1
|
Yan Q, Xiao D, Jia Y, Ai D, Fan J, Song H, Xu C, Wang Y, Yang J. A multi-dimensional CFD framework for fast patient-specific fractional flow reserve prediction. Comput Biol Med 2024; 168:107718. [PMID: 37988787 DOI: 10.1016/j.compbiomed.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Fractional flow reserve (FFR) is considered as the gold standard for diagnosing coronary myocardial ischemia. Existing 3D computational fluid dynamics (CFD) methods attempt to predict FFR noninvasively using coronary computed tomography angiography (CTA). However, the accuracy and efficiency of the 3D CFD methods in coronary arteries are considerably limited. In this work, we introduce a multi-dimensional CFD framework that improves the accuracy of FFR prediction by estimating 0D patient-specific boundary conditions, and increases the efficiency by generating 3D initial conditions. The multi-dimensional CFD models contain the 3D vascular model for coronary simulation, the 1D vascular model for iterative optimization, and the 0D vascular model for boundary conditions expression. To improve the accuracy, we utilize clinical parameters to derive 0D patient-specific boundary conditions with an optimization algorithm. To improve the efficiency, we evaluate the convergence state using the 1D vascular model and obtain the convergence parameters to generate appropriate 3D initial conditions. The 0D patient-specific boundary conditions and the 3D initial conditions are used to predict FFR (FFRC). We conducted a retrospective study involving 40 patients (61 diseased vessels) with invasive FFR and their corresponding CTA images. The results demonstrate that the FFRC and the invasive FFR have a strong linear correlation (r = 0.80, p < 0.001) and high consistency (mean difference: 0.014 ±0.071). After applying the cut-off value of FFR (0.8), the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of FFRC were 88.5%, 93.3%, 83.9%, 84.8%, and 92.9%, respectively. Compared with the conventional zero initial conditions method, our method improves prediction efficiency by 71.3% per case. Therefore, our multi-dimensional CFD framework is capable of improving the accuracy and efficiency of FFR prediction significantly.
Collapse
Affiliation(s)
- Qing Yan
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Deqiang Xiao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yaosong Jia
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Danni Ai
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Jingfan Fan
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Song
- School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Jian Yang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
3
|
May RW, Maso Talou GD, Clark AR, Mynard JP, Smolich JJ, Blanco PJ, Müller LO, Gentles TL, Bloomfield FH, Safaei S. From fetus to neonate: A review of cardiovascular modeling in early life. WIREs Mech Dis 2023:e1608. [DOI: 10.1002/wsbm.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
|
4
|
Lan IS, Yang W, Feinstein JA, Kreutzer J, Collins RT, Ma M, Adamson GT, Marsden AL. Virtual Transcatheter Interventions for Peripheral Pulmonary Artery Stenosis in Williams and Alagille Syndromes. J Am Heart Assoc 2022; 11:e023532. [PMID: 35253446 PMCID: PMC9075299 DOI: 10.1161/jaha.121.023532] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Despite favorable outcomes of surgical pulmonary artery (PA) reconstruction, isolated proximal stenting of the central PAs is common clinical practice for patients with peripheral PA stenosis in association with Williams and Alagille syndromes. Given the technical challenges of PA reconstruction and the morbidities associated with transcatheter interventions, the hemodynamic consequences of all treatment strategies must be rigorously assessed. Our study aims to model, assess, and predict hemodynamic outcomes of transcatheter interventions in these patients.
Methods and Results
Isolated proximal and “extensive” interventions (stenting and/or balloon angioplasty of proximal and lobar vessels) were performed in silico on 6 patient‐specific PA models. Autoregulatory adaptation of the cardiac output and downstream arterial resistance was modeled in response to intervention‐induced hemodynamic perturbations. Postintervention computational fluid dynamics predictions were validated in 2 stented patients and quantitatively assessed in 4 surgical patients. Our computational methods accurately predicted postinterventional PA pressures, the primary indicators of success for treatment of peripheral PA stenosis. Proximal and extensive treatment achieved median reductions of 14% and 40% in main PA systolic pressure, 27% and 56% in pulmonary vascular resistance, and 10% and 45% in right ventricular stroke work, respectively.
Conclusions
In patients with Williams and Alagille syndromes, extensive transcatheter intervention is required to sufficiently reduce PA pressures and right ventricular stroke work. Transcatheter therapy was shown to be ineffective for long‐segment stenosis and pales hemodynamically in comparison with published outcomes of surgical reconstruction. Regardless of the chosen strategy, a virtual treatment planning platform could identify lesions most critical for optimizing right ventricular afterload.
