transmitted infection. The bacterium uses various approaches for adapting to environmental conditions and multiplying efficiently in the human body, such as regulation of expression of gene expression of surface proteins and lipooligosaccharides (e.g., expression of various forms of pilin). The systems of DNA repair play an important role in the bacterium ability to survive in the host body. This review describes DNA repair systems of N. gonorrhoeae and their role in the pathogenicity of this bacterium. A special attention is paid to the mismatch repair system (MMR) and functioning of the MutS and MutL proteins, as well as to the role of these proteins in regulation of the pilin antigenic variation of the N. gonorrhoeae pathogen.
Collapse
Affiliation(s)
| | - Mayya V Monakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Iuliia V Iakushkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina I Borovikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
28
|
Chang S, Thrall ES, Laureti L, Piatt SC, Pagès V, Loparo JJ. Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis. Nat Struct Mol Biol 2022; 29:932-941. [PMID: 36127468 PMCID: PMC9509481 DOI: 10.1038/s41594-022-00827-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer-template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated. Here we show that fork-associated ssDNA-binding protein (SSB) selectively enriches the bacterial TLS polymerase Pol IV at stalled replication forks. This enrichment enables Pol IV to associate with the processivity clamp and is required for TLS on both the leading and lagging strands. In contrast, clamp-interacting proteins (CLIPs) lacking SSB binding are spatially segregated from the replication fork, minimally interfering with Pol IV-mediated TLS. We propose that stalling-dependent structural changes within clusters of fork-associated SSB establish hierarchical access to the processivity clamp. This mechanism prioritizes a subset of CLIPs with SSB-binding activity and facilitates their exchange at the replication fork.
Collapse
Affiliation(s)
- Seungwoo Chang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth S Thrall
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Fordham University, New York City, NY, USA
| | - Luisa Laureti
- CRCM (Cancer Research Center of Marseille): Team DNA Damage and Genome Instability, Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Sadie C Piatt
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Harvard Graduate Program in Biophysics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Vincent Pagès
- CRCM (Cancer Research Center of Marseille): Team DNA Damage and Genome Instability, Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Crystal Structure of the Recombination Mediator Protein RecO from Campylobacter jejuni and Its Interaction with DNA and a Zinc Ion. Int J Mol Sci 2022; 23:ijms23179667. [PMID: 36077065 PMCID: PMC9456098 DOI: 10.3390/ijms23179667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Homologous recombination is involved in repairing DNA damage, contributing to maintaining the integrity and stability of viral and cellular genomes. In bacteria, the recombination mediator proteins RecO and RecR are required to load the RecA recombinase on ssDNA for homologous recombination. To structurally and functionally characterize RecO, we determined the crystal structure of RecO from Campylobacter jejuni (cjRecO) at a 1.8 Å resolution and biochemically assessed its capacity to interact with DNA and a metal ion. cjRecO folds into a curved rod-like structure that consists of an N-terminal domain (NTD), C-terminal domain (CTD), and Zn2+-binding domain (ZnD). The ZnD at the end of the rod-like structure coordinates three cysteine residues and one histidine residue to accommodate a Zn2+ ion. Based on an extensive comparative analysis of RecO structures and sequences, we propose that the Zn2+-binding consensus sequence of RecO is CxxC…C/HxxC/H/D. The interaction with Zn2+ is indispensable for the protein stability of cjRecO but does not seem to be required for the recombination mediator function. cjRecO also interacts with ssDNA as part of its biological function, potentially using the positively charged patch in the NTD and CTD. However, cjRecO displays a low ssDNA-binding affinity, suggesting that cjRecO requires RecR to efficiently recognize ssDNA for homologous recombination.
Collapse
|
30
|
Alekseev A, Pobegalov G, Morozova N, Vedyaykin A, Cherevatenko G, Yakimov A, Baitin D, Khodorkovskii M. A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. eLife 2022; 11:78409. [PMID: 35730924 PMCID: PMC9252578 DOI: 10.7554/elife.78409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
RecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on ssDNA in an ATP-dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of (Escherichia coli) RecA-ssDNA filaments by RecX (E. coli) within the framework of distinct conformational states of RecA-ssDNA filament. Our findings revealed that RecX effectively binds the inactive conformation of RecA-ssDNA filaments and slows down the transition to the active state. Results of this work provide new mechanistic insights into the RecX-RecA interactions and highlight the importance of conformational transitions of RecA filaments as an additional level of regulation of its biological activity.
