1
|
VanDyke D, Xu L, Sargunas PR, Gilbreth RN, Baca M, Gao C, Hunt J, Spangler JB. Redirecting the specificity of tripartite motif containing-21 scaffolds using a novel discovery and design approach. J Biol Chem 2023; 299:105381. [PMID: 37866632 PMCID: PMC10694607 DOI: 10.1016/j.jbc.2023.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
Hijacking the ubiquitin proteasome system to elicit targeted protein degradation (TPD) has emerged as a promising therapeutic strategy to target and destroy intracellular proteins at the post-translational level. Small molecule-based TPD approaches, such as proteolysis-targeting chimeras (PROTACs) and molecular glues, have shown potential, with several agents currently in clinical trials. Biological PROTACs (bioPROTACs), which are engineered fusion proteins comprised of a target-binding domain and an E3 ubiquitin ligase, have emerged as a complementary approach for TPD. Here, we describe a new method for the evolution and design of bioPROTACs. Specifically, engineered binding scaffolds based on the third fibronectin type III domain of human tenascin-C (Tn3) were installed into the E3 ligase tripartite motif containing-21 (TRIM21) to redirect its degradation specificity. This was achieved via selection of naïve yeast-displayed Tn3 libraries against two different oncogenic proteins associated with B-cell lymphomas, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) and embryonic ectoderm development protein (EED), and replacing the native substrate-binding domain of TRIM21 with our evolved Tn3 domains. The resulting TRIM21-Tn3 fusion proteins retained the binding properties of the Tn3 as well as the E3 ligase activity of TRIM21. Moreover, we demonstrated that TRIM21-Tn3 fusion proteins efficiently degraded their respective target proteins through the ubiquitin proteasome system in cellular models. We explored the effects of binding domain avidity and E3 ligase utilization to gain insight into the requirements for effective bioPROTAC design. Overall, this study presents a versatile engineering approach that could be used to design and engineer TRIM21-based bioPROTACs against therapeutic targets.
Collapse
Affiliation(s)
- Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Linda Xu
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Paul R Sargunas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan N Gilbreth
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Manuel Baca
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Changshou Gao
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - James Hunt
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Bai YK, Sun J, Wang YS, Zheng N, Xu QL, Wang Y. The clinicopathological and prognostic significances of EZH2 expression in urological cancers: A meta‑analysis and bioinformatics analysis. Oncol Lett 2023; 26:315. [PMID: 37346412 PMCID: PMC10280112 DOI: 10.3892/ol.2023.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
The Drosophila zeste enhancer homolog 2 gene (enhancer of zeste homolog 2; EZH2) is an important member of the polycomb group (PcG) gene family, which maintains the homologous gene via chromosome modification during embryonic development. EZH2 is overexpressed in various tumors, is closely related to tumor formation and growth, and has a malignant phenotype that promotes tumor cell proliferation, proliferation and metastasis. In the present study, a meta- and bioinformatic analysis was performed using data from multiple online databases until August 30, 2022. EZH2 upregulation was found in kidney, bladder and prostate cancers. EZH2 expression was negatively related to TNM staging and pathological grade in kidney and prostate cancers (P<0.05), as well as invasion depth and pathological grade in bladder cancer. According to the KM-plotter database, EZH2 expression was inversely associated with poor overall survival in patients with kidney clear cell renal cell carcinoma (RCC) and papillary RCC and with favorable survival in bladder cancer. EZH2 expression was negatively related to relapse-free survival in kidney papillary RCC and bladder cancer but positively associated with kidney clear cell RCC. According to GEPIA and UALCAN databases, EZH2 expression was higher in tumor tissue than normal tissue. The TIMER database showed that EZH2 was closely associated with the proportion of seven immune cell infiltrates in kidney, bladder, and prostate cancers. High EZH2 expression may be a potential marker of tumorigenesis and metastasis in patients with urological cancers.
Collapse
Affiliation(s)
- Yang-Kai Bai
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Jing Sun
- Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, Shaanxi 723000, P.R. China
| | - Ye-Song Wang
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Nan Zheng
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Qing-Le Xu
- Department of Urology, Hebei Provincial People's Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Yang Wang
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| |
Collapse
|
3
|
Shirahama Y, Yamamoto K. The E2F6 Transcription Factor is Associated with the Mammalian SUZ12-Containing Polycomb Complex. Kurume Med J 2023; 67:171-183. [PMID: 36464274 DOI: 10.2739/kurumemedj.ms674006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The Polycomb group protein (PcG) SUZ12 forms Polycomb repressive complexes together with histone methyltransferase EZH2. Although the complexes have been demonstrated to be involved in epigenetic maintenance of gene expression in a transcriptional repressive state, it is unclear how they are recruited to the target genes. Here we report that SUZ12 directly interacts with site-specific transcriptional repressor E2F6 and forms a complex together with EZH2. SUZ12 interacts with E2F6 selectively among the E2F family proteins and E2F6- containing SUZ12-EZH2 complex was biochemically purified from HEK293 cells stably expressing Flag-tagged SUZ12. Chromatin immunoprecipitation assays revealed the target genes of the E2F6-SUZ12-EZH2 complex. Contrary to expectation, the promoter regions of these genes are not or only weakly tri-methylated at histone H3-K27, and their expression is down-regulated by depletion of EZH2. Given that the transactivation function of SUZ12-EZH2 has been previously reported, the inhibitory effect on E2F6-mediated transcriptional repression by physical interaction can be considered a candidate mechanism of gene activation by these PcGs.
Collapse
Affiliation(s)
- Yuko Shirahama
- Department of Medical Biochemistry, Kurume University School of Medicine
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine
| |
Collapse
|
4
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
5
|
Abstract
Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | |
Collapse
|
6
|
Gonzalez ME, Naimo GD, Anwar T, Paolì A, Tekula SR, Kim S, Medhora N, Leflein SA, Itkin J, Trievel R, Kidwell KM, Chen YC, Mauro L, Yoon E, Andò S, Kleer CG. EZH2 T367 phosphorylation activates p38 signaling through lysine methylation to promote breast cancer progression. iScience 2022; 25:104827. [PMID: 35992062 PMCID: PMC9389258 DOI: 10.1016/j.isci.2022.104827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/10/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently poorly differentiated with high propensity for metastasis. Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 that mediates transcriptional repression in normal cells and in cancer through H3K27me3. However, H3K27me3-independent non-canonical functions of EZH2 are incompletely understood. We reported that EZH2 phosphorylation at T367 by p38α induces TNBC metastasis in an H3K27me3-independent manner. Here, we show that cytosolic EZH2 methylates p38α at lysine 139 and 165 leading to enhanced p38α stability and that p38 methylation and activation require T367 phosphorylation of EZH2. Dual inhibition of EZH2 methyltransferase and p38 kinase activities downregulates pEZH2-T367, H3K27me3, and p-p38 pathways in vivo and reduces TNBC growth and metastasis. These data uncover a cooperation between EZH2 canonical and non-canonical mechanisms and suggest that inhibition of these pathways may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Maria E. Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Giuseppina Daniela Naimo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Talha Anwar
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Alessandro Paolì
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Shilpa R. Tekula
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Suny Kim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Natasha Medhora
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shoshana A. Leflein
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacob Itkin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raymond Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kelley M. Kidwell
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Bremer SCB, Bittner G, Elakad O, Dinter H, Gaedcke J, König AO, Amanzada A, Ellenrieder V, Freiherr von Hammerstein-Equord A, Ströbel P, Bohnenberger H. Enhancer of Zeste Homolog 2 (EZH2) Is a Marker of High-Grade Neuroendocrine Neoplasia in Gastroenteropancreatic and Pulmonary Tract and Predicts Poor Prognosis. Cancers (Basel) 2022; 14:cancers14122828. [PMID: 35740494 PMCID: PMC9221317 DOI: 10.3390/cancers14122828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/29/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Neuroendocrine neoplasms most frequently arise in the gastroenteropancreatic and pulmonary tract and show an increasing incidence and prevalence. The prognosis and treatment depend on tumor proliferation and clinical behavior. Highly proliferating grade 3 neoplasms especially, show a wildly divergent therapy response and prognosis. In particular, it is crucial to securely separate the more indolent G3 tumors from the more aggressive carcinomas. Currently, this distinction is based on a combination of clinical, morphologic, immunohistochemical, and molecular biomarkers. However, none of these markers allow for a reliable distinction, and additional markers are needed. EZH2 has attracted increasing interest in different tumor entities. We aimed to analyze the expression of EZH2 in different neuroendocrine neoplasms and to correlate the expression with clinical parameters and survival. We demonstrate that EZH2 is nearly exclusively expressed in highly proliferative neoplasms and is a robust biomarker for identifying aggressive G3 tumors with poor prognosis. Abstract Tumor grading is a robust prognostic predictor in patients with neuroendocrine neoplasms (NEN) and guides therapy, especially in tumors with high proliferation. NEN can be separated into well-differentiated and poorly differentiated types. The more aggressive NEN have been further separated into neuroendocrine tumors (NET G3) with a better prognosis and neuroendocrine carcinomas (NEC) with a worse prognosis. Despite this distinction’s tremendous clinical and therapeutic relevance, optimal diagnostic biomarkers are still lacking. In this study, we analyzed the protein expression and prognostic impact of Enhancer of Zeste Homolog 2 (EZH2) by immunohistochemistry in 219 tissue samples of gastroenteropancreatic (GEP-NEN) and pulmonary NEN (P-NEN). EZH2 was almost exclusively expressed in NEN with a proliferation rate above 20% (G3), while all low-grade tumors were nearly negative. Among high-grade NEN, 65% showed high and 35% low expression of EZH2. In this group, the high expression of EZH2 was significantly associated with poor overall survival and NEC histology. Interestingly, EZH2 seems to act independently of Polycomb Repressive Complex 2 (PRC2) in NEN. In conclusion, we propose EZH2 as a robust biomarker for distinguishing between NET G3 and NEC among gastroenteropancreatic and pulmonary NEN.