Collapse
Affiliation(s)
- Ingrid S. Lan
- Department of Bioengineering Stanford University Stanford CA
| | - Weiguang Yang
- Department of Pediatrics (Cardiology) Stanford University Stanford CA
| | - Jeffrey A. Feinstein
- Department of Bioengineering Stanford University Stanford CA
- Department of Pediatrics (Cardiology) Stanford University Stanford CA
| | - Jacqueline Kreutzer
- Department of Pediatrics (Cardiology) University of Pittsburgh Pittsburgh PA
| | - R. Thomas Collins
- Department of Pediatrics (Cardiology) Stanford University Stanford CA
- Department of Medicine (Cardiovascular Medicine) Stanford University Stanford CA
| | - Michael Ma
- Department of Cardiothoracic Surgery Stanford University Stanford CA
| | | | - Alison L. Marsden
- Department of Bioengineering Stanford University Stanford CA
- Department of Pediatrics (Cardiology) Stanford University Stanford CA
- Institute for Computational and Mathematical Engineering Stanford University Stanford CA
| |
Collapse
|
5
|
Hameed M, Prather R, Divo E, Kassab A, Nykanen D, Farias M, DeCampli WM. Computational fluid dynamics investigation of the novel hybrid comprehensive stage II operation. JTCVS OPEN 2021; 7:308-323. [PMID: 36003745 PMCID: PMC9390546 DOI: 10.1016/j.xjon.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 05/31/2023]
Abstract
Background The hybrid comprehensive stage 2 (HCS2) procedure is a novel palliative operation applicable to a select subset of single ventricle patients with adequate native antegrade aortic flow to the upper body. Flow to the descending aorta, through the pulmonary outlet and ductal arch, is influenced by a stented intrapulmonary baffle connecting the branch pulmonary arteries. We used computational fluid dynamics (CFD) to elucidate the hemodynamic characteristics of this reconstruction. Methods We used multiscale CFD analysis of a synthetic, patient-derived HCS2 anatomic configuration with unsteady laminar flow conditions and a non-Newtonian blood model to quantify the resultant hemodynamics. The 3-dimensional CFD model was coupled to a 0-dimensional lumped parameter model of the peripheral circulation to determine the required boundary conditions. Results For the specific anatomy studied, the intrapulmonary baffle did not obstruct flow from the pulmonary trunk to ductal arch as long as the distance between the anterior pulmonary artery wall and baffle wall exceeded ∼7 mm. Vortex shedding off of the baffle wall did not develop, because of the short distance to the ductal arch. The stented baffle experienced significantly uneven "inward" loading from the systemic side. Pulmonary outlet flow separation distal to the baffle produced a low-speed recirculation region. Conclusions Hemodynamic patterns in this complex anatomy are generally favorable. Low flow recirculation could be mitigated by preoperative shape optimization. Calculated inward stresses on the pulmonary baffle can be used in the future to study baffle stent deformation, which is expected to be small.
Collapse
Key Words
- AA, ascending aorta
- BC, boundary condition
- CFD, computational fluid dynamics
- CHD, congenital heart disease
- DA, descending aorta
- HCS2, hybrid comprehensive stage 2
- HLHS, hypoplastic left heart syndrome
- LCA, left coronary artery
- LCCA, left common carotid artery
- LPA, left pulmonary artery
- LPM, lumped parameter model
- LSCA, left subclavian artery
- MPA, main pulmonary artery
- ODE, ordinary differential equation
- PA, pulmonary artery/trunk
- RCA, right coronary artery
- RCCA, right common carotid artery
- RPA, right pulmonary artery
- RSCA, right subclavian artery
- SV, single ventricle
- SVC, superior vena cava
- VSD, ventricular septal defect
- WSS, wall shear stress
- computational fluid dynamics
- congenital heart disease
- hypoplastic left heart syndrome
- lumped parameter model
Collapse
Affiliation(s)
- Marwan Hameed
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Fla
- Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Fla
| | - Ray Prather
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Fla
- Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Fla
- Pediatric Cardiology, Arnold Palmer Hospital for Children, Orlando, Fla
| | - Eduardo Divo
- Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Fla
| | - Alain Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Fla
| | - David Nykanen
- Pediatric Cardiology, Arnold Palmer Hospital for Children, Orlando, Fla
| | - Michael Farias
- Pediatric Cardiology, Arnold Palmer Hospital for Children, Orlando, Fla
| | - William M. DeCampli
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Fla
- Pediatric Cardiology, Arnold Palmer Hospital for Children, Orlando, Fla
- Department of Clinical Sciences, College of Medicine, University of Central Florida, Orlando, Fla
| |
Collapse
|
6
|
Harrod KK, Rogers JL, Feinstein JA, Marsden AL, Schiavazzi DE. Predictive Modeling of Secondary Pulmonary Hypertension in Left Ventricular Diastolic Dysfunction. Front Physiol 2021; 12:666915. [PMID: 34276397 PMCID: PMC8281259 DOI: 10.3389/fphys.2021.666915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 12/03/2022] Open
Abstract
Diastolic dysfunction is a common pathology occurring in about one third of patients affected by heart failure. This condition may not be associated with a marked decrease in cardiac output or systemic pressure and therefore is more difficult to diagnose than its systolic counterpart. Compromised relaxation or increased stiffness of the left ventricle induces an increase in the upstream pulmonary pressures, and is classified as secondary or group II pulmonary hypertension (2018 Nice classification). This may result in an increase in the right ventricular afterload leading to right ventricular failure. Elevated pulmonary pressures are therefore an important clinical indicator of diastolic heart failure (sometimes referred to as heart failure with preserved ejection fraction, HFpEF), showing significant correlation with associated mortality. However, accurate measurements of this quantity are typically obtained through invasive catheterization and after the onset of symptoms. In this study, we use the hemodynamic consistency of a differential-algebraic circulation model to predict pulmonary pressures in adult patients from other, possibly non-invasive, clinical data. We investigate several aspects of the problem, including the ability of model outputs to represent a sufficiently wide pathologic spectrum, the identifiability of the model's parameters, and the accuracy of the predicted pulmonary pressures. We also find that a classifier using the assimilated model parameters as features is free from the problem of missing data and is able to detect pulmonary hypertension with sufficiently high accuracy. For a cohort of 82 patients suffering from various degrees of heart failure severity, we show that systolic, diastolic, and wedge pulmonary pressures can be estimated on average within 8, 6, and 6 mmHg, respectively. We also show that, in general, increased data availability leads to improved predictions.