Collapse
Affiliation(s)
- Aleksandr Alekseev
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Natalia Morozova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexey Vedyaykin
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Galina Cherevatenko
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Alexander Yakimov
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| | - Dmitry Baitin
- Kurchatov Institute, St. Petersburg, Russian Federation
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| |
Collapse
|
31
|
Laureti L, Lee L, Philippin G, Kahi M, Pagès V. Single strand gap repair: The presynaptic phase plays a pivotal role in modulating lesion tolerance pathways. PLoS Genet 2022; 18:e1010238. [PMID: 35653392 PMCID: PMC9203016 DOI: 10.1371/journal.pgen.1010238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 06/16/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
During replication, the presence of unrepaired lesions results in the formation of single stranded DNA (ssDNA) gaps that need to be repaired to preserve genome integrity and cell survival. All organisms have evolved two major lesion tolerance pathways to continue replication: Translesion Synthesis (TLS), potentially mutagenic, and Homology Directed Gap Repair (HDGR), that relies on homologous recombination. In Escherichia coli, the RecF pathway repairs such ssDNA gaps by processing them to produce a recombinogenic RecA nucleofilament during the presynaptic phase. In this study, we show that the presynaptic phase is crucial for modulating lesion tolerance pathways since the competition between TLS and HDGR occurs at this stage. Impairing either the extension of the ssDNA gap (mediated by the nuclease RecJ and the helicase RecQ) or the loading of RecA (mediated by RecFOR) leads to a decrease in HDGR and a concomitant increase in TLS. Hence, we conclude that defects in the presynaptic phase delay the formation of the D-loop and increase the time window allowed for TLS. In contrast, we show that a defect in the postsynaptic phase that impairs HDGR does not lead to an increase in TLS. Unexpectedly, we also reveal a strong genetic interaction between recF and recJ genes, that results in a recA deficient-like phenotype in which HDGR is almost completely abolished.
Collapse
Affiliation(s)
- Luisa Laureti
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Lara Lee
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Gaëlle Philippin
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Michel Kahi
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Vincent Pagès
- Team DNA Damage and Genome Instability, Cancer Research Center of Marseille (CRCM); CNRS, Aix Marseille Univ, INSERM, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
32
|
Zannier F, Portero LR, Douki T, Gärtner W, Farías ME, Albarracín VH. Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium. Front Microbiol 2022; 13:791714. [PMID: 35369494 PMCID: PMC8965627 DOI: 10.3389/fmicb.2022.791714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the Central Andean region in South America, high-altitude ecosystems (3500-6000 masl) are distributed across Argentina, Chile, Bolivia, and Peru, in which poly-extremophilic microbes thrive under extreme environmental conditions. In particular, in the Puna region, total solar irradiation and UV incidence are the highest on Earth, thus, restraining the physiology of individual microorganisms and the composition of microbial communities. UV-resistance of microbial strains thriving in High-Altitude Andean Lakes was demonstrated and their mechanisms were partially characterized by genomic analysis, biochemical and physiological assays. Then, the existence of a network of physiological and molecular mechanisms triggered by ultraviolet light exposure was hypothesized and called "UV-resistome". It includes some or all of the following subsystems: (i) UV sensing and effective response regulators, (ii) UV-avoidance and shielding strategies, (iii) damage tolerance and oxidative stress response, (iv) energy management and metabolic resetting, and (v) DNA damage repair. Genes involved in the described UV-resistome were recently described in the genome of Nesterenkonia sp. Act20, an actinobacterium which showed survival to high UV-B doses as well as efficient photorepairing capability. The aim of this work was to use a proteomic approach together with photoproduct measurements to help dissecting the molecular events involved in the adaptive response of a model High-Altitude Andean Lakes (HAAL) extremophilic actinobacterium, Nesterenkonia sp. Act20, under artificial UV-B radiation. Our results demonstrate that UV-B exposure induced over-abundance of a well-defined set of proteins while recovery treatments restored the proteomic profiles present before the UV-challenge. The proteins involved in this complex molecular network were categorized within the UV-resistome subsystems: damage tolerance and oxidative stress response, energy management and metabolic resetting, and DNA damage repair.