Collapse
Affiliation(s)
- Sebastian C. B. Bremer
- Clinic for Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (A.O.K.); (A.A.); (V.E.)
- Correspondence:
| | - Gabi Bittner
- Institute of Pathology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (G.B.); (O.E.); (H.D.); (P.S.); (H.B.)
| | - Omar Elakad
- Institute of Pathology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (G.B.); (O.E.); (H.D.); (P.S.); (H.B.)
| | - Helen Dinter
- Institute of Pathology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (G.B.); (O.E.); (H.D.); (P.S.); (H.B.)
| | - Jochen Gaedcke
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany;
| | - Alexander O. König
- Clinic for Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (A.O.K.); (A.A.); (V.E.)
| | - Ahmad Amanzada
- Clinic for Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (A.O.K.); (A.A.); (V.E.)
| | - Volker Ellenrieder
- Clinic for Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (A.O.K.); (A.A.); (V.E.)
| | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (G.B.); (O.E.); (H.D.); (P.S.); (H.B.)
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Goettingen, Georg-August-University, 37075 Goettingen, Germany; (G.B.); (O.E.); (H.D.); (P.S.); (H.B.)
| |
Collapse
|
8
|
Shaliman D, Takenobu H, Sugino RP, Ohira M, Kamijo T. The PRC2 molecule EED is a target of epigenetic therapy for neuroblastoma. Eur J Cell Biol 2022; 101:151238. [PMID: 35636260 DOI: 10.1016/j.ejcb.2022.151238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
Epigenetic modifications by polycomb repressive complex (PRC) molecules appear to play a role in the tumorigenesis and aggressiveness of neuroblastoma (NB). Embryonic ectoderm development (EED) is a member of the PRC2 complex that binds to the H3K27me3 mark deposited by EZH2 via propagation on adjacent nucleosomes. We herein investigated the molecular roles of EED in MYCN-amplified NB cells using EED-knockdown (KD) shRNAs, EED-knockout sgRNAs, and the EED small molecule inhibitor EED226. The suppression of EED markedly inhibited NB cell proliferation and flat and soft agar colony formation. A transcriptome analysis using microarrays of EED-KD NB cells indicated the de-repression of cell cycle-regulated and differentiation-related genes. The results of a GSEA analysis suggested that inhibitory cell cycle-regulated gene sets were markedly up-regulated. Furthermore, an epigenetic treatment with the EED inhibitor EED226 and the HDAC inhibitors valproic acid/SAHA effectively suppressed NB cell proliferation and colony formation. This combined epigenetic treatment up-regulated cell cycle-regulated and differentiation-related genes. The ChIP sequencing analysis of histone codes and PRC molecules suggested an epigenetic background for the de-repression of down-regulated genes in MYCN-amplified/PRC2 up-regulated NB.
Collapse
Affiliation(s)
- Dilibaerguli Shaliman
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan; Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Ryuichi P Sugino
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan; Laboratory of Tumor Molecular Biology, Department of Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| |
Collapse
|
9
|
The Highest Density of Phosphorylated Histone H1 Appeared in Prophase and Prometaphase in Parallel with Reduced H3K9me3, and HDAC1 Depletion Increased H1.2/H1.3 and H1.4 Serine 38 Phosphorylation. Life (Basel) 2022; 12:life12060798. [PMID: 35743829 PMCID: PMC9224986 DOI: 10.3390/life12060798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Variants of linker histone H1 are tissue-specific and are responsible for chromatin compaction accompanying cell differentiation, mitotic chromosome condensation, and apoptosis. Heterochromatinization, as the main feature of these processes, is also associated with pronounced trimethylation of histones H3 at the lysine 9 position (H3K9me3). Methods: By confocal microscopy, we analyzed cell cycle-dependent levels and distribution of phosphorylated histone H1 (H1ph) and H3K9me3. By mass spectrometry, we studied post-translational modifications of linker histones. Results: Phosphorylated histone H1, similarly to H3K9me3, has a comparable level in the G1, S, and G2 phases of the cell cycle. A high density of phosphorylated H1 was inside nucleoli of mouse embryonic stem cells (ESCs). H1ph was also abundant in prophase and prometaphase, while H1ph was absent in anaphase and telophase. H3K9me3 surrounded chromosomal DNA in telophase. This histone modification was barely detectable in the early phases of mitosis. Mass spectrometry revealed several ESC-specific phosphorylation sites of H1. HDAC1 depletion did not change H1 acetylation but potentiated phosphorylation of H1.2/H1.3 and H1.4 at serine 38 positions. Conclusions: Differences in the level and distribution of H1ph and H3K9me3 were revealed during mitotic phases. ESC-specific phosphorylation sites were identified in a linker histone.
Collapse
|
10
|
Fischer S, Weber LM, Liefke R. Evolutionary adaptation of the Polycomb repressive complex 2. Epigenetics Chromatin 2022; 15:7. [PMID: 35193659 PMCID: PMC8864842 DOI: 10.1186/s13072-022-00439-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is an essential chromatin regulatory complex involved in repressing the transcription of diverse developmental genes. PRC2 consists of a core complex; possessing H3K27 methyltransferase activity and various associated factors that are important to modulate its function. During evolution, the composition of PRC2 and the functionality of PRC2 components have changed considerably. Here, we compare the PRC2 complex members of Drosophila and mammals and describe their adaptation to altered biological needs. We also highlight how the PRC2.1 subcomplex has gained multiple novel functions and discuss the implications of these changes for the function of PRC2 in chromatin regulation.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany. .,Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, 35043, Marburg, Germany.
| |
Collapse
|
11
|
Soshnev AA, Allis CD, Cesarman E, Melnick AM. Histone H1 Mutations in Lymphoma: A Link(er) between Chromatin Organization, Developmental Reprogramming, and Cancer. Cancer Res 2021; 81:6061-6070. [PMID: 34580064 PMCID: PMC8678342 DOI: 10.1158/0008-5472.can-21-2619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Aberrant cell fate decisions due to transcriptional misregulation are central to malignant transformation. Histones are the major constituents of chromatin, and mutations in histone-encoding genes are increasingly recognized as drivers of oncogenic transformation. Mutations in linker histone H1 genes were recently identified as drivers of peripheral lymphoid malignancy. Loss of H1 in germinal center B cells results in widespread chromatin decompaction, redistribution of core histone modifications, and reactivation of stem cell-specific transcriptional programs. This review explores how linker histones and mutations therein regulate chromatin structure, highlighting reciprocal relationships between epigenetic circuits, and discusses the emerging role of aberrant three-dimensional chromatin architecture in malignancy.
