1
|
Neves M, Marinho-Dias J, Ribeiro J, Sousa H. Epstein-Barr virus strains and variations: Geographic or disease-specific variants? J Med Virol 2016; 89:373-387. [PMID: 27430663 DOI: 10.1002/jmv.24633] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 12/24/2022]
Abstract
The Epstein-Barr Virus (EBV) is associated with the development of several diseases, including infectious mononucleosis (IM), Burkitt's Lymphoma (BL), Nasopharyngeal Carcinoma, and other neoplasias. The publication of EBV genome 1984 led to several studies regarding the identification of different viral strains. Currently, EBV is divided into EBV type 1 (B95-8 strain) and EBV type 2 (AG876 strain), also known as type A and type B, which have been distinguished based upon genetic differences in the Epstein-Barr nuclear antigens (EBNAs) sequence. Several other EBV strains have been described in the past 10 years considering variations on EBV genome, and many have attempted to clarify if these variations are ethnic or geographically correlated, or if they are disease related. Indeed, there is an increasing interest to describe possible specific disease associations, with emphasis on different malignancies. These studies aim to clarify if these variations are ethnic or geographically correlated, or if they are disease related, thus being important to characterize the epidemiologic genetic distribution of EBV strains on our population. Here, we review the current knowledge on the different EBV strains and variants and its association with different diseases. J. Med. Virol. 89:373-387, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Neves
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Faculty of Medicine of University of Porto (FMUP), Porto, Portugal
| | - Joana Marinho-Dias
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences of University of Porto (ICBAS-UP), Porto, Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Faculty of Medicine of University of Porto (FMUP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto, Porto, Portugal
| |
Collapse
|
2
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Cai Q, Chen K, Young KH. Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorders. Exp Mol Med 2015; 47:e133. [PMID: 25613730 PMCID: PMC4314580 DOI: 10.1038/emm.2014.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus, a ubiquitous human herpesvirus, can induce both lytic and latent infections that result in a variety of human diseases, including lymphoproliferative disorders. The oncogenic potential of Epstein–Barr virus is related to its ability to infect and transform B lymphocytes into continuously proliferating lymphoblastoid cells. However, Epstein–Barr virus has also been implicated in the development of T/natural killer cell lymphoproliferative diseases. Epstein–Barr virus encodes a series of products that mimic several growth, transcription and anti-apoptotic factors, thus usurping control of pathways that regulate diverse homeostatic cellular functions and the microenvironment. However, the exact mechanism by which Epstein–Barr virus promotes oncogenesis and inflammatory lesion development remains unclear. Epstein–Barr virus-associated T/natural killer cell lymphoproliferative diseases often have overlapping clinical symptoms as well as histologic and immunophenotypic features because both lymphoid cell types derive from a common precursor. Accurate classification of Epstein–Barr virus-associated T/natural killer cell lymphoproliferative diseases is a prerequisite for appropriate clinical management. Currently, the treatment of most T/natural killer cell lymphoproliferative diseases is less than satisfactory. Novel and targeted therapies are strongly required to satisfy clinical demands. This review describes our current knowledge of the genetics, oncogenesis, biology, diagnosis and treatment of Epstein–Barr virus-associated T/natural killer cell lymphoproliferative diseases.
Collapse
Affiliation(s)
- Qingqing Cai
- 1] Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China [2] Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kailin Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ken H Young
- 1] Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
De novo malignancies following liver transplantation: results from a multicentric study in central and southern Italy, 1990-2008. Transplant Proc 2014; 45:2729-32. [PMID: 24034034 DOI: 10.1016/j.transproceed.2013.07.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective of this study was to quantify incidence rates (IR) and risks of de novo tumors (except nonmelanoma skin cancers) in patients who underwent orthotopic liver transplantation (OLT) in central and southern Italy. METHODS Data were collected on 1675 patients (75.5% males) who underwent OLT in six Italian transplantation centers in central and southern Italy (1990-2008). The time at risk of cancer (person years [PY]) was computed from OLT to the date of cancer diagnosis, death, or last follow-up, whichever occurred first. The number of observed cancer cases were compared with the expected one using data from population-based cancer registries. We computed gender- and age-standardized incidence ratios (SIRs) and 95% confidence intervals (CIs). RESULTS During 10,104.3 PYs (median follow-up, 5.2 years), 98 patients (5.9% of the total) were diagnosed with a de novo malignancy (for a total of 100 diagnoses). Twenty-two of these cancers were post-transplantation lymphoproliferative disorders (PTLD; 18 non-Hodgkin lymphoma [NHL] and 2 Hodgkin's lymphoma [HL]), 6 were Kaposi's sarcoma (KS), and 72 were solid tumors (19 head and neck [H&N], 13 lung, 11 colon-rectum, 6 bladder, and 4 melanoma). The overall incidence was 9.9 cases/10(3) PYs, with a 1.4-fold significantly increased SIR (95% CI, l.2-1.7). Significantly increased SIRs were observed for KS (37.3), PTLD (3.9), larynx (5.7), melanoma (3.1), tongue (7.1), and H&N (4.5) cancers. CONCLUSIONS These results confirmed that OLT patients are at greater risk for cancer, mainly malignancies either virus-associated or related to pre-existent factors (eg, alcohols). These observations point to the need to improve cancer surveillance after OLT. The on-going enrollment of patients in the present cohort study will help to elucidate the burden of cancer after OLT and better identify risk factors associated with its development.