Collapse
Affiliation(s)
- Federico Zannier
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Luciano R. Portero
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Thierry Douki
- Université Grenoble Alpes, Commissariat a l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Institut de Recherche Interdisciplinaire de Grenoble–Systèmes Moléculaires et nanoMatériaux p our l’Énergie et la Santé, Grenoble, France
| | - Wolfgang Gärtner
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - María E. Farías
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Microbiología Ultraestructural y Molecular, Centro Integral de Microscopía Electrónica, Facultad de Agronomía y Zootecnia, UNT y Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, Planta Piloto de Procesos Industriales y Microbiológicos, Centro Científico Tecnológico, CONICET NOASUR, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
33
|
Behrmann MS, Trakselis MA. In vivo fluorescent TUNEL detection of single stranded DNA gaps and breaks induced by dnaB helicase mutants in Escherichia coli. Methods Enzymol 2022; 672:125-142. [DOI: 10.1016/bs.mie.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genet 2021; 17:e1009972. [PMID: 34936656 PMCID: PMC8735627 DOI: 10.1371/journal.pgen.1009972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/06/2022] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.
Collapse
|
35
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Liu J, Mei Q, Nimer S, Fitzgerald DM, Rosenberg SM. Genomic mapping of DNA-repair reaction intermediates in living cells with engineered DNA structure-trap proteins. Methods Enzymol 2021; 661:155-181. [PMID: 34776211 DOI: 10.1016/bs.mie.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diverse DNA structures occur as reaction intermediates in various DNA-damage and -repair mechanisms, most of which results from replication stress. We harness the power of proteins evolutionarily optimized to bind and "trap" specific DNA reaction-intermediate structures, to quantify the structures, and discern the mechanisms of their occurrence in cells. The engineered proteins also allow genomic mapping of sites at which specific DNA structures occur preferentially, using a structure-trapping protein and ChIP-seq- or Cut-and-Tag-like methods. Genome-wide identification of sites with recurrent DNA-damage intermediates has illuminated mechanisms implicated in genome instability, replication stress, and chromosome fragility. Here, we describe X-seq, for identifying sites of recurrent four-way DNA junctions or Holliday-junctions (HJs). X-seq uses an engineered, catalysis-defective mutant of Escherichia coli RuvC HJ-specific endonuclease, RuvCDefGFP. X-seq signal indicates sites of recombinational DNA repair or replication-fork stalling and reversal. We also describe methods for genomic mapping of 3'-single-stranded DNA ends with SsEND-seq, in E. coli. Both methods allow genomic profiling of DNA-damage and -repair intermediates, which can precede genome instability, and are expected to have many additional applications including in other cells and organisms.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States
| | - Sadeieh Nimer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States.
| |
Collapse
|
37
|
Deciphering Microbial Metal Toxicity Responses via Random Bar Code Transposon Site Sequencing and Activity-Based Metabolomics. Appl Environ Microbiol 2021; 87:e0103721. [PMID: 34432491 DOI: 10.1128/aem.01037-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To uncover metal toxicity targets and defense mechanisms of the facultative anaerobe Pantoea sp. strain MT58 (MT58), we used a multiomic strategy combining two global techniques, random bar code transposon site sequencing (RB-TnSeq) and activity-based metabolomics. MT58 is a metal-tolerant Oak Ridge Reservation (ORR) environmental isolate that was enriched in the presence of metals at concentrations measured in contaminated groundwater at an ORR nuclear waste site. The effects of three chemically different metals found at elevated concentrations in the ORR contaminated environment were investigated: the cation Al3+, the oxyanion CrO42-, and the oxycation UO22+. Both global techniques were applied using all three metals under both aerobic and anaerobic conditions to elucidate metal interactions mediated through the activity of metabolites and key genes/proteins. These revealed that Al3+ binds intracellular arginine, CrO42- enters the cell through sulfate transporters and oxidizes intracellular reduced thiols, and membrane-bound lipopolysaccharides protect the cell from UO22+ toxicity. In addition, the Tol outer membrane system contributed to the protection of cellular integrity from the toxic effects of all three metals. Likewise, we found evidence of regulation of lipid content in membranes under metal stress. Individually, RB-TnSeq and metabolomics are powerful tools to explore the impact various stresses have on biological systems. Here, we show that together they can be used synergistically to identify the molecular actors and mechanisms of these pertubations to an organism, furthering our understanding of how living systems interact with their environment. IMPORTANCE Studying microbial interactions with their environment can lead to a deeper understanding of biological molecular mechanisms. In this study, two global techniques, RB-TnSeq and activity metabolomics, were successfully used to probe the interactions between a metal-resistant microorganism, Pantoea sp. strain MT58, and metals contaminating a site where the organism can be located. A number of novel metal-microbe interactions were uncovered, including Al3+ toxicity targeting arginine synthesis, which could lead to a deeper understanding of the impact Al3+ contamination has on microbial communities as well as its impact on higher-level organisms, including plants for whom Al3+ contamination is an issue. Using multiomic approaches like the one described here is a way to further our understanding of microbial interactions and their impacts on the environment overall.