Collapse
Affiliation(s)
- Alexey A Soshnev
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York.
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Ari M Melnick
- Division of Hematology & Medical Oncology, Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
12
|
Miao X, Sun T, Barletta H, Mager J, Cui W. Loss of RBBP4 results in defective inner cell mass, severe apoptosis, hyperacetylated histones and preimplantation lethality in mice†. Biol Reprod 2021; 103:13-23. [PMID: 32285100 DOI: 10.1093/biolre/ioaa046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma-binding protein 4 (RBBP4) (also known as chromatin-remodeling factor RBAP48) is an evolutionarily conserved protein that has been involved in various biological processes. Although a variety of functions have been attributed to RBBP4 in vitro, mammalian RBBP4 has not been studied in vivo. Here we report that RBBP4 is essential during early mouse embryo development. Although Rbbp4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts cannot hatch from the zona or can hatch but then arrest without further development. We find that while there is no change in proliferation or levels of reactive oxygen species, both apoptosis and histone acetylation are significantly increased in mutant blastocysts. Analysis of lineage specification reveals that while the trophoblast is properly specified, both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification. In summary, these findings demonstrate the essential role of RBBP4 during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Tieqi Sun
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Holly Barletta
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
13
|
Abstract
In this review, Prendergast and Reinberg discuss the likelihood that the family of histone H1 variants may be key to understanding several fundamental processes in chromatin biology and underscore their particular contributions to distinctly significant chromatin-related processes. Major advances in the chromatin and epigenetics fields have uncovered the importance of core histones, histone variants and their post-translational modifications (PTMs) in modulating chromatin structure. However, an acutely understudied related feature of chromatin structure is the role of linker histone H1. Previous assumptions of the functional redundancy of the 11 nonallelic H1 variants are contrasted by their strong evolutionary conservation, variability in their potential PTMs, and increased reports of their disparate functions, sub-nuclear localizations and unique expression patterns in different cell types. The commonly accepted notion that histone H1 functions solely in chromatin compaction and transcription repression is now being challenged by work from multiple groups. These studies highlight histone H1 variants as underappreciated facets of chromatin dynamics that function independently in various chromatin-based processes. In this review, we present notable findings involving the individual somatic H1 variants of which there are seven, underscoring their particular contributions to distinctly significant chromatin-related processes.
Collapse
Affiliation(s)
- Laura Prendergast
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone Health, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical School, New York, New York 10016, USA
| |
Collapse
|
14
|
Epigenetic Regulation in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983575 DOI: 10.1007/978-981-32-9620-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Aberrant epigenetic alteration has been associated with development of various cancers, including breast cancer. Since epigenetic modifications such as DNA methylation and histone modification are reversible, epigenetic enzymes, including histone modifying enzymes and DNA methyltransferases, emerge as attractive targets for cancer therapy. Although epi-drugs targeting histone deacetylation or DNA methylation have received FDA approval for cancer therapy, a very modest anti-tumor activity has been observed with monotherapy in clinical studies of breast cancer. To improve efficacy of epi-drugs in breast cancer, combination of epi-drugs with other therapies currently has been investigated. Additionally, basic researches to elucidate molecular causes of cancer should be extensively and intensively conducted in order to find novel epigenetic druggable targets. In this chapter, we summarize how epigenetic regulation affects the development of breast cancer and how to control cancer phenotype by modulating abnormal epigenetic modifications, and then suggest future research directions in epigenetics for breast cancer treatment.
Collapse
|
15
|
Cao Y, Li L, Fan Z. The role and mechanisms of polycomb repressive complex 2 on the regulation of osteogenic and neurogenic differentiation of stem cells. Cell Prolif 2021; 54:e13032. [PMID: 33759287 PMCID: PMC8088470 DOI: 10.1111/cpr.13032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
The stem cells differentiate into osteoblasts or neurocytes is the key process for treatment of bone‐ or neural tissue‐related diseases which is caused by ageing, fracture, injury, inflammation, etc Polycomb group complexes (PcGs), especially the polycomb repressive complex 2 (PRC2), act as pivotal epigenetic regulators by modifying key developmental regulatory genes during stem cells differentiation. In this review, we summarize the core subunits, the variants and the potential functions of PRC2. We also highlight the underlying mechanisms of PRC2 associated with the osteogenic and neurogenic differentiation of stem cells, including its interaction with non‐coding RNAs, histone acetyltransferases, histone demethylase, DNA methyltransferase and polycomb repressive complex 1. This review provided a substantial information of epigenetic regulation mediated by PRC2 which leads to the osteogenic and neurogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Le Li
- Tsinghua University Hospital, Stomatological Disease Prevention and Control Center, Tsinghua University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Liu T, Cai J, Cai J, Wang Z, Cai L. EZH2-miRNA Positive Feedback Promotes Tumor Growth in Ovarian Cancer. Front Oncol 2021; 10:608393. [PMID: 33718109 PMCID: PMC7947696 DOI: 10.3389/fonc.2020.608393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Enhancer of zester homolog 2 (EZH2), a histone methyl transferase that mediates H3K27me3 through polycomb repressive complex 2 (PRC2), is overexpressed in ovarian cancer and promotes malignant proliferation. However, the underlying mechanism of maintaining high EZH2 expression remains elusive. Here we showed that microRNA(miRNA) inhibited EZH2 by binding to the 3′-UTR of EZH2 mRNA; conversely, EZH2 can inhibit miRNA expression. We confirmed that a feedback loop exists between EZH2 and miRNA that maintained EZH2 overexpression, thus promoting ovarian cancer proliferation in vivo and in vitro. We further explored that EZH2 inhibited miRNA expression through PRC2, as determined by CHIP (chromatin immunoprecipitation), and EZH2 decreased the expression of p21, p53, and RUNX3. These results suggest that EZH2 inhibits the expression of Et-miRNAs (EZH2-targeting miRNAs) through the H3K27me3 pathway, thus forming an EZH2-miRNA positive feedback loop that maintains the high expression of EZH2 and promotes the malignant proliferation of cancer cells by regulating the expression of cell proliferation-related proteins.
Collapse
Affiliation(s)
- Ting Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqiong Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Martin MC, Zeng G, Yu J, Schiltz GE. Small Molecule Approaches for Targeting the Polycomb Repressive Complex 2 (PRC2) in Cancer. J Med Chem 2020; 63:15344-15370. [PMID: 33283516 DOI: 10.1021/acs.jmedchem.0c01344] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The polycomb repressive complex 2 (PRC2) is composed of three core subunits, enhancer of zeste 2 (EZH2), embryonic ectoderm development (EED), and suppressor of zeste 12 (SUZ12), along with a number of accessory proteins. It is the key enzymatic protein complex that catalyzes histone H3 lysine 27 (H3K27) methylation to mediate epigenetic silencing of target genes. PRC2 thus plays essential roles in maintaining embryonic stem cell identity and in controlling cellular differentiation. Studies in the past decade have reported frequent overexpression or mutation of PRC2 in various cancers including prostate cancer and lymphoma. Aberrant PRC2 function has been extensively studied and proven to contribute to a large number of abnormal cellular processes, including those that lead to uncontrolled proliferation and tumorigenesis. Significant efforts have recently been made to develop small molecules targeting PRC2 function for potential use as anticancer therapeutics. In this review, we describe recent approaches to identify and develop small molecules that target PRC2. These various strategies include the inhibition of the function of individual PRC2 core proteins, the disruption of PRC2 complex formation, and the degradation of its subunits.