Collapse
Affiliation(s)
- Karlyn K Harrod
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States
| | - Jeffrey L Rogers
- Department of Digital Health, T.J. Watson Research Center, International Business Machines Corporation, Yorktown Heights, NY, United States
| | - Jeffrey A Feinstein
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, United States
| | - Alison L Marsden
- Department of Pediatrics, Bioengineering and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, United States
| | - Daniele E Schiavazzi
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
7
|
Bonnemain J, Pegolotti L, Liaudet L, Deparis S. Implementation and Calibration of a Deep Neural Network to Predict Parameters of Left Ventricular Systolic Function Based on Pulmonary and Systemic Arterial Pressure Signals. Front Physiol 2020; 11:1086. [PMID: 33071803 PMCID: PMC7533610 DOI: 10.3389/fphys.2020.01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/06/2020] [Indexed: 01/06/2023] Open
Abstract
The evaluation of cardiac contractility by the assessment of the ventricular systolic elastance function is clinically challenging and cannot be easily obtained at the bedside. In this work, we present a framework characterizing left ventricular systolic function from clinically readily available data, including systemic and pulmonary arterial pressure signals. We implemented and calibrated a deep neural network (DNN) consisting of a multi-layer perceptron with 4 fully connected hidden layers and with 16 neurons per layer, which was trained with data obtained from a lumped model of the cardiovascular system modeling different levels of cardiac function. The lumped model included a function of circulatory autoregulation from carotid baroreceptors in pulsatile conditions. Inputs for the DNN were systemic and pulmonary arterial pressure curves. Outputs from the DNN were parameters of the lumped model characterizing left ventricular systolic function, especially end-systolic elastance. The DNN adequately performed and accurately recovered the relevant hemodynamic parameters with a mean relative error of less than 2%. Therefore, our framework can easily provide complex physiological parameters of cardiac contractility, which could lead to the development of invaluable tools for the clinical evaluation of patients with severe cardiac dysfunction.
Collapse
Affiliation(s)
- Jean Bonnemain
- Adult Intensive Care and Burn Unit, University Hospital and University of Lausanne, Lausanne, Switzerland.,SCI-SB-SD, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Institute of Mathematics, Lausanne, Switzerland
| | - Luca Pegolotti
- SCI-SB-SD, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Institute of Mathematics, Lausanne, Switzerland
| | - Lucas Liaudet
- Adult Intensive Care and Burn Unit, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Simone Deparis
- SCI-SB-SD, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, Institute of Mathematics, Lausanne, Switzerland
| |
Collapse
|
8
|
Black RA, Houston G. 40th Anniversary Issue: Reflections on papers from the archive on "Cardiovascular devices and modelling". Med Eng Phys 2020; 72:74-75. [PMID: 31554581 DOI: 10.1016/j.medengphy.2019.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard A Black
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK.