Collapse
|
5
|
Zihlif MA, Mahmoud IS, Ghanim MT, Zreikat MS, Alrabadi N, Imraish A, Odeh F, Abbas MA, Ismail SI. Thymoquinone efficiently inhibits the survival of EBV-infected B cells and alters EBV gene expression. Integr Cancer Ther 2012; 12:257-63. [PMID: 23089554 DOI: 10.1177/1534735412458827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epstein--Barr virus (EBV) is a human virus with oncogenic potentials that is implicated in various human diseases and malignancies. In this study, the modulator activity of the potent herbal extract drug thymoquinone on EBV was assessed in vitro. Thymoquinone was tested for cytotoxicity on human cells of lymphoblastoid cells, Raji Burkitt's lymphoma, DG-75 Burkitt's lymphoma, peripheral blood mononuclear cells, and periodontal ligament fibroblast. Apoptosis induction was analyzed via TUNEL assay and activity studies of caspase-3. The effect of thymoquinone on EBV gene expression was determined using real-time polymerase chain reaction. We report here, for the first time, a promising selective inhibitory affect of thymoquinone on EBV-infected B cell lines in vitro, compared with lower activity on EBV negative B cell line and very low toxicity on human peripheral blood mononuclear cells and periodontal ligament fibroblasts. Moreover, the drug was found to efficiently suppress the RNA expression of EBNA2, LMP1, and EBNA1 genes. Specifically, EBNA2 expression levels were the most affected indicating that this gene might have a major contribution to thymoquinone potency against EBV infected cells. Overall, our results suggest that thymoquinone has the potential to suppress the growth of EBV-infected B cells efficiently.
Collapse
|
6
|
Younesi V, Nikzamir H, Yousefi M, Khoshnoodi J, Arjmand M, Rabbani H, Shokri F. Epstein Barr virus inhibits the stimulatory effect of TLR7/8 and TLR9 agonists but not CD40 ligand in human B lymphocytes. Microbiol Immunol 2010; 54:534-41. [DOI: 10.1111/j.1348-0421.2010.00248.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus. J Virol 2009; 84:2533-46. [PMID: 20032186 DOI: 10.1128/jvi.01909-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus efficiently infects human B cells. The EBV genome is maintained extrachromosomally and replicates synchronously with the host's chromosomes. The latent origin of replication (oriP) guarantees plasmid stability by mediating two basic functions: replication and segregation of the viral genome. While the segregation process of EBV genomes is well understood, little is known about its chromatin association and nuclear distribution during interphase. Here, we analyzed the nuclear localization of EBV genomes and the role of functional oriP domains FR and DS for basic functions such as the transformation of primary cells, their role in targeting EBV genomes to distinct nuclear regions, and their association with epigenetic domains. Fluorescence in situ hybridization visualized the localization of extrachromosomal EBV genomes in the regions adjacent to chromatin-dense territories called the perichromatin. Further, immunofluorescence experiments demonstrated a preference of the viral genome for histone 3 lysine 4-trimethylated (H3K4me3) and histone 3 lysine 9-acetylated (H3K9ac) nuclear regions. To determine the role of FR and DS for establishment and subnuclear localization of EBV genomes, we transformed primary human B lymphocytes with recombinant mini-EBV genomes containing different oriP mutants. The loss of DS results in a slightly increased association in H3K27me3 domains. This study demonstrates that EBV genomes or oriP-based extrachromosomal vector systems are integrated into the higher order nuclear organization. We found that viral genomes are not randomly distributed in the nucleus. FR but not DS is crucial for the localization of EBV in perichromatic regions that are enriched for H3K4me3 and H3K9ac, which are hallmarks of transcriptionally active regions.