Collapse
Affiliation(s)
- M Cynthia Martin
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States
| | - Guihua Zeng
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States.,Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
18
|
Liu X. A Structural Perspective on Gene Repression by Polycomb Repressive Complex 2. Subcell Biochem 2020; 96:519-562. [PMID: 33252743 DOI: 10.1007/978-3-030-58971-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a major repressive chromatin complex formed by the Polycomb Group (PcG) proteins. PRC2 mediates trimethylation of histone H3 lysine 27 (H3K27me3), a hallmark of gene silencing. PRC2 is a key regulator of development, impacting many fundamental biological processes, like stem cell differentiation in mammals and vernalization in plants. Misregulation of PRC2 function is linked to a variety of human cancers and developmental disorders. In correlation with its diverse roles in development, PRC2 displays a high degree of compositional complexity and plasticity. Structural biology research over the past decade has shed light on the molecular mechanisms of the assembly, catalysis, allosteric activation, autoinhibition, chemical inhibition, dimerization and chromatin targeting of various developmentally regulated PRC2 complexes. In addition to these aspects, structure-function analysis is also discussed in connection with disease data in this chapter.
Collapse
Affiliation(s)
- Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
20
|
HOPX regulates bone marrow-derived mesenchymal stromal cell fate determination via suppression of adipogenic gene pathways. Sci Rep 2020; 10:11345. [PMID: 32647304 PMCID: PMC7347885 DOI: 10.1038/s41598-020-68261-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
Previous studies of global binding patterns identified the epigenetic factor, EZH2, as a regulator of the homeodomain-only protein homeobox (HOPX) gene expression during bone marrow stromal cell (BMSC) differentiation, suggesting a potential role for HOPX in regulating BMSC lineage specification. In the present study, we confirmed that EZH2 direct binds to the HOPX promoter region, during normal growth and osteogenic differentiation but not under adipogenic inductive conditions. HOPX gene knockdown and overexpression studies demonstrated that HOPX is a promoter of BMSC proliferation and an inhibitor of adipogenesis. However, functional studies failed to observe any affect by HOPX on BMSC osteogenic differentiation. RNA-seq analysis of HOPX overexpressing BMSC during adipogenesis, found HOPX function to be acting through suppression of adipogenic pathways associated genes such as ADIPOQ, FABP4, PLIN1 and PLIN4. These findings suggest that HOPX gene target pathways are critical factors in the regulation of fat metabolism.
Collapse
|
21
|
Pandya P, Isakov N. PICOT promotes T lymphocyte proliferation by down-regulating cyclin D2 expression. World J Immunol 2020; 10:1-12. [DOI: 10.5411/wji.v10.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The mammalian protein kinase C-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3) is a multi-domain monothiol glutaredoxin that is involved in a wide variety of signaling pathways and biological processes. PICOT is required for normal and transformed cell growth and is critical for embryonic development. Recent studies in T lymphocytes demonstrated that PICOT can translocate to the nucleus and interact with embryonic ectoderm development, a polycomb group protein and a core component of the polycomb repressive complex 2, which contributes to the maintenance of transcriptional repression and chromatin remodeling. Furthermore, PICOT was found to interact with chromatin-bound embryonic ectoderm development and alter the extent of histone 3 lysine 27 trimethylation at the promoter region of selected polycomb repressive complex 2 target genes. PICOT knockdown in Jurkat T cells led to increased histone 3 lysine 27 trimethylation at the promoter region of CCND2, a cell cycle-regulating gene which encodes the cyclin D2 protein. As a result, the expression levels of CCND2 mRNA and protein levels were reduced, concomitantly with inhibition of the cell growth rate. Analysis of multiple data sets from the Cancer Genome Atlas revealed that a high expression of PICOT correlated with a low expression of CCND2 in a large number of human cancers. In addition, this parameter correlated with poor patient survival, suggesting that the ratio between PICOT/CCND2 mRNA levels might serve as a predictor of patient survival in selected types of human cancer.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Computational and System biology, UPMC Hillman Cancer Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15232, United States
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
22
|
Giurgiu M, Reinhard J, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Ruepp A. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res 2020; 47:D559-D563. [PMID: 30357367 PMCID: PMC6323970 DOI: 10.1093/nar/gky973] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022] Open
Abstract
CORUM is a database that provides a manually curated repository of experimentally characterized protein complexes from mammalian organisms, mainly human (67%), mouse (15%) and rat (10%). Given the vital functions of these macromolecular machines, their identification and functional characterization is foundational to our understanding of normal and disease biology. The new CORUM 3.0 release encompasses 4274 protein complexes offering the largest and most comprehensive publicly available dataset of mammalian protein complexes. The CORUM dataset is built from 4473 different genes, representing 22% of the protein coding genes in humans. Protein complexes are described by a protein complex name, subunit composition, cellular functions as well as the literature references. Information about stoichiometry of subunits depends on availability of experimental data. Recent developments include a graphical tool displaying known interactions between subunits. This allows the prediction of structural interconnections within protein complexes of unknown structure. In addition, we present a set of 58 protein complexes with alternatively spliced subunits. Those were found to affect cellular functions such as regulation of apoptotic activity, protein complex assembly or define cellular localization. CORUM is freely accessible at http://mips.helmholtz-muenchen.de/corum/.
Collapse
Affiliation(s)
- Madalina Giurgiu
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Julian Reinhard
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Barbara Brauner
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Irmtraud Dunger-Kaltenbach
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Gisela Fobo
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Goar Frishman
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Corinna Montrone
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Andreas Ruepp
- Institute for Bioinformatics and Systems Biology (IBIS), Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
23
|
Zepeda-Martinez JA, Pribitzer C, Wang J, Bsteh D, Golumbeanu S, Zhao Q, Burkard TR, Reichholf B, Rhie SK, Jude J, Moussa HF, Zuber J, Bell O. Parallel PRC2/cPRC1 and vPRC1 pathways silence lineage-specific genes and maintain self-renewal in mouse embryonic stem cells. SCIENCE ADVANCES 2020; 6:eaax5692. [PMID: 32270030 PMCID: PMC7112768 DOI: 10.1126/sciadv.aax5692] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 01/09/2020] [Indexed: 05/29/2023]
Abstract
The transcriptional repressors Polycomb repressive complex 1 (PRC1) and PRC2 are required to maintain cell fate during embryonic development. PRC1 and PRC2 catalyze distinct histone modifications, establishing repressive chromatin at shared targets. How PRC1, which consists of canonical PRC1 (cPRC1) and variant PRC1 (vPRC1) complexes, and PRC2 cooperate to silence genes and support mouse embryonic stem cell (mESC) self-renewal is unclear. Using combinatorial genetic perturbations, we show that independent pathways of cPRC1 and vPRC1 are responsible for maintenance of H2A monoubiquitylation and silencing of shared target genes. Individual loss of PRC2-dependent cPRC1 or PRC2-independent vPRC1 disrupts only one pathway and does not impair mESC self-renewal capacity. However, loss of both pathways leads to mESC differentiation and activation of a subset of lineage-specific genes co-occupied by relatively high levels of PRC1/PRC2. Thus, parallel pathways explain the differential requirements for PRC1 and PRC2 and provide robust silencing of lineage-specific genes.
Collapse
Affiliation(s)
- J. A. Zepeda-Martinez
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - C. Pribitzer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - J. Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - D. Bsteh
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - S. Golumbeanu
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Q. Zhao
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - T. R. Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - B. Reichholf
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - S. K. Rhie
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J. Jude
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - H. F. Moussa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - J. Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - O. Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 622] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Tomasetti M, Gaetani S, Monaco F, Neuzil J, Santarelli L. Epigenetic Regulation of miRNA Expression in Malignant Mesothelioma: miRNAs as Biomarkers of Early Diagnosis and Therapy. Front Oncol 2019; 9:1293. [PMID: 31850200 PMCID: PMC6897284 DOI: 10.3389/fonc.2019.01293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Asbestos exposure leads to epigenetic and epigenomic modifications that, in association with ROS-induced DNA damage, contribute to cancer onset. Few miRNAs epigenetically regulated in MM have been described in literature; miR-126, however, is one of them, and its expression is regulated by epigenetic mechanisms. Asbestos exposure induces early changes in the miRNAs, which are reversibly expressed as protective species, and their inability to reverse reflects the inability of the cells to restore the physiological miRNA levels despite the cessation of carcinogen exposure. Changes in miRNA expression, which results from genetic/epigenetic changes during tumor formation and evolution, can be detected in fluids and used as cancer biomarkers. This article has reviewed the epigenetic mechanisms involved in miRNA expression in MM, focusing on their role as biomarkers of early diagnosis and therapeutic effects.