| | - Gregor Houston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
9
|
Stalidzans E, Zanin M, Tieri P, Castiglione F, Polster A, Scheiner S, Pahle J, Stres B, List M, Baumbach J, Lautizi M, Van Steen K, Schmidt HH. Mechanistic Modeling and Multiscale Applications for Precision Medicine: Theory and Practice. NETWORK AND SYSTEMS MEDICINE 2020. [DOI: 10.1089/nsm.2020.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Egils Stalidzans
- Computational Systems Biology Group, University of Latvia, Riga, Latvia
- Latvian Biomedical Reasearch and Study Centre, Riga, Latvia
| | - Massimiliano Zanin
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | - Filippo Castiglione
- CNR National Research Council, IAC Institute for Applied Computing, Rome, Italy
| | | | - Stefan Scheiner
- Institute for Mechanics of Materials and Structures, Vienna University of Technology, Vienna, Austria
| | - Jürgen Pahle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Blaž Stres
- Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Markus List
- Big Data in BioMedicine Research Group, Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manuela Lautizi
- Computational Systems Medicine Research Group, Chair of Experimental Bioinformatics, TUM School of Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kristel Van Steen
- BIO-Systems Genetics, GIGA-R, University of Liège, Liège, Belgium
- BIO3—Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Harald H.H.W. Schmidt
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
10
|
Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients. Biomech Model Mechanobiol 2019; 18:779-796. [DOI: 10.1007/s10237-018-01114-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/24/2018] [Indexed: 01/26/2023]
|
11
|
Wang Y, Sun H, Wei J, Liu X, Liu T, Fan Y. A mathematical model of human heart including the effects of heart contractility varying with heart rate changes. J Biomech 2018; 75:129-137. [PMID: 29859632 DOI: 10.1016/j.jbiomech.2018.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 11/18/2022]
Abstract
Incorporating the intrinsic variability of heart contractility varying with heart rate into the mathematical model of human heart would be useful for addressing the dynamical behaviors of human cardiovascular system, but models with such features were rarely reported. This study focused on the development and evaluation of a mathematical model of the whole heart, including the effects of heart contractility varying with heart rate changes. This model was developed based on a paradigm and model presented by Ottesen and Densielsen, which was used to model ventricular contraction. A piece-wise function together with expressions for time-related parameters were constructed for modeling atrial contraction. Atrial and ventricular parts of the whole heart model were evaluated by comparing with models from literature, and then the whole heart model were assessed through coupling with a simple model of the systemic circulation system and the pulmonary circulation system. The results indicated that both atrial and ventricular parts of the whole heart model could reasonably reflect their contractility varying with heart rate changes, and the whole heart model could exhibit major features of human heart. Results of the parameters variation studies revealed the correlations between the parameters in the whole heart model and performances (including the maximum pressure and the stroke volume) of every chamber. These results would be useful for helping users to adjust parameters in special applications.
Collapse
Affiliation(s)
- Yawei Wang
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Hongdai Sun
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Jianan Wei
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Xuesong Liu
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Tianya Liu
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
12
|
Shimizu S, Une D, Kawada T, Hayama Y, Kamiya A, Shishido T, Sugimachi M. Lumped parameter model for hemodynamic simulation of congenital heart diseases. J Physiol Sci 2018; 68:103-111. [PMID: 29270856 PMCID: PMC10717555 DOI: 10.1007/s12576-017-0585-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
The recent development of computer technology has made it possible to simulate the hemodynamics of congenital heart diseases on a desktop computer. However, multi-scale modeling of the cardiovascular system based on computed tomographic and magnetic resonance images still requires long simulation times. The lumped parameter model is potentially beneficial for real-time bedside simulation of congenital heart diseases. In this review, we introduce the basics of the lumped parameter model (time-varying elastance chamber model combined with modified Windkessel vasculature model) and illustrate its usage in hemodynamic simulation of congenital heart diseases using examples such as hypoplastic left heart syndrome and Fontan circulation. We also discuss the advantages of the lumped parameter model and the problems for clinical use.
Collapse
Affiliation(s)
- Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-5685, Japan.
| | - Dai Une
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-5685, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-5685, Japan
| | - Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-5685, Japan
| | - Atsunori Kamiya
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-5685, Japan
| | - Toshiaki Shishido
- Department of Research Promotion, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-5685, Japan
| |
Collapse
|
13
|
Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, D'Avenio G, Amodeo A, Barbaro V, Di Donato R. Numerical Simulation of a Realistic Total Cavo-pulmonary Connection: Effect of Unbalanced Pulmonary Resistances on Hydrodynamic Performance. Int J Artif Organs 2018; 26:1005-14. [PMID: 14708830 DOI: 10.1177/039139880302601107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Total cavo pulmonary connection (TCPC) is one of the surgical techniques adopted to compensate the failure of the right heart in pediatric patients. The main goal of this procedure is the realization of a configuration for the caval veins and for the pulmonary arteries that can guarantee as low as possible pressure losses and appropriate lung perfusion. Starting from this point of view, a realistic TCPC with extracardiac conduit (TECPC) is investigated by means of Computational Fluid Dynamics (CFD) to evaluate the pressure loss under different pressure conditions, simulating different vessel resistances, on the pulmonary arteries. A total flow of 3 L/min, with a distribution between the inferior vena cava (IVC) and the superior vena cava (SVC) equal to 6/4, was investigated; three different boundary conditions for the pressure were imposed, resulting in three simulations in steady-state conditions, to the right pulmonary artery (RPA) and to the left pulmonary artery (LPA), simulating a balanced (deltaP(LPA-RPA) = 0 mmHg) and two unbalanced pulmonary resistances to blood flow (a pressure difference deltaP(LPA-RPA) = +/- 2 mmHg, respectively). The geometry for the TECPC was realized according to MRI derived physiological values for the vessels and for the configuration adopted for the anastomosis (the extra-cardiac conduit was inclined 22 degrees towards the left pulmonary artery with respect to the IVC axis). The computed power losses agree with previous in vitro Particle Image Velocimetry investigations. The results show that a higher resistance on the LPA causes the greater pressure loss for the TECPC under study, while the minimum pressure loss can be achieved balancing the pulmonary resistances, subsequently obtaining a balanced flow repartition towards the lungs.
