1
|
Jain A, Casanova D, Padilla AV, Paniagua Bojorges A, Kotla S, Ko KA, Samanthapudi VSK, Chau K, Nguyen MTH, Wen J, Hernandez Gonzalez SL, Rodgers SP, Olmsted-Davis EA, Hamilton DJ, Reyes-Gibby C, Yeung SCJ, Cooke JP, Herrmann J, Chini EN, Xu X, Yusuf SW, Yoshimoto M, Lorenzi PL, Hobbs B, Krishnan S, Koutroumpakis E, Palaskas NL, Wang G, Deswal A, Lin SH, Abe JI, Le NT. Premature senescence and cardiovascular disease following cancer treatments: mechanistic insights. Front Cardiovasc Med 2023; 10:1212174. [PMID: 37781317 PMCID: PMC10540075 DOI: 10.3389/fcvm.2023.1212174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.
Collapse
Affiliation(s)
- Ashita Jain
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diego Casanova
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jake Wen
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Shaefali P. Rodgers
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Dale J. Hamilton
- Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Xiaolei Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, Division of VP Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brain Hobbs
- Department of Population Health, The University of Texas at Austin, Austin, TX, United States
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
3
|
Guldner L, Haddy N, Pein F, Diallo I, Shamsaldin A, Dahan M, Lebidois J, Merlet P, Villain E, Sidi D, Sakiroglu O, Hartmann O, Leftakopoulos D, de Vathaire F. Radiation dose and long term risk of cardiac pathology following radiotherapy and anthracyclin for a childhood cancer. Radiother Oncol 2006; 81:47-56. [PMID: 16989913 DOI: 10.1016/j.radonc.2006.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 07/31/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To determine the cardiac status in children 15 years (yrs) or more after a solid tumour treatment. PATIENTS AND METHODS Of the 447 patients, 229 were fully studied and 218 were not. The following cardiac evaluation was proposed to all the 447 consecutive patients: (1) cardiac Doppler US by one of two expert cardiologists; (2) cardiac rhythm and conduction abnormalities including 24-h holter ECG; (3) (131)I-mIBG myocardial scintigraphy; (4) serum brain natriuretic peptide levels at rest; (5) an exercise test with VO(2)max measurement. The radiation dose delivered to 7 points in the heart was estimated for all patients who had received radiotherapy. RESULTS Cardiac disorder was diagnosed in 89 evaluated patients (39%) including 24 heart failures and 65 other asymptomatic cardiac diseases. When adjusting on potential confounders, cardiac disorder and cardiac failure risks were respectively linear (ERR at 1 Gy: 26%) and linear-quadratic (ERR at 1 Gy: 19%) functions of the average radiation dose received to the heart. No interaction between cumulative dose of adriamycin and average radiation dose was evidenced for cardiac disorders, but the ERR/Gy of cardiac failure was higher for patients receiving less than 350 mg/m(2) of Adriamycin. CONCLUSION Long term heart pathologies are probably one of the major iatrogenic risks encored by patients who survived a childhood cancer. This study strongly emphasizes the need to limit the heart irradiation during radiotherapy, particularly, for patients who also received or were susceptible to later received adriamycin.
Collapse
Affiliation(s)
- Laurence Guldner
- National Institute of Health and Medical Research (INSERM), Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|