Collapse
Affiliation(s)
- Marco Tomasetti
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Gaetani
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Griffith University, Southport, QLD, Australia.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Lory Santarelli
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
26
|
Xiong X, Zhang J, Li A, Dai L, Qin S, Wang P, Liu W, Zhang Z, Li X, Liu Z. GSK343 induces programmed cell death through the inhibition of EZH2 and FBP1 in osteosarcoma cells. Cancer Biol Ther 2019; 21:213-222. [PMID: 31651209 DOI: 10.1080/15384047.2019.1680061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is an important member of the epigenetic regulatory factor polycomb group proteins (PcG) and is abnormally expressed in a wide variety of tumors, including osteosarcoma. Scientists consider EZH2 as an attractive target for the treatment of osteosarcoma and have found many potential EZH inhibitors, such as GlaxoSmithKline 343 (GSK343). It has been reported that GSK343 can be used as an inhibitor in different types of cancer. This study demonstrated that GSK343 not only induced apoptosis by increasing cleaved Casp-3 and poly ADP-ribose polymerase (PARP) expression, but also induced autophagic cell death by inhibiting p62 expression. Apoptosis and autophagic cell death induced by GSK343 were confirmed by the high expression of cleaved caspase-3, LC3-II and transmission electron microscopy. GSK343 inhibited the expression of EZH2 and c-Myc. Additionally, GSK343 inhibited the expression of FUSE binding protein 1 (FBP1), which was identified by its regulatory effects on c-Myc expression. Since c-Myc is a common target of EZH2 and FBP1, and GSK343 inhibited the expression of these proliferation-promoting proteins, a mutual regulatory mechanism between EZH2 and FBP1 was proposed. The knockdown of EZH2 suppressed the expression of FBP1; similarly, the knockdown of FBP1 suppressed the expression of EZH2. These results suggest the mutual regulatory association between EZH2 and FBP1. The knockdown of either EZH2 or FBP1 accelerated the sensitivity of osteosarcoma cells to GSK343. Based on these results, this study clarified that GSK343, an EZH2 inhibitor, may have potential for use in the treatment of osteosarcoma. The underlying mechanisms of the effects of GSK343 are partly mediated by its inhibitory activity against c-Myc and its regulators (EZH2 and FBP1).
Collapse
Affiliation(s)
- Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| | - Jinli Zhang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| | - Aiguo Li
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China.,Department of Orthopaedics, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| | - Libing Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| | - Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| | - Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| | - Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| | - Zhi Zhang
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinnan University, Guangzhou, Guangdong, China
| | - Xiaojian Li
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinnan University, Guangzhou, Guangdong, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical Collage, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Pandya P, Jethva M, Rubin E, Birnbaum RY, Braiman A, Isakov N. PICOT binding to chromatin-associated EED negatively regulates cyclin D2 expression by increasing H3K27me3 at the CCND2 gene promoter. Cell Death Dis 2019; 10:685. [PMID: 31527584 PMCID: PMC6746821 DOI: 10.1038/s41419-019-1935-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Grx3; Glrx3)) is a ubiquitous protein that can interact with the embryonic ectoderm development (EED) protein via each of its two C-terminal PICOT/Grx homology domains. Since EED is a Polycomb-Group protein and a core component of the polycomb repressive complex 2 (PRC2), we tested the involvement of PICOT in the regulation of PRC2-mediated H3 lysine 27 trimethylation (H3K27me3), transcription and translation of selected PRC2 target genes. A fraction of the cellular PICOT protein was found in the nuclei of leukemia cell lines, where it was associated with the chromatin. In addition, PICOT coimmunoprecipitated with chromatin-residing EED derived from Jurkat and COS-7 cell nuclei. PICOT knockdown led to a reduced H3K27me3 mark and a decrease in EED and EZH2 at the CCND2 gene promoter. In agreement, PICOT-deficient T cells exhibited a significant increase in CCND2 mRNA and protein expression. Since elevated expression levels of PICOT were reported in several different tumors and correlated in the current studies with decreased transcription and translation of the CCND2 gene, we tested whether this opposite correlation exists in human cancers. Data from the Cancer Genome Atlas (TCGA) database indicated statistically significant negative correlation between PICOT and CCND2 in eight different human tumors where the highest correlation was in lung (p = 8.67E−10) and pancreatic (p = 1.06E−5) adenocarcinoma. Furthermore, high expression of PICOT and low expression of CCND2 correlated with poor patient survival in five different types of human tumors. The results suggest that PICOT binding to chromatin-associated EED modulates the H3K27me3 level at the CCND2 gene promoter which may be one of the potential mechanisms for regulation of cyclin D2 expression in tumors. These findings also indicate that a low PICOT/CCND2 expression ratio might serve as a good predictor of patient survival in selected human cancers.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Minesh Jethva
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Eitan Rubin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ramon Y Birnbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
28
|
Abstract
As the process that silences gene expression ensues during development, the stage is set for the activity of Polycomb-repressive complex 2 (PRC2) to maintain these repressed gene profiles. PRC2 catalyzes a specific histone posttranslational modification (hPTM) that fosters chromatin compaction. PRC2 also facilitates the inheritance of this hPTM through its self-contained "write and read" activities, key to preserving cellular identity during cell division. As these changes in gene expression occur without changes in DNA sequence and are inherited, the process is epigenetic in scope. Mutants of mammalian PRC2 or of its histone substrate contribute to the cancer process and other diseases, and research into these aberrant pathways is yielding viable candidates for therapeutic targeting. The effectiveness of PRC2 hinges on its being recruited to the proper chromatin sites; however, resolving the determinants to this process in the mammalian case was not straightforward and thus piqued the interest of many in the field. Here, we chronicle the latest advances toward exposing mammalian PRC2 and its high maintenance.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
29
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
30
|
Cai Q, Niu H, Zhang B, Shi X, Liao M, Chen Z, Mo D, He Z, Chen Y, Cong P. Effect of EZH2 knockdown on preimplantation development of porcine parthenogenetic embryos. Theriogenology 2019; 132:95-105. [PMID: 31004879 DOI: 10.1016/j.theriogenology.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/11/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
Abstract
The EZH2 protein endows the polycomb repressive complex 2 (PRC2) with histone lysine methyltransferase activity that is associated with transcriptional repression. Recent investigations have documented crucial roles for EZH2 in mediating X-inactivation, stem cell pluripotency and cancer metastasis. However, there is little evidence demonstrating the maternal effect of EZH2 on porcine preimplantation development. Here, we took parthenogenetic activation embryos to eliminate the confounding paternal influence. We showed that the dynamic expression of EZH2 during early development was accompanied by changes in H3K27me3 levels. Depletion of EZH2 in MII oocytes by small interfering RNA not only impaired embryonic development at the blastocyst stage (P < 0.05), but also disrupted the equilibrium of H3K4me3 and H3K27me3 in the embryo. Interestingly, the expression of TET1, a member of Ten-Eleven Translocation gene family for converting 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5hmC), was decreased after EZH2 knockdown, in contrast to the increase of the other two members, TET2 and TET3 (P < 0.05). These results indicate a correlation between histone methylation and DNA methylation, and between EZH2 and TET1. Along with the downregulation of TET1, the expression of the pluripotency gene NANOG was decreased (P < 0.05), which is consistent with a previous finding in mouse ES cells. Meanwhile, the abundance of OCT4 and SOX2 were also down-regulated. Moreover, EZH2 knockdown reduced the capacity of cells in the blastocysts to resist apoptosis. Taken together, our data suggest that EZH2 is integral to the developmental program of porcine parthenogenetic embryos and exerts its function by regulating pluripotency, differentiation and apoptosis.