Collapse
Affiliation(s)
- M Grigioni
- Laboratory of Biomedical Engineering, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Malota Z, Nawrat Z, Kostka P, Mizerski J, Nowinski K, Waniewski J. Physical and Computer Modelling of Blood Flow in a Systemic-to-pulmonary Shunt. Int J Artif Organs 2018; 27:990-9. [PMID: 15636057 DOI: 10.1177/039139880402701112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this work was the application of computer and physical in vitro simulation methods for estimating surgery procedure hemodynamics. The modified Blalock-Taussig (mB-T) palliative surgical procedure is performed to increase the pulmonary blood flow in children with congenital heart defects. Such a systemic-to-pulmonary shunt yields substantial modification in the blood flow within the large blood vessels. The objective of the present study was to investigate basic characteristics of the flow, flow pattern and pressure-flow efficiency, before and after opening of the mB-T graft. Methods The model was based on the vessel geometry obtained from the Visible Human Project and included the arch of aorta, the three arteries branching from the arch, the pulmonary trunck, and the left and right pulmonary arteries. The graft was added between the left subclavian artery and the left pulmonary artery. The glass model of the vessels was produced and investigated in a physical model of the cardiovascular system with an artificial ventricular device as the blood pump. Flow rate and hydrostatic pressure were measured at the inlet to and outlets from the glass model and in a few points within the system. Laser flow visualization was also performed. Computer simulations were done using the boundary conditions from the physical model. Results The opening of the mB-T graft changed flow distribution in all branches (including inflow). A complex flow pattern with large eddies and channelling of the flow in the vicinity of the graft and within it was observed in flow visualization and in computer simulations. Because of that complexity the local measurements of hydrostatic pressure at the vessel wall could not predict the average flow rate. The reversed flow in the graft was observed during the systole. Conclusions The complex flow pattern developed in the physical model of the mB-T graft. The channelling of the flow and the formation of large eddies may yield high shear stress and modify blood properties. The rigid wall model can describe only some flow characteristics observed in vivo. Computer simulation is a very fast and accurate method which permits earlier qualification of cardiac surgeons on how to change cardiac vascular blood flow after operations.
Collapse
Affiliation(s)
- Z Malota
- Foundation of Cardiac Surgery Development, Zabrze, Poland.
| | | | | | | | | | | |
Collapse
|
15
|
MaƗota Z, Nawrat Z, Kostka P. Computer and Physical Modeling of Blood Circulation Pump Support for a New Field of Application in Palliative Surgery. Int J Artif Organs 2018; 30:1068-74. [DOI: 10.1177/039139880703001206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives One of the most popular palliative procedures performed to increase pulmonary blood flow in children with congenital heart defects is a shunt operation (Blalock-Taussig graft or Glenn procedure), which creates the new blood channel to the pulmonary artery. The main problem with this kind of surgery is poor shunt effectiveness and the lack of possibility to regulate the flow. The aim of this work is to use advanced computer simulation methods to study the effectiveness of a new idea to introduce a small axial blood pump into a Blalock-Taussig (B-T) or Glenn shunt in order to control the blood flow and prevent any increase in the graft stenosis. Methods Physical and computer 3-D simulation based on a finite element mesh (FEM) model was applied. Studies for optimization of the shunt and hybrid shunt with pump were performed for different stages of the disease. Results and Conclusion The graft with the axial pump creates good conditions for the vascular system and pulmonary artery blood flow as well as regulating blood pressure under variable conditions caused by palliative procedures. Its use permits the afterload of the left heart ventricle to be decreased. A palliative procedure is only a temporary solution. When a child grows, while the graft size is fixed, the blood flow through this graft may be not sufficient under changing hemodynamic conditions. The use of an axial pump for regulating the blood flow volume, during palliative procedures, allows to obtain the optimal flow conditions in pulmonary artery and safely wait on the final cardiac surgery correction later. However, the use of a pump mounted inside the graft increased hemodynamic resistance, which caused the flow to decrease up to 70% in the graft when the axial pump was not working.