Collapse
|
8
|
Tanese K, Ishiko A, Hayase K, Yoshida T, Kishi K, Yamada T. Immunolocalization of Epstein-Barr virus-related antigens in a case of sweat gland adenocarcinoma. Br J Dermatol 2009; 161:694-7. [PMID: 19558594 DOI: 10.1111/j.1365-2133.2009.09319.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Carbone A, Gloghini A, Dotti G. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist 2008; 13:577-85. [PMID: 18515742 DOI: 10.1634/theoncologist.2008-0036] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since its discovery as the first human tumor virus, Epstein-Barr virus (EBV) has been implicated in the development of a wide range of B-cell lymphoproliferative disorders, including Burkitt's lymphoma, classic Hodgkin's lymphoma, and lymphomas arising in immunocompromised individuals (post-transplant and HIV-associated lymphoproliferative disorders). T-cell lymphoproliferative disorders that have been reported to be EBV associated include a subset of peripheral T-cell lymphomas, angioimmunoblastic T-cell lymphoma, extranodal nasal type natural killer/T-cell lymphoma, and other rare histotypes. EBV encodes a series of products interacting with or exhibiting homology to a wide variety of antiapoptotic molecules, cytokines, and signal transducers, hence promoting EBV infection, immortalization, and transformation. However, the exact mechanism by which EBV promotes oncogenesis is an area of active debate. The focus of this review is on the pathology, diagnosis, classification, and pathogenesis of EBV-associated lymphomas. Recent advances in EBV cell-based immunotherapy, which is beginning to show promise in the treatment of EBV-related disorders, are discussed.
Collapse
MESH Headings
- Adult
- Disease Susceptibility
- Epstein-Barr Virus Infections/classification
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Herpesvirus 4, Human/classification
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Humans
- Immunocompromised Host/immunology
- Immunotherapy
- Lymphoma, B-Cell/classification
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Lymphoma, T-Cell/classification
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
Collapse
Affiliation(s)
- Antonino Carbone
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, Milano I-20133, Italy.
| | | | | |
Collapse
|
10
|
Kloster MM, Hafte TT, Moltzau LR, Naderi EH, Dahle MK, Skålhegg BS, Gaudernack G, Levy FO, Naderi S, Blomhoff HK. EBV infection renders B cells resistant to growth inhibition via adenylyl cyclase. Cell Signal 2008; 20:1169-78. [PMID: 18406106 DOI: 10.1016/j.cellsig.2008.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 02/04/2008] [Accepted: 02/13/2008] [Indexed: 12/27/2022]
Abstract
Cyclic AMP (cAMP) is an important physiological growth inhibitor of lymphoid cells, and the cAMP/protein kinase A (PKA) pathway is disrupted in several immunological disorders and cancers. Epstein Barr virus (EBV) infection of B lymphocytes is responsible for the development of lymphoproliferative disease as well as certain B-lymphoid malignancies. Here we hypothesized that EBV infection might render B lymphocytes resistant to cAMP/PKA-mediated growth inhibition. To test this, we assessed the growth-inhibitory response of cAMP-elevating compounds such as forskolin and isoproterenol, as well as the PKA activator 8-CPT-cAMP in normal B lymphocytes, EBV-infected B cells and in the EBV-negative B lymphoid cell line Reh. We could demonstrate that EBV infection indeed abolished cAMP-mediated growth inhibition of B cells. The defect was pinpointed to defective adenylyl cyclase (AC) activation by forskolin and isoproterenol, resulting in reduced formation of cAMP and lack of PKA activation and CREB phosphorylation. In contrast, 8-CPT-cAMP which directly activates PKA was able to inhibit EBV-infected B cell growth. The physiological implications of these results were underlined by the observation that the ability of forskolin to inhibit camptothecin-induced apoptosis was abolished in EBV-infected B cells. We conclude that EBV infection of B cells abrogates the activation of AC and thereby cAMP formation, and that this dysfunction renders the cells resistant to growth inhibition via the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Martine Müller Kloster
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lindner SE, Sugden B. The plasmid replicon of Epstein-Barr virus: mechanistic insights into efficient, licensed, extrachromosomal replication in human cells. Plasmid 2007; 58:1-12. [PMID: 17350094 PMCID: PMC2562867 DOI: 10.1016/j.plasmid.2007.01.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/05/2007] [Indexed: 12/24/2022]
Abstract
The genome of Epstein-Barr Virus (EBV) and plasmid derivatives of it are among the most efficient extrachromosomal replicons in mammalian cells. The latent origin of plasmid replication (oriP), when supplied with the viral Epstein-Barr Nuclear Antigen 1 (EBNA1) in trans, provides efficient duplication, partitioning and maintenance of plasmids bearing it. In this review, we detail what is known about the viral cis and trans elements required for plasmid replication. In addition, we describe how the cellular factors that EBV usurps are used to complement the functions of the viral constituents. Finally, we propose a model for the sequential assembly of an EBNA1-dependent origin of DNA synthesis into a pre-Replicative Complex (pre-RC), which functions by making use only of cellular enzymatic activities to carry out the replication of the viral plasmid.