Collapse
Affiliation(s)
- Qingqing Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Huiran Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Bingyue Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Mengqin Liao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zihao Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
31
|
Heyn P, Logan CV, Fluteau A, Challis RC, Auchynnikava T, Martin CA, Marsh JA, Taglini F, Kilanowski F, Parry DA, Cormier-Daire V, Fong CT, Gibson K, Hwa V, Ibáñez L, Robertson SP, Sebastiani G, Rappsilber J, Allshire RC, Reijns MAM, Dauber A, Sproul D, Jackson AP. Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat Genet 2019; 51:96-105. [PMID: 30478443 PMCID: PMC6520989 DOI: 10.1038/s41588-018-0274-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022]
Abstract
DNA methylation and Polycomb are key factors in the establishment of vertebrate cellular identity and fate. Here we report de novo missense mutations in DNMT3A, which encodes the DNA methyltransferase DNMT3A. These mutations cause microcephalic dwarfism, a hypocellular disorder of extreme global growth failure. Substitutions in the PWWP domain abrogate binding to the histone modifications H3K36me2 and H3K36me3, and alter DNA methylation in patient cells. Polycomb-associated DNA methylation valleys, hypomethylated domains encompassing developmental genes, become methylated with concomitant depletion of H3K27me3 and H3K4me3 bivalent marks. Such de novo DNA methylation occurs during differentiation of Dnmt3aW326R pluripotent cells in vitro, and is also evident in Dnmt3aW326R/+ dwarf mice. We therefore propose that the interaction of the DNMT3A PWWP domain with H3K36me2 and H3K36me3 normally limits DNA methylation of Polycomb-marked regions. Our findings implicate the interplay between DNA methylation and Polycomb at key developmental regulators as a determinant of organism size in mammals.
Collapse
Affiliation(s)
- Patricia Heyn
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Clare V Logan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Rachel C Challis
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Carol-Anne Martin
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Francesca Taglini
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - David A Parry
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Valerie Cormier-Daire
- Department of Medical Genetics, INSERM UMR 1163, Université Paris-Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kate Gibson
- Genetic Health Service New Zealand, Christchurch Hospital, Christchurch, New Zealand
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lourdes Ibáñez
- Department of Endocrinology, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Giorgia Sebastiani
- Neonatology Unit, Hospital Clinic-Maternitat, ICGON, BCNatal, University of Barcelona, Barcelona, Spain
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Martin A M Reijns
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Endocrinology, Children's National Medical Center, Washington, DC, USA
| | - Duncan Sproul
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, UK.
| | - Andrew P Jackson
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
PICOT binding to the polycomb group protein, EED, alters H3K27 methylation at the MYT1 PRC2 target gene. Biochem Biophys Res Commun 2018; 509:469-475. [PMID: 30595380 DOI: 10.1016/j.bbrc.2018.12.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
PICOT is a ubiquitous protein that has no functional redundant ortholog and is critical for mouse embryonic development. It is involved in the regulation of signal transduction in T lymphocytes and cardiac muscle, and in cellular iron metabolism and biogenesis of Fe/S proteins. However, very little is known about the physiological role of PICOT and its mechanism of action, and on its upstream regulators or downstream target molecules. In attempt to identify new PICOT interaction partners, we adopted the yeast two-hybrid system and screened a Jurkat T cell cDNA library using the full-length human PICOT cDNA as a bait. We found that PICOT interacts with embryonic ectoderm development (EED), a Polycomb Group (PcG) protein that serves as a core component of the Polycomb repressive complex 2 (PRC2) and contributes to the regulation of chromatin remodeling and cell differentiation. Using bead immobilized GST-PICOT and GST-EED fusion proteins in a pull-down assay and reciprocal coimmunoprecipitation studies we demonstrated that the interaction between PICOT and EED also occurs in human Jurkat T cells. In addition, immunofluorescence staining of Jurkat T cells revealed partial colocalization of PICOT and EED, predominantly in the cell nuclei. A pull-down assay using the GST-EED fusion protein and lysates of cells expressing different Myc-tagged truncation products of PICOT revealed that binding of EED is mediated by each of the two C-terminal PICOT homology domains and suggests that simultaneous interaction via both domains increases the binding affinity. Furthermore, PICOT knock-down in Jurkat T cells resulted in a reduced histone H3 lysine 27 trimethylation (H3K27me3) at the PRC2 target gene, myelin transcription factor 1 (MYT1), suggesting that PICOT binding to EED alters PRC2-regulated transcriptional repression, and potentially contributes to the epigenetic regulation of chromatin silencing and remodeling.
Collapse
|
33
|
Vorinostat, a pan-HDAC inhibitor, abrogates productive HPV-18 DNA amplification. Proc Natl Acad Sci U S A 2018; 115:E11138-E11147. [PMID: 30385631 DOI: 10.1073/pnas.1801156115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs) cause epithelial proliferative diseases. Persistent infection of the mucosal epithelia by the high-risk genotypes can progress to high-grade dysplasia and cancers. Viral transcription and protein activities are intimately linked to regulation by histone acetyltransferases and histone deacetylases (HDACs) that remodel chromatin and regulate gene expression. HDACs are also essential to remodel and repair replicating chromatin to enable the progression of replication forks. As such, Vorinostat (suberoylanilide hydroximic acid), and other pan-HDAC inhibitors, are used to treat lymphomas. Here, we investigated the effects of Vorinostat on productive infection of the high-risk HPV-18 in organotypic cultures of primary human keratinocytes. HPV DNA amplifies in the postmitotic, differentiated cells of squamous epithelia, in which the viral oncoproteins E7 and E6 establish a permissive milieu by destabilizing major tumor suppressors, the pRB family proteins and p53, respectively. We showed that Vorinostat significantly reduced these E6 and E7 activities, abrogated viral DNA amplification, and inhibited host DNA replication. The E7-induced DNA damage response, which is critical for both events, was also compromised. Consequently, Vorinostat exposure led to DNA damage and triggered apoptosis in HPV-infected, differentiated cells, whereas uninfected tissues were spared. Apoptosis was attributed to highly elevated proapoptotic Bim isoforms that are known to be repressed by EZH2 in a repressor complex containing HDACs. Two other HDAC inhibitors, Belinostat and Panobinostat, also inhibited viral DNA amplification and cause apoptosis. We suggest that HDAC inhibitors are promising therapeutic agents to treat benign HPV infections, abrogate progeny virus production, and hence interrupt transmission.
Collapse
|
34
|
Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, Wang X, Yi T, Zhao X, Wei Y, Wang H, Zhao L, Zhou S. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer 2018; 17:109. [PMID: 30064416 PMCID: PMC6069741 DOI: 10.1186/s12943-018-0855-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Qilian Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuqing Yang
- Nanchang University, Nanchang, People's Republic of China
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Kexin Tang
- Sichuan Normal University Affiliated Middle School, Chengdu, People's Republic of China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Stanford, USA
| | - Wei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Shuang Huang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Hongjing Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
35
|
Jin Q, He W, Chen L, Yang Y, Shi K, You Z. MicroRNA-101-3p inhibits proliferation in retinoblastoma cells by targeting EZH2 and HDAC9. Exp Ther Med 2018; 16:1663-1670. [PMID: 30186385 PMCID: PMC6122260 DOI: 10.3892/etm.2018.6405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Retinoblastoma is the most frequent intraocular malignant tumor type to occur in childhood. MicroRNA (miR)-101-3p has been reported to function as a tumor suppressor in various types of cancer. However, the biological function and underlying mechanisms of miR-101-3p in retinoblastoma are largely unknown. In the present study, it was identified that miR-101-3p was downregulated in retinoblastoma. MTT and flow cytometry assays demonstrated that ectopic overexpression of miR-101-3p significantly inhibited cell viability and cell cycle progression in WERI-Rb-1 and Y79 cells. In vivo mouse experiments further confirmed the anti-proliferative role of miR-101-3p in retinoblastoma. Additionally, predictions with TargetScan software indicated that the 3′-untranslated regions of enhancer of zeste homolog 2 (EZH2) and histone deacetylase (HDAC9) mRNAs are targeted by miR-101-3p. Accordingly, a dual luciferase reporter gene assay demonstrated that miR-101-3p directly targeted EZH2 and HDAC9 to suppress the proliferation of retinoblastoma cells. Meanwhile, the restoration of EZH2 or HDAC9 expression countered the anti-proliferative effect of miR-101-3p on WERI-Rb-1 and Y79 cells. Collectively, these data highlight the role of miR-101-3p in the tumorigenesis of retinoblastoma, and indicate its suitability as a novel therapeutic target.