Collapse
Affiliation(s)
- Z. MaƗota
- Foundation of Cardiac Surgery Development, Zabrze - Poland
| | - Z. Nawrat
- Foundation of Cardiac Surgery Development, Zabrze - Poland
- Silesian Medical Academy, Zabrze - Poland
| | - P. Kostka
- Foundation of Cardiac Surgery Development, Zabrze - Poland
- Silesian University of Technology, Gliwice - Poland
| |
Collapse
|
16
|
Schiavazzi DE, Baretta A, Pennati G, Hsia TY, Marsden AL. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:10.1002/cnm.2799. [PMID: 27155892 PMCID: PMC5499984 DOI: 10.1002/cnm.2799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/05/2016] [Accepted: 04/21/2016] [Indexed: 05/08/2023]
Abstract
Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Alessia Baretta
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
| | - Giancarlo Pennati
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
| | - Tain-Yen Hsia
- Great Ormond Street Hospital for Children and UCL Institute of Cardiovascular Science, London, UK
| | - Alison L Marsden
- Department of Pediatrics, Bioengineering and ICME, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Audebert C, Bucur P, Bekheit M, Vibert E, Vignon-Clementel IE, Gerbeau JF. Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2017. [DOI: 10.1016/j.cma.2016.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Riveros Perez E, Riveros R. Mathematical Analysis and Physical Profile of Blalock-Taussig Shunt and Sano Modification Procedure in Hypoplastic Left Heart Syndrome: Review of the Literature and Implications for the Anesthesiologist. Semin Cardiothorac Vasc Anesth 2017; 21:152-164. [PMID: 28118786 DOI: 10.1177/1089253216687857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The first stage of surgical treatment for hypoplastic left heart syndrome (HLHS) includes the creation of artificial systemic-to-pulmonary connections to provide pulmonary blood flow. The modified Blalock-Taussig (mBT) shunt has been the technique of choice for this procedure; however, a right ventricle-pulmonary artery (RV-PA) shunt has been introduced into clinical practice with encouraging but still conflicting outcomes when compared with the mBT shunt. The aim of this study is to explore mathematical modeling as a tool for describing physical profiles that could assist the surgical team in predicting complications related to stenosis and malfunction of grafts in an attempt to find correlations with clinical outcomes from clinical studies that compared both surgical techniques and to assist the anesthesiologist in making decisions to manage patients with this complex cardiac anatomy. Mathematical modeling to display the physical characteristics of the chosen surgical shunt is a valuable tool to predict flow patterns, shear stress, and rate distribution as well as energetic performance at the graft level and relative to ventricular efficiency. Such predictions will enable the surgical team to refine the technique so that hemodynamic complications be anticipated and prevented, and are also important for perioperative management by the anesthesia team.
Collapse
|
19
|
Audebert C, Bekheit M, Bucur P, Vibert E, Vignon-Clementel IE. Partial hepatectomy hemodynamics changes: Experimental data explained by closed-loop lumped modeling. J Biomech 2017; 50:202-208. [PMID: 27890535 DOI: 10.1016/j.jbiomech.2016.11.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
The liver function may be degraded after partial liver ablation surgery. Adverse liver hemodynamics have been shown to be associated to liver failure. The link between these hemodynamics changes and ablation size is however poorly understood. This article proposes to explain with a closed-loop lumped model the hemodynamics changes observed during twelve surgeries in pigs. The portal venous tree is modeled with a pressure-dependent variable resistor. The variables measured, before liver ablation, are used to tune the model parameters. Then, the liver partial ablation is simulated with the model and the simulated pressures and flows are compared with post-operative measurements. Fluid infusion and blood losses occur during the surgery. The closed-loop model presented accounts for these blood volume changes. Moreover, the impact of blood volume changes and the liver lobe mass estimations on the simulated variables is studied. The typical increase of portal pressure, increase of liver pressure loss, slight decrease of portal flow and major decrease in arterial flow are quantitatively captured by the model for a 75% hepatectomy. It appears that the 75% decrease in hepatic arterial flow can be explained by the resistance increase induced by the surgery, and that no hepatic arterial buffer response (HABR) mechanism is needed to account for this change. The different post-operative states, observed in experiments, are reproduced with the proposed model. Thus, an explanation for inter-subjects post-operative variability is proposed. The presented framework can easily be adapted to other species circulations and to different pathologies for clinical hepatic applications.
Collapse
Affiliation(s)
- Chloe Audebert
- Inria, Paris, France; Sorbonne Universités UPMC Univ Paris 6, Laboratoire Jacques-Louis Lions, France
| | | | - Petru Bucur
- Inserm Unité 1193, Villejuif, France; CHRU, hôpitaux de Tours,Chirurgie Hépato-biliaire et Pancréatique, Transplantation Hépatique, Tours, France
| | - Eric Vibert
- Inserm Unité 1193, Villejuif, France; AP-HP, Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Irene E Vignon-Clementel
- Inria, Paris, France; Sorbonne Universités UPMC Univ Paris 6, Laboratoire Jacques-Louis Lions, France.