Collapse
|
38
|
Abstract
Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment. There is growing evidence that staphylococcal DNA repair makes important contributions to the survival of the pathogen in host tissues, as well as promoting the emergence of mutants that resist host defenses and antibiotics. While much of what we know about DNA repair in S. aureus is inferred from studies with model organisms, the roles of specific repair mechanisms in infection are becoming clear and differences with Bacillus subtilis and Escherichia coli have been identified. Furthermore, there is growing interest in staphylococcal DNA repair as a target for novel therapeutics that sensitize the pathogen to host defenses and antibiotics. In this review, we discuss what is known about staphylococcal DNA repair and its role in infection, examine how repair in S. aureus is similar to, or differs from, repair in well-characterized model organisms, and assess the potential of staphylococcal DNA repair as a novel therapeutic target.
Collapse
|
39
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
40
|
Mei Q, Fitzgerald DM, Liu J, Xia J, Pribis JP, Zhai Y, Nehring RB, Paiano J, Li H, Nussenzweig A, Hastings PJ, Rosenberg SM. Two mechanisms of chromosome fragility at replication-termination sites in bacteria. SCIENCE ADVANCES 2021; 7:eabe2846. [PMID: 34144978 PMCID: PMC8213236 DOI: 10.1126/sciadv.abe2846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/06/2021] [Indexed: 05/12/2023]
Abstract
Chromosomal fragile sites are implicated in promoting genome instability, which drives cancers and neurological diseases. Yet, the causes and mechanisms of chromosome fragility remain speculative. Here, we identify three spontaneous fragile sites in the Escherichia coli genome and define their DNA damage and repair intermediates at high resolution. We find that all three sites, all in the region of replication termination, display recurrent four-way DNA or Holliday junctions (HJs) and recurrent DNA breaks. Homology-directed double-strand break repair generates the recurrent HJs at all of these sites; however, distinct mechanisms of DNA breakage are implicated: replication fork collapse at natural replication barriers and, unexpectedly, frequent shearing of unsegregated sister chromosomes at cell division. We propose that mechanisms such as both of these may occur ubiquitously, including in humans, and may constitute some of the earliest events that underlie somatic cell mosaicism, cancers, and other diseases of genome instability.
Collapse
Affiliation(s)
- Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yin Zhai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Heyuan Li
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA
| |
Collapse
|
41
|
Bianco PR, Lu Y. Single-molecule insight into stalled replication fork rescue in Escherichia coli. Nucleic Acids Res 2021; 49:4220-4238. [PMID: 33744948 PMCID: PMC8096234 DOI: 10.1093/nar/gkab142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023] Open
Abstract
DNA replication forks stall at least once per cell cycle in Escherichia coli. DNA replication must be restarted if the cell is to survive. Restart is a multi-step process requiring the sequential action of several proteins whose actions are dictated by the nature of the impediment to fork progression. When fork progress is impeded, the sequential actions of SSB, RecG and the RuvABC complex are required for rescue. In contrast, when a template discontinuity results in the forked DNA breaking apart, the actions of the RecBCD pathway enzymes are required to resurrect the fork so that replication can resume. In this review, we focus primarily on the significant insight gained from single-molecule studies of individual proteins, protein complexes, and also, partially reconstituted regression and RecBCD pathways. This insight is related to the bulk-phase biochemical data to provide a comprehensive review of each protein or protein complex as it relates to stalled DNA replication fork rescue.