Collapse
Affiliation(s)
- Qifang Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leifeng Chen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ke Shi
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhipeng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
36
|
Bilgiç F, Gerçeker E, Boyacıoğlu SÖ, Kasap E, Demirci U, Yıldırım H, Baykan AR, Yüceyar H. Potential role of chromatin remodeling factor genes in atrophic gastritis/gastric cancer risk. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2018; 29:427-435. [PMID: 30249557 PMCID: PMC6284651 DOI: 10.5152/tjg.2018.17350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIMS Atrophic gastritis (AG), intestinal metaplasia (IM), and Helicobacter pylori (HP) are the risk factors for the development of gastric cancer (GC). Chromatin remodeling is one of the epigenetic mechanisms involved in the carcinogenesis of GC. The purpose of this study was to investigate the expression profiles of defined chromatin remodeling genes in gastric mucosal samples and their values as gastric carcinogenesis biomarkers. MATERIALS AND METHODS In total, 95 patients were included in the study. Patients were divided into 3 groups as: GC group (n=34), AG group (n=36), and control group (n=25). AG group was further divided into subgroups based on the presence of HP and IM in gastric mucosa. Chromatin remodeling gene expressions were analyzed using real-time PCR (RT-PCR) array in all groups. Data were evaluated using the RT-qPCR primer assay data analysis software. RESULTS EED, CBX3, and MTA1 were more overexpressed, whereas ARID1A, ING5, and CBX7 were more underexpressed in the AG and GC groups compared with the controls. No significant differences were observed between the AG and GC groups concerning the expression of these 6 genes, although the fold change levels of these genes in the GC group were well above than in the AG group. EED, CBX3, and MTA1 were significantly more overexpressed in HP- and IM-positive AG subgroup compared with the HP- or IM-negative AG subgroup. CONCLUSION In conclusion, our results provide an evidence of epigenetic alterations in AG. Expressions of EED, CBX3, MTA1, ARID1A, ING5, and CBX7 may be considered as promising markers to be used in GC screening for patients with AG.
Collapse
Affiliation(s)
- Fahri Bilgiç
- Department of Internal Medicine, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Emre Gerçeker
- Department of Gastroenterology, Gazi Hospital, İzmir, Turkey
| | - Seda Örenay Boyacıoğlu
- Department of Medical Genetics, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Elmas Kasap
- Department of Gastroenterology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Ufuk Demirci
- Department of Internal Medicine, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Hatice Yıldırım
- Department of Medical Biology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Ahmed Ramiz Baykan
- Department of Gastroenterology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Hakan Yüceyar
- Department of Gastroenterology, Celal Bayar University School of Medicine, Manisa, Turkey
| |
Collapse
|
37
|
Abstract
Overexpression of enhancer of zeste homolog 2 (EZH2) protein has been found in several malignant tumor tissues and is closely related to the degree of tumor differentiation, clinical stage, tumor size, and prognosis. The latest research shows that overexpression of EZH2 is related not only with immunoregulation but also with the replication of hepatitis B virus, the occurrence of non-alcoholic fatty liver disease, and the progress of liver fibrosis, which may become an important subject in the field of liver disease research. This paper reviews the role of EZH2 in some liver diseases and its potential application in treatment of these diseases in recent ten years.
Collapse
Affiliation(s)
- Li Zhu
- Department of Hepatology, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China
| | - Ming Li
- Department of Hepatology, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China
| | - Chuan-Wu Zhu
- Department of Hepatology, the Fifth People's Hospital of Suzhou, Suzhou 215007, Jiangsu Province, China
| |
Collapse
|
38
|
A novel role of metal response element binding transcription factor 2 at the Hox gene cluster in the regulation of H3K27me3 by polycomb repressive complex 2. Oncotarget 2018; 9:26572-26585. [PMID: 29899877 PMCID: PMC5995182 DOI: 10.18632/oncotarget.25505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/07/2018] [Indexed: 11/25/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is known to play an important role in the regulation of early embryonic development, differentiation, and cellular proliferation by introducing methyl groups onto lysine 27 of histone H3 (H3K27me3). PRC2 is tightly associated with silencing of Hox gene clusters and their sequential activation, leading to normal development and differentiation. To investigate epigenetic changes induced by PRC2 during differentiation, deposition of PRC2 components and levels of H3K27me3 were extensively examined using mouse F9 cells as a model system. Contrary to positive correlation between PRC2 deposition and H3K27me3 level, down-regulation of PRC2 components by shRNA and inhibition of EZH1/2 resulted in unexpected elevation of H3K27me3 level at the Hox gene cluster despite its global decrease. We found that metal response element binding transcriptional factor 2 (MTF2), one of sub-stoichiometric components of PRC2, was stably bound to Hox genes. Its binding capability was dependent on other core PRC2 components. A high level of H3K27me3 at Hox genes in Suz12-knock out cells was reversed by knockdown of Mtf2.This shows that MTF2 is necessary to consolidate PRC2-mediated histone methylation. Taken together, our results indicate that expression of Hox gene clusters during differentiation is strictly modulated by the activity of PRC2 secured by MTF2.
Collapse
|
39
|
Marasca F, Bodega B, Orlando V. How Polycomb-Mediated Cell Memory Deals With a Changing Environment. Bioessays 2018. [DOI: 10.1002/bies.201700137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Federica Marasca
- Istituto Nazionale di Genetica Molecolare (INGM) “Romeo and Enrica Invernizzi”; Milan 20122 Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare (INGM) “Romeo and Enrica Invernizzi”; Milan 20122 Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST); Environmental Epigenetics Research Program; Biological and Environmental Sciences and Engineering Division; Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
40
|
The JAZF1-SUZ12 fusion protein disrupts PRC2 complexes and impairs chromatin repression during human endometrial stromal tumorogenesis. Oncotarget 2018; 8:4062-4078. [PMID: 27845897 PMCID: PMC5354813 DOI: 10.18632/oncotarget.13270] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/29/2016] [Indexed: 11/27/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2), which contains three core proteins EZH2, EED and SUZ12, controls chromatin compaction and transcription repression through trimethylation of lysine 27 on histone 3. The (7;17)(p15;q21) chromosomal translocation present in most cases of endometrial stromal sarcomas (ESSs) results in the in-frame fusion of the JAZF1 and SUZ12 genes. We have investigated whether and how the fusion protein JAZF1-SUZ12 functionally alters PRC2. We found that the fusion protein exists at high levels in ESS containing the t(7;17). Co-transient transfection assay indicated JAZF1-SUZ12 destabilized PRC2 components EZH2 and EED, resulting in decreased histone methyl transferase (HMT) activity, which was confirmed by in vitro studies using reconstituted PRC2 and nucleosome array substrates. We also demonstrated the PRC2 containing the fusion protein decreased the binding affinity to target chromatin loci. In addition, we found that trimethylation of H3K27 was decreased in ESS samples with the t(7;17), but there was no detectable change in H3K9 in these tissues. Moreover, re-expression of SUZ12 in Suz12 (−/−) ES cells rescued the neuronal differentiation while the fusion protein failed to restore this function and enhanced cell proliferation. In summary, our studies reveal that JAZF1-SUZ12 fusion protein disrupts the PRC2 complex, abolishes HMT activity and subsequently activates chromatin/genes normally repressed by PRC2. Such dyesfunction of PRC2 inhibits normal neural differentiation of ES cell and increases cell proliferation. Related changes induced by the JAZF-SUZ12 protein in endometrial stromal cells may explain the oncogenic effect of the t(7;17) in ESS.