| |
Collapse
|
20
|
Numerical investigation of the haemodynamics in the human fetal umbilical vein/ductus venosus based on the experimental data. Biosci Rep 2016; 36:BSR20160099. [PMID: 27512094 PMCID: PMC5041159 DOI: 10.1042/bsr20160099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
Abortion of the fetus due to a disease, in an early stage of pregnancy, has been dramatically increased in the last decades. There is a still lack of knowledge on the various types of diseases which lead fetus to a vulnerable circumstance. The transport of oxygenated blood from the placenta to the human fetus has been an important clinical feature in Doppler velocimetry studies, especially the ductus venosus (DV). The DV connects intra-abdominal portion of the umbilical vein and the inferior vena cava (IVC) at the inlet of the right atrium and is, therefore, important when examining the fetus state of health. An abnormal flow in the DV can indicate a fetal disease such as, chromosomal abnormalities, cardiac defect, hypoxaemia and intrauterine growth restriction (IUGR). The blood flow in the fetal circulation has not been investigated much in detail. The blood flow in the fetal circulation provides necessary information for physician to make a suitable decision on abortion or alternative medical practice before or even after birth. The present study performed a comparative study to quantify the blood velocity in DV by a combination approach based on 3D computational simulation and Doppler measurement. The results showed that the velocity value in DV is significant and can be considered as an indicator of any kind of disease in fetal. The nodal displacement of the model was also analysed. It shows that DV tolerates a higher level of displacement compared with the other regions of the model, whereas the nodal pressure shows different results as the lowest values are located in DV.
Collapse
|
21
|
Di Molfetta A, Amodeo A, Gagliardi MG, Trivella MG, Fresiello L, Filippelli S, Toscano A, Ferrari G. Hemodynamic Effects of Ventricular Assist Device Implantation on Norwood, Glenn, and Fontan Circulation: A Simulation Study. Artif Organs 2015; 40:34-42. [PMID: 26526959 DOI: 10.1111/aor.12591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The growing population of failing single-ventricle (SV) patients might benefit from ventricular assist device (VAD) support as a bridge to heart transplantation. However, the documented experience is limited to isolated case reports. Considering the complex and different physiopathology of Norwood, Glenn, and Fontan patients and the lack of established experience, the aim of this work is to realize and test a lumped parameter model of the cardiovascular system able to simulate SV hemodynamics and VAD implantation effects to support clinical decision. Hemodynamic and echocardiographic data of 30 SV patients (10 Norwood, 10 Glenn, and 10 Fontan) were retrospectively collected and used to simulate patients' baseline. Then, the effects of VAD implantation were simulated. Simulation results suggest that the implantation of VAD: (i) increases the cardiac output and the mean arterial systemic pressure in all the three palliation conditions (Norwood 77.2 and 19.7%, Glenn 38.6 and 32.2%, and Fontan 17.2 and 14.2%); (ii) decreases the SV external work (Norwood 55%, Glenn 35.6%, and Fontan 41%); (iii) decreases the pressure pulsatility index (Norwood 65.2%, Glenn 81.3%, and Fontan 64.8%); (iv) increases the pulmonary arterial pressure in particular in the Norwood circulation (Norwood 39.7%, Glenn 12.1% and Fontan 3%); and (v) decreases the atrial pressure (Norwood 2%, Glenn 10.6%, and Fontan 8.6%). Finally, the VAD work is lower in the Norwood circulation (30.4 mL·mm Hg) in comparison with Fontan (40.3 mL·mm Hg) and to Glenn (64.5 mL·mm Hg) circulations. The use of VAD in SV physiology could be helpful to bridge patients to heart transplantations by increasing the CO and unloading the SV with a decrement of the atrial pressure and the SV external work. The regulation of the pulmonary flow is challenging because the Pap is increased by the presence of VAD. The hemodynamic changes are different in the different SV palliation step. The use of numerical models could be helpful to support patient and VAD selection to optimize the clinical outcome.
Collapse
Affiliation(s)
- Arianna Di Molfetta
- Department of Pediatric Cardiology and Cardiosurgery, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Antonio Amodeo
- Department of Pediatric Cardiology and Cardiosurgery, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Maria G Gagliardi
- Department of Pediatric Cardiology and Cardiosurgery, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Maria G Trivella
- Cardiovascular Engineering Laboratory-Institute of Clinical Physiology, CNR, Rome, Italy
| | - Libera Fresiello
- Clinical Cardiac Surgery Department, Catholic University of Leuven, Leuven, Belgium
| | - Sergio Filippelli
- Department of Pediatric Cardiology and Cardiosurgery, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Alessandra Toscano
- Department of Pediatric Cardiology and Cardiosurgery, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Gianfranco Ferrari
- Cardiovascular Engineering Laboratory-Institute of Clinical Physiology, CNR, Rome, Italy
| |
Collapse
|
22
|
Vallecilla C, Khiabani RH, Trusty P, Sandoval N, Fogel M, Briceño JC, Yoganathan AP. Exercise capacity in the Bidirectional Glenn physiology: Coupling cardiac index, ventricular function and oxygen extraction ratio. J Biomech 2015; 48:1997-2004. [PMID: 25913242 PMCID: PMC4492809 DOI: 10.1016/j.jbiomech.2015.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 11/25/2022]
Abstract
In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data.