Collapse
Affiliation(s)
- Piero R Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yue Lu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
42
|
Pandey S, Kumar A, Kirti A, Gupta GD, Rajaram H. Rec(F/O/R) proteins of the nitrogen-fixing cyanobacterium Nostoc PCC7120: In silico and expression analysis. Gene 2021; 788:145663. [PMID: 33887372 DOI: 10.1016/j.gene.2021.145663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/01/2021] [Accepted: 04/15/2021] [Indexed: 01/19/2023]
Abstract
The high radioresistance of Nostoc sp. strain PCC7120 is indicative of a robust DNA repair pathway. In the absence of NHEJ pathway and the canonical RecBCD proteins, the RecF pathway proteins are expected to play an important role in double strand break repair in this organism. The RecF, RecO and RecR proteins which are central to the RecF pathway have not been characterised in the ancient cyanobacteria, several of which are known to be radioresistant. The characterisation of these proteins was initiated through a mix of in silico, expression and complementation analysis. Differential expression of the recF, recO and recR genes was observed both at the transcript and the protein level under normal growth condition, which did not change significantly upon exposure to DNA damage stresses. Expression of RecR as a 23 kDa protein in vivo in Nostoc PCC7120 confirmed the re-annotation of the initiation codon of the gene (alr4977) to a rare initiation codon 'GTT' 267 bases upstream of the annotated initiation codon. Of the three proteins, Nostoc RecO and RecR proteins could complement the corresponding mutations in Escherichia coli, but not RecF. The Nostoc RecO protein exhibited low sequence and structural homology with other bacterial RecO protein, and was predicted to have a longer loop region. Phylogenetic as well as sequence analysis revealed high conservation among bacterial RecR proteins and least for RecO. In silico analysis revealed a comparatively smaller interactome for the Nostoc RecF, RecO and RecR proteins compared to other bacteria, with RecO predicted to interact with both RecF and RecR. The information gathered can form a stepping stone to further characterise these proteins in terms of deciphering their interactome, biochemical and physiological activities. This would help in establishing their importance in RecF pathway of DSB repair in Nostoc PCC7120.
Collapse
Affiliation(s)
- Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Gagan D Gupta
- Radiaiton Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
43
|
Elucidating Recombination Mediator Function Using Biophysical Tools. BIOLOGY 2021; 10:biology10040288. [PMID: 33916151 PMCID: PMC8066028 DOI: 10.3390/biology10040288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review recapitulates the initial knowledge acquired with genetics and biochemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to overcome the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) molecular mechanisms. The RMP function is usually realized by a single protein in bacteriophages and eukaryotes, respectively UvsY or Orf, and RAD52 or BRCA2, while in bacteria three proteins RecF, RecO and RecR act cooperatively to displace SSB and load RecA onto a ssDNA region. Proteins working alongside to the RMPs in homologous recombination and DNA repair notably belongs to the RAD52 epistasis group in eukaryote and the RecF epistasis group in bacteria. Although RMPs have been studied for several decades, molecular mechanisms at the single-cell level are still not fully understood. Here, we summarize the current knowledge acquired on RMPs and review the crucial role of biophysical tools to investigate molecular mechanisms at the single-cell level in the physiological context.