Collapse
Affiliation(s)
| | - Bill Sugden
- * To whom correspondence should be addressed: 1400 University Ave, Madison, WI 53706, Phone: 608.262.6697, Fax: 608.262.2824,
| |
Collapse
|
12
|
Tsimberidou AM, Keating MJ, Bueso-Ramos CE, Kurzrock R. Epstein-Barr virus in patients with chronic lymphocytic leukemia: a pilot study. Leuk Lymphoma 2006; 47:827-36. [PMID: 16753866 DOI: 10.1080/10428190500398856] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to assess the incidence and the clinical significance of Epstein-Barr virus (EBV) in patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Patients with CLL/SLL who presented at The University of Texas M. D. Anderson Cancer Center over a 2-year period and had available marrow paraffin blocks were studied for evidence of EBV infection using a highly specific in-situ hybridization assay for detection of EBV encoded RNA (EBERs). Results were analysed in relation to other presenting characteristics and outcome. Thirty-two patients were examined. EBERs were detected in the bone marrow of 12 of 32 (38%) CLL/SLL marrows vs 0 of 20 normal marrows (p = 0.002). EBERs were observed in sporadic granulocytes alone or in addition to its presence in lymphocytes in nine of the 12 EBV-positive patients. EBERs were detected less frequently in patients with Rai stage 0 - 1 disease (20%) compared with Rai stage 2 - 4 (66%; p = 0.008). EBER-positive patients tended to have higher lactate dehydrogenase levels (p = 0.053). The 10-year survival rate was 22% vs 58% for patients with and without discernible EBERs (log-rank, p = 0.08). Evidence of EBV infection was found in 38% of patients with CLL/SLL. Despite the small number of patients tested, discernable EBERs were significantly more common in individuals with more advanced Rai stage and there was a trend toward shorter survival in patients in whom EBV EBERs were discerned. Larger studies are needed to determine the prognostic value and role of EBV infection in patients with CLL/SLL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Bone Marrow Examination
- Female
- Granulocytes/virology
- Herpesvirus 4, Human
- Humans
- Incidence
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Leukocytes/virology
- Male
- Middle Aged
- Neoplasm Staging
- Pilot Projects
- Survival Analysis
Collapse
Affiliation(s)
- Apostolia-Maria Tsimberidou
- Phase I Program and Department of Leukemia, Division of Cancer Medicine, The University of Texas M.D Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
13
|
Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ, Poppema S, van den Berg A. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 2006; 45:147-53. [PMID: 16235244 DOI: 10.1002/gcc.20273] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We previously demonstrated high expression of primary-microRNA BIC (pri-miR-155) in Hodgkin lymphoma (HL) and lack of expression in most non-Hodgkin lymphoma subtypes including some Burkitt lymphoma (BL) cases. Recently, high expression of BIC was reported in BL in comparison to pediatric leukemia and normal peripheral-blood samples. In this study, we extended our series of BL cases and cell lines to examine expression of BIC using RNA in situ hybridization (ISH) and quantitative RT-PCR (qRT-PCR) and of miR-155 using Northern blotting. Both BIC RNA ISH and qRT-PCR revealed no or low levels of BIC in 25 BL tissue samples [including 7 Epstein-Barr virus (EBV)-positive cases] compared to HL and normal controls. In agreement with these findings, no miR-155 was observed in BL tissues. EBV-negative and EBV latency type I BL cell lines also showed very low BIC and miR-155 expression levels as compared to HL cell lines. Higher levels of BIC and miR-155 were detected in in vitro transformed lymphoblastoid EBV latency type III BL cell lines. An association of latency type III infection and induction of BIC was supported by consistent expression of BIC in 11 and miR-155 in 2 posttransplantation lymphoproliferative disorder (PTLD) cases. In summary, we demonstrated that expression of BIC and miR-155 is not a common finding in BL. Expression of BIC and miR-155 in 3 latency type III EBV-positive BL cell lines and in all primary PTLD cases suggests a possible role for EBV latency type III specific proteins in the induction of BIC expression.