Collapse
|
41
|
Izquierdo-Bouldstridge A, Bustillos A, Bonet-Costa C, Aribau-Miralbés P, García-Gomis D, Dabad M, Esteve-Codina A, Pascual-Reguant L, Peiró S, Esteller M, Murtha M, Millán-Ariño L, Jordan A. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats. Nucleic Acids Res 2017; 45:11622-11642. [PMID: 28977426 PMCID: PMC5714221 DOI: 10.1093/nar/gkx746] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response.
Collapse
Affiliation(s)
| | - Alberto Bustillos
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Carles Bonet-Costa
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | | | - Daniel García-Gomis
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | | | - Sandra Peiró
- Vall d'Hebron Institute of Oncology, Barcelona, Catalonia 08035, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia 08028, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08028, Spain
| | - Matthew Murtha
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia 08028, Spain
| | - Lluís Millán-Ariño
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Albert Jordan
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
42
|
Huang Y, Chen DH, Liu BY, Shen WH, Ruan Y. Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Brief Funct Genomics 2017; 16:106-119. [PMID: 27032420 DOI: 10.1093/bfgp/elw007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polycomb group (PcG) proteins are key epigenetic regulators of gene expression in animals and plants. They act in multiprotein complexes, of which the best characterized is the polycomb repressive complex 2 (PRC2), which catalyses the trimethylation of histone H3 at lysine 27 (H3K27me3) at chromatin targets. In Arabidopsis thaliana, PRC2 proteins are involved in the regulation of diverse developmental processes, including cell fate determination, vegetative growth and development, flowering time control and embryogenesis. Here, we systematically analysed the evolutionary conservation and diversification of PRC2 components in lower and higher plants. We searched for and identified PRC2 homologues from the sequenced genomes of several green lineage species, from the unicellular green alga Ostreococcus lucimarinus to more complicated angiosperms. We found that some PRC2 core components, e.g. E(z), ESC/FIE and MSI/p55, are ancient and have multiplied coincidently with multicellular evolution. For one component, some members are newly formed, especially in the Cruciferae. During evolution, higher plants underwent copy number multiplication of various PRC2 components, which occurred independently for each component, without any obvious co-amplification of PRC2 members. Among the amplified members, usually one was well-conserved and the others were more diversified. Gene amplification occurred at different times for different PcG members during green lineage evolution. Certain PRC2 core components or members of them were highly conserved. Our study provides an insight into the evolutionary conservation and diversification of PcG proteins and may guide future functional characterization of these important epigenetic regulators in plants other than Arabidopsis.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Dong-Hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Bo-Yu Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| |
Collapse
|
43
|
Juan AH, Wang S, Ko KD, Zare H, Tsai PF, Feng X, Vivanco KO, Ascoli AM, Gutierrez-Cruz G, Krebs J, Sidoli S, Knight AL, Pedersen RA, Garcia BA, Casellas R, Zou J, Sartorelli V. Roles of H3K27me2 and H3K27me3 Examined during Fate Specification of Embryonic Stem Cells. Cell Rep 2017; 17:1369-1382. [PMID: 27783950 DOI: 10.1016/j.celrep.2016.09.087] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
The polycomb repressive complex 2 (PRC2) methylates lysine 27 of histone H3 (H3K27) through its catalytic subunit Ezh2. PRC2-mediated di- and tri-methylation (H3K27me2/H3K27me3) have been interchangeably associated with gene repression. However, it remains unclear whether these two degrees of H3K27 methylation have different functions. In this study, we have generated isogenic mouse embryonic stem cells (ESCs) with a modified H3K27me2/H3K27me3 ratio. Our findings document dynamic developmental control in the genomic distribution of H3K27me2 and H3K27me3 at regulatory regions in ESCs. They also reveal that modifying the ratio of H3K27me2 and H3K27me3 is sufficient for the acquisition and repression of defined cell lineage transcriptional programs and phenotypes and influences induction of the ESC ground state.
Collapse
Affiliation(s)
- Aster H Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stan Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Pei-Fang Tsai
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Karinna O Vivanco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anthony M Ascoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan Krebs
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia 19104 PA, USA
| | - Adam L Knight
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roger A Pedersen
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; The Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perlman School of Medicine, University of Pennsylvania, Philadelphia 19104 PA, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core Facility, Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Sirtuins, epigenetics and longevity. Ageing Res Rev 2017; 40:11-19. [PMID: 28789901 DOI: 10.1016/j.arr.2017.08.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Abstract
Aging of organisms begins from a single cell at the molecular level. It includes changes related to telomere shortening, cell senescence and epigenetic modifications. These processes accumulate over the lifespan. Research studies show that epigenetic signaling contributes to human disease, tumorigenesis and aging. Epigenetic DNA modifications involve changes in the gene activity but not in the DNA sequence. An epigenome consists of chemical modifications to the DNA and histone proteins without the changes in the DNA sequence. These modifications strongly depend on the environment, could be reversible and are potentially transmittable to daughter cells. Epigenetics includes DNA methylation, noncoding RNA interference, and modifications of histone proteins. Sirtuins, a family of nicotine adenine dinucleotide (NAD+)-dependent enzymes, are involved in the cell metabolism and can regulate many cellular functions including DNA repair, inflammatory response, cell cycle or apoptosis. Literature shows the strong interconnection between sirtuin expression and aging processes. However, the direct relationship is still unknown. Here, we would like to summarize the existing knowledge about epigenetic processes in aging, especially those related to sirtuin expression. Another objective is to explain why some negative correlations between sirtuin activity and the rate of aging can be assumed.
Collapse
|
45
|
Satish M, Nivya MA, Abhishek S, Nakarakanti NK, Shivani D, Vani MV, Rajakumara E. Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize. Proteins 2017; 86:21-34. [PMID: 29024026 DOI: 10.1002/prot.25399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax-like protein (ATX), Su(var)3-9 homologs protein (SUVH), Su(var)3-9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S-adenosylmethionine (SAM) binding pocket and a post-SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein-protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre-SET and post-SET domains in HKMTs of the aforementioned plant species lead to variations in class-specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.
Collapse
Affiliation(s)
- Mutyala Satish
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - M Angel Nivya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Suman Abhishek
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Naveen Kumar Nakarakanti
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Dixit Shivani
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Madishetti Vinuthna Vani
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Eerappa Rajakumara
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|
46
|
Shahabipour F, Caraglia M, Majeed M, Derosa G, Maffioli P, Sahebkar A. Naturally occurring anti-cancer agents targeting EZH2. Cancer Lett 2017; 400:325-335. [DOI: 10.1016/j.canlet.2017.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/31/2022]
|
47
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
48
|
Sandow JJ, Infusini G, Holik AZ, Brumatti G, Averink TV, Ekert PG, Webb AI. Quantitative proteomic analysis of EZH2 inhibition in acute myeloid leukemia reveals the targets and pathways that precede the induction of cell death. Proteomics Clin Appl 2017; 11. [DOI: 10.1002/prca.201700013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Jarrod J. Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Giuseppe Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Aliaksei Z. Holik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| | - Tessa V. Averink
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
- Murdoch Children's Research Institute; Royal Children's Hospital; Parkville Australia
- Vrije Universiteit; Amsterdam
| | - Paul G. Ekert
- Murdoch Children's Research Institute; Royal Children's Hospital; Parkville Australia
| | - Andrew I. Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology; The University of Melbourne; Parkville Australia
| |
Collapse
|
49
|
A cytosolic Ezh1 isoform modulates a PRC2–Ezh1 epigenetic adaptive response in postmitotic cells. Nat Struct Mol Biol 2017; 24:444-452. [DOI: 10.1038/nsmb.3392] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
|
50
|
Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res 2017; 369:75-92. [PMID: 28286899 DOI: 10.1007/s00441-017-2588-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.
Collapse
Affiliation(s)
- Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Center for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| | - Wibke Bechtel-Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Renal Division, University Hospital Freiburg, Breisacher Strasse 66, 79106, Freiburg, Germany.
| |
Collapse
|