Collapse
|
44
|
Shinn MK, Kozlov AG, Lohman TM. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res 2021; 49:1987-2004. [PMID: 33450019 PMCID: PMC7913777 DOI: 10.1093/nar/gkaa1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli RecO is a recombination mediator protein that functions in the RecF pathway of homologous recombination, in concert with RecR, and interacts with E. coli single stranded (ss) DNA binding (SSB) protein via the last 9 amino acids of the C-terminal tails (SSB-Ct). Structures of the E. coli RecR and RecOR complexes are unavailable; however, crystal structures from other organisms show differences in RecR oligomeric state and RecO stoichiometry. We report analytical ultracentrifugation studies of E. coli RecR assembly and its interaction with RecO for a range of solution conditions using both sedimentation velocity and equilibrium approaches. We find that RecR exists in a pH-dependent dimer-tetramer equilibrium that explains the different assembly states reported in previous studies. RecO binds with positive cooperativity to a RecR tetramer, forming both RecR4O and RecR4O2 complexes. We find no evidence of a stable RecO complex with RecR dimers. However, binding of RecO to SSB-Ct peptides elicits an allosteric effect, eliminating the positive cooperativity and shifting the equilibrium to favor a RecR4O complex. These studies suggest a mechanism for how SSB binding to RecO influences the distribution of RecOR complexes to facilitate loading of RecA onto SSB coated ssDNA to initiate homologous recombination.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
45
|
Bichara M, Pelet S, Lambert IB. Recombinational repair in the absence of holliday junction resolvases in E. coli. Mutat Res 2021; 822:111740. [PMID: 33740684 DOI: 10.1016/j.mrfmmm.2021.111740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/17/2020] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
Cells possess two major DNA damage tolerance pathways that allow them to duplicate their genomes despite the presence of replication blocking lesions: translesion synthesis (TLS) and daughter strand gap repair (DSGR). The TLS pathway involves specialized DNA polymerases that are able to synthesize past DNA lesions while DSGR relies on Recombinational Repair (RR). At least two mechanisms are associated with RR: Homologous Recombination (HR) and RecA Mediated Excision Repair (RAMER). While HR and RAMER both depend on RecFOR and RecA, only the HR mechanism should involve Holliday Junctions (HJs) resolvase reactions. In this study we investigated the role of HJ resolvases, RuvC, TopIII and RusA on the balance between RAMER and HR in E. coli MG1655 derivatives. Using UV survival measurements, we first clearly establish that, in this genetic background, topB and ruvC define two distinct pathways of HJ resolution. We observed that a recA mutant is much more sensitive to UV than the ruvC topB double mutant which is deficient in HR because of its failure to resolve HJs. This difference is independent of RAMER, the SOS system, RusA, and the three TLS DNA polymerases, and may be accounted for by Double Strand Break repair mechanisms such as Synthesis Dependent Strand Annealing, Single Strand Annealing, or Break Induced Replication, which are independent of HJ resolvases. We then used a plasmid-based assay, in which RR is triggered by a single blocking lesion present on a plasmid molecule, to establish that while HR requires topB, ruvC or rusA, RAMER is independent of these genes and, as expected, requires a functional UvrABC excinuclease. Surprisingly, analysis of the RR events in a strain devoid of HJ resolvases reveals that the UvrABC dependent repair of the single lesion present on the plasmid molecule can generate an excision track potentially extending to dozens of nucleotides.
Collapse
Affiliation(s)
- Marc Bichara
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, CS10413 F - 67412 ILLKIRCH Cedex, France.
| | - Sandrine Pelet
- CNRS, UMR7242 Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, CS10413 F - 67412 ILLKIRCH Cedex, France.
| | - Iain B Lambert
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
46
|
Fallon AM. DNA recombination and repair in Wolbachia: RecA and related proteins. Mol Genet Genomics 2021; 296:437-456. [PMID: 33507381 DOI: 10.1007/s00438-020-01760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Wolbachia is an obligate intracellular bacterium that has undergone extensive genomic streamlining in its arthropod and nematode hosts. Because the gene encoding the bacterial DNA recombination/repair protein RecA is not essential in Escherichia coli, abundant expression of this protein in a mosquito cell line persistently infected with Wolbachia strain wStri was unexpected. However, RecA's role in the lytic cycle of bacteriophage lambda provides an explanation for retention of recA in strains known to encode lambda-like WO prophages. To examine DNA recombination/repair capacities in Wolbachia, a systematic examination of RecA and related proteins in complete or nearly complete Wolbachia genomes from supergroups A, B, C, D, E, F, J and S was undertaken. Genes encoding proteins including RecA, RecF, RecO, RecR, RecG and Holliday junction resolvases