Collapse
Affiliation(s)
- Joost Kluiver
- Department of Pathology & Laboratory Medicine, Groningen University Medical Center, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
EBV was the first human virus to be directly implicated in carcinogenesis. It infects >90% of the world's population. Although most humans coexist with the virus without serious sequelae, a small proportion will develop tumors. Normal host populations can have vastly different susceptibility to EBV-related tumors as demonstrated by geographical and immunological variations in the prevalence of these cancers. EBV has been implicated in the pathogenesis of Burkitt's lymphoma, Hodgkin's disease, non-Hodgkin's lymphoma, nasopharyngeal carcinoma, and lymphomas, as well as leiomyosarcomas arising in immunocompromised individuals. The presence of this virus has also been associated with epithelial malignancies arising in the gastric region and the breast, although some of this work remains in dispute. EBV uses its viral proteins, the actions of which mimic several growth factors, transcription factors, and antiapoptotic factors, to usurp control of the cellular pathways that regulate diverse homeostatic cellular functions. Recent advances in antiviral therapeutics, application of monoclonal antibodies, and generation of EBV-specific CTLs are beginning to show promise in the treatment of EBV-related disorders.
Collapse
Affiliation(s)
- Matthew P Thompson
- Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Elia A, Vyas J, Laing KG, Clemens MJ. Ribosomal protein L22 inhibits regulation of cellular activities by the Epstein-Barr virus small RNA EBER-1. ACTA ACUST UNITED AC 2004; 271:1895-905. [PMID: 15128299 DOI: 10.1111/j.1432-1033.2004.04099.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epstein-Barr virus (EBV) is a potent mitogenic and antiapoptotic agent for B lymphocytes and is associated with several different types of human tumour. The abundantly expressed small viral RNA, EBER-1, binds to the growth inhibitory and pro-apoptotic protein kinase R (PKR) and blocks activation of the latter by double-stranded RNA. Recent evidence has suggested that expression of EBER-1 alone in EBV-negative B cells promotes a tumorigenic phenotype and that this may be related to inhibition of the pro-apoptotic effects of PKR. The ribosomal protein L22 binds to EBER-1 in virus-infected cells, but the significance of this has not previously been established. We report here that L22 and PKR compete for a common binding site on EBER-1. As a result of this competition, L22 interferes with the ability of the small RNA to inhibit the activation of PKR by dsRNA. Transient expression of EBER-1 in murine embryonic fibroblasts stimulates reporter gene expression and partially reverses the inhibitory effect of PKR. However, EBER-1 is also stimulatory when transfected into PKR knockout cells, suggesting an additional, PKR-independent, mode of action of the small RNA. Expression of L22 prevents both the PKR-dependent and -independent effects of EBER-1 in vivo. These results suggest that the association of L22 with EBER-1 in EBV-infected cells can attenuate the biological effects of the viral RNA. Such effects include both the inhibition of PKR and additional mechanism(s) by which EBER-1 stimulates gene expression.
Collapse
Affiliation(s)
- Androulla Elia
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, London, UK
| | | | | | | |
Collapse
|
16
|
Abstract
This article will provide an overview on the status of cancer gene therapy, focussed specifically on its potential application in nasopharyngeal carcinoma (NPC). The concepts and strategies behind the design of therapeutic targets such as p53, p16, and death genes will be described. One of the major challenges in cancer gene therapy is tumor-specific expression of therapeutic genes, and a transcriptional targeting approach will be reviewed, in reference to NPC. Specifically, the ability to exploit the presence of Epstein-Barr virus (EBV) will be emphasized. The currently available preclinical data on genetic therapeutic approaches for NPC will be reviewed, and an outline for its future role in management of NPC, in conjunction with existing cytotoxic modalities of ionizing radiation and chemotherapy will be provided.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Department of Radiation Oncology, Princess Margaret Hospital/University Health Networks, University of Toronto, 610 University Avenue, Toronto, Ont, Canada M5G 2M9.
| |
Collapse
|
17
|
Abstract
The proliferative indices of non-Hodgkin's lymphomas are useful prognostic indicators and provide information independent of other histological and clinical variables. However, proliferative indices alone do not suffice to characterise cell growth. A high cell production rate may be compensated, almost or fully, by a high cell deletion rate. A re-evaluation of parameters of cell kinetics in view of our increasing knowledge of the molecular pathways of cell cycle control may provide more prognostic information for the management of patients with malignant lymphomas.
Collapse
Affiliation(s)
- L Leoncini
- Institute of Pathological Anatomy and Histology, University of Siena, Italy.
| | | | | | | |
Collapse
|
18
|
Abstract
The B-lymphotropic virus Epstein-Barr virus (EBV) has been implicated in the pathogenesis of B-cell malignancies, particularly in immunodeficient individuals. This review provides a brief overview of the EBV-encoded proteins involved in B-cell transformation, and the current state of knowledge about their roles in this process.
Collapse
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, 3-570 Bowen Science Bldg., The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
19
|
Laing KG, Elia A, Jeffrey I, Matys V, Tilleray VJ, Souberbielle B, Clemens MJ. In vivo effects of the Epstein-Barr virus small RNA EBER-1 on protein synthesis and cell growth regulation. Virology 2002; 297:253-69. [PMID: 12083824 DOI: 10.1006/viro.2002.1354] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested a role for the Epstein-Barr virus-encoded RNA EBER-1 in malignant transformation. EBER-1 inhibits the activity of the protein kinase PKR, an inhibitor of protein synthesis with tumour suppressor properties. In human 293 cells and murine embryonic fibroblasts, transient expression of EBER-1 promoted total protein synthesis and enhanced the expression of cotransfected reporter genes. However reporter gene expression was stimulated equally well in cells from control and PKR knockout mice. NIH 3T3 cells stably expressing EBER-1 exhibited a greatly increased frequency of colony formation in soft agar, and protein synthesis in these cells was relatively resistant to inhibition by the calcium ionophore A23187. Nevertheless clones containing a high concentration of EBER-1 were not invariably tumourigenic. We conclude that EBER-1 can enhance protein synthesis by a PKR-independent mechanism and that, although this RNA may contribute to the oncogenic potential of Epstein-Barr virus, its expression is not always sufficient for malignant transformation.
Collapse
Affiliation(s)
- Kenneth G Laing
- Department of Biochemistry and Immunology, St. George's Hospital Medical School, Cranmer Terrace, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Busch LK, Bishop GA. Multiple carboxyl-terminal regions of the EBV oncoprotein, latent membrane protein 1, cooperatively regulate signaling to B lymphocytes via TNF receptor-associated factor (TRAF)-dependent and TRAF-independent mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5805-13. [PMID: 11698454 DOI: 10.4049/jimmunol.167.10.5805] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Latent membrane protein 1 (LMP1) is an EBV-encoded transforming protein that strongly mimics the B cell-activating properties of a normal cellular membrane protein, CD40. LMP1 and CD40 both associate with the cytoplasmic adapter proteins called TNFR-associated factors (TRAFs). TRAFs 1, 2, and 3 bind to a region of LMP1 that is essential for EBV to transform B lymphocytes, carboxyl-terminal activating region (CTAR) 1. However, studies of transiently overexpressed LMP1 molecules, primarily in epithelial cells, indicated that a second region, CTAR2, is largely responsible for LMP1-mediated activation of NF-kappaB and c-Jun N-terminal kinase. To better understand LMP1 signaling in B lymphocytes, we performed a structure-function analysis of the LMP1 C-terminal cytoplasmic domain stably expressed in B cell lines. Our results demonstrate that LMP1-stimulated Ig production, surface molecule up-regulation, and NF-kappaB and c-Jun N-terminal kinase activation require both CTAR1 and CTAR2, and that these two regions may interact to mediate LMP1 signaling. Furthermore, we find that the function of CTAR1, but not CTAR2, correlates with TRAF binding and present evidence that as yet unidentified cytoplasmic proteins may associate with LMP1 to mediate some of its signaling activities.
Collapse
Affiliation(s)
- L K Busch
- Molecular Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
21
|
Abstract
Exhaustive information on the Epstein-Barr virus, a member of the herpes family, is described at the International Herpes Management Forum web-site. Cervical cancer associations, AIDS treatment projects, and the Los Alamos National Laboratories provide useful information on papillomavirus infections, as well as hyperlinks to recent international papillomavirus conferences. A private pharmaceutical company, in collaboration with the National Institutes of Health, has launched a lively web-site covering different aspects of microbial infections for the general public.
Collapse
|