RuvA, RuvB and RuvC are uniformly absent from Wolbachia in supergroup C and have reduced representation in supergroups D and J, suggesting that recombination and repair activities are compromised in nematode-associated Wolbachia, relative to strains that infect arthropods. An exception is filarial Wolbachia strain wMhie, assigned to supergroup F, which occurs in a nematode host from a poikilothermic lizard. Genes encoding LexA and error-prone polymerases are absent from all Wolbachia genomes, suggesting that the SOS functions induced by RecA-mediated activation of LexA do not occur, despite retention of genes encoding a few proteins that respond to LexA induction in E. coli. Three independent E. coli accessions converge on a single Wolbachia UvrD helicase, which interacts with mismatch repair proteins MutS and MutL, encoded in nearly all Wolbachia genomes. With the exception of MutL, which has been mapped to a eukaryotic association module in Phage WO, proteins involved in recombination/repair are uniformly represented by single protein annotations. Putative phage-encoded MutL proteins are restricted to Wolbachia supergroups A and B and show higher amino acid identity than chromosomally encoded MutL orthologs. This analysis underscores differences between nematode and arthropod-associated Wolbachia and describes aspects of DNA metabolism that potentially impact development of procedures for transformation and genetic manipulation of Wolbachia.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
47
|
Yang Y, Wang T, Yu Q, Liu H, Xun L, Xia Y. The pathway of recombining short homologous ends in Escherichia coli revealed by the genetic study. Mol Microbiol 2021; 115:1309-1322. [PMID: 33372330 DOI: 10.1111/mmi.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The recombination of short homologous ends in Escherichia coli has been known for 30 years, and it is often used for both site-directed mutagenesis and in vivo cloning. For cloning, a plasmid and target DNA fragments were converted into linear DNA fragments with short homologous ends, which are joined via recombination inside E. coli after transformation. Here this mechanism of joining homologous ends in E. coli was determined by a linearized plasmid with short homologous ends. Two 3'-5' exonucleases ExoIII and ExoX with nonprocessive activity digested linear dsDNA to generate 5' single-strand overhangs, which annealed with each other. The polymerase activity of DNA polymerase I (Pol I) was exclusively employed to fill in the gaps. The strand displacement activity and the 5'-3' exonuclease activity of Pol I were also required, likely to generate 5' phosphate termini for subsequent ligation. Ligase A (LigA) joined the nicks to finish the process. The model involving 5' single-stranded overhangs is different from established recombination pathways that all generate 3' single-stranded overhangs. This recombination is likely common in bacteria since the involved enzymes are ubiquitous.
Collapse
Affiliation(s)
- Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,Institute of Marine Science and Technology, Shandong University, Qingdao, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
48
|
Kloos J, Johnsen PJ, Harms K. Tn 1 transposition in the course of natural transformation enables horizontal antibiotic resistance spread in Acinetobacter baylyi. MICROBIOLOGY-SGM 2020; 167. [PMID: 33270000 PMCID: PMC8116780 DOI: 10.1099/mic.0.001003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transposons are genetic elements that change their intracellular genomic position by transposition and are spread horizontally between bacteria when located on plasmids. It was recently discovered that transposition from fully heterologous DNA also occurs in the course of natural transformation. Here, we characterize the molecular details and constraints of this process using the replicative transposon Tn1 and the naturally competent bacterium Acinetobacter baylyi. We find that chromosomal insertion of Tn1 by transposition occurs at low but detectable frequencies and preferably around the A. baylyi terminus of replication. We show that Tn1 transposition is facilitated by transient expression of the transposase and resolvase encoded by the donor DNA. RecA protein is essential for the formation of a circular, double-stranded cytoplasmic intermediate from incoming donor DNA, and RecO is beneficial but not essential in this process. Absence of the recipient RecBCD nuclease stabilizes the double-stranded intermediate. Based on these results, we suggest a mechanistic model for transposition during natural transformation.
Collapse
Affiliation(s)
- Julia Kloos
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
49
|
Chaudhary SK, Elayappan M, Jeyakanthan J, Kanagaraj S. Structural and functional characterization of oligomeric states of proteins in RecFOR pathway. Int J Biol Macromol 2020; 163:943-953. [DOI: 10.1016/j.ijbiomac.2020.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/30/2022]
|
50
|
Double strand break (DSB) repair in Cyanobacteria: Understanding the process in an ancient organism. DNA Repair (Amst) 2020; 95:102942. [DOI: 10.1016/j.dnarep.2020.102942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
|