Collapse
Affiliation(s)
| | - Reza H Khiabani
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Phillip Trusty
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Néstor Sandoval
- Department of Cardiovascular Surgery, Fundación Cardioinfantil, Bogotá, Colombia
| | - Mark Fogel
- Division of Cardiology, Children׳s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juan Carlos Briceño
- Group of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia; Research Department, Fundación Cardioinfantil, Bogotá, Colombia
| | - Ajit P Yoganathan
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
23
|
Liang F, Sughimoto K, Matsuo K, Liu H, Takagi S. Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2014; 30:1000-1018. [PMID: 24753499 DOI: 10.1002/cnm.2641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 11/01/2013] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
The assessment of cardiovascular function is becoming increasingly important for the care of patients with single-ventricle defects. However, most measurement methods available in the clinical setting cannot provide a separate measure of cardiac function and loading conditions. In the present study, a numerical method has been proposed to compensate for the limitations of clinical measurements. The main idea was to estimate the parameters of a cardiovascular model by fitting model simulations to patient-specific clinical data via parameter optimization. Several strategies have been taken to establish a well-posed parameter optimization problem, including clinical data-matched model development, parameter selection based on an extensive sensitivity analysis, and proper choice of parameter optimization algorithm. The numerical experiments confirmed the ability of the proposed parameter optimization method to uniquely determine the model parameters given an arbitrary set of clinical data. The method was further tested in four patients undergoing the Fontan operation. Obtained results revealed a prevalence of ventricular abnormalities in the patient cohort and at the same time demonstrated the presence of marked inter-patient differences and preoperative to postoperative changes in cardiovascular function. Because the method allows a quick assessment and makes use of clinical data available in clinical practice, its clinical application is promising.
Collapse
Affiliation(s)
- Fuyou Liang
- SJTU-CU International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | | | | | | | | |
Collapse
|
24
|
Liang F, Senzaki H, Kurishima C, Sughimoto K, Inuzuka R, Liu H. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. Am J Physiol Heart Circ Physiol 2014; 307:H1056-72. [DOI: 10.1152/ajpheart.00245.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological limitations of the Fontan circulation have been extensively addressed in the literature. Many studies emphasized the importance of pulmonary vascular resistance in determining cardiac output (CO) but gave little attention to other cardiovascular properties that may play considerable roles as well. The present study was aimed to systemically investigate the effects of various cardiovascular properties on clinically relevant hemodynamic variables (e.g., CO and central venous pressure). To this aim, a computational modeling method was employed. The constructed models provided a useful tool for quantifying the hemodynamic effects of any cardiovascular property of interest by varying the corresponding model parameters in model-based simulations. Herein, the Fontan circulation was studied compared with a normal biventricular circulation so as to highlight the unique characteristics of the Fontan circulation. Based on a series of numerical experiments, it was found that 1) pulmonary vascular resistance, ventricular diastolic function, and systemic vascular compliance play a major role, while heart rate, ventricular contractility, and systemic vascular resistance play a secondary role in the regulation of CO in the Fontan circulation; 2) CO is nonlinearly related to any single cardiovascular property, with their relationship being simultaneously influenced by other cardiovascular properties; and 3) the stability of central venous pressure is significantly reduced in the Fontan circulation. The findings suggest that the hemodynamic performance of the Fontan circulation is codetermined by various cardiovascular properties and hence a full understanding of patient-specific cardiovascular conditions is necessary to optimize the treatment of Fontan patients.
Collapse
Affiliation(s)
- Fuyou Liang
- Shanghai Jiao Tong University-Chiba University International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hideaki Senzaki
- Department of Pediatrics and Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Kamoda, Kawagoe, Saitama, Japan
| | - Clara Kurishima
- Department of Pediatrics and Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Kamoda, Kawagoe, Saitama, Japan
| | - Koichi Sughimoto
- Department of Cardiac Surgery, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Ryo Inuzuka
- Pediatrics, University Hospital University of Tokyo, Tokyo, Japan; and
| | - Hao Liu
- Shanghai Jiao Tong University-Chiba University International Cooperative Research Center, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
- Graduate School of Engineering, Chiba University, Inage, Chiba, Japan
| |
Collapse
|
25
|
Castiglione F, Pappalardo F, Bianca C, Russo G, Motta S. Modeling biology spanning different scales: an open challenge. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902545. [PMID: 25143952 PMCID: PMC4124842 DOI: 10.1155/2014/902545] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 02/03/2023]
Abstract
It is coming nowadays more clear that in order to obtain a unified description of the different mechanisms governing the behavior and causality relations among the various parts of a living system, the development of comprehensive computational and mathematical models at different space and time scales is required. This is one of the most formidable challenges of modern biology characterized by the availability of huge amount of high throughput measurements. In this paper we draw attention to the importance of multiscale modeling in the framework of studies of biological systems in general and of the immune system in particular.
Collapse
Affiliation(s)
- Filippo Castiglione
- Institute for Applied Mathematics, National Research Council of Italy, Rome, Italy
| | | | - Carlo Bianca
- Theoretical Physics of Condensed Matter, Sorbonne Universities, UPMC Univ Paris 6, 75252 Paris Cedex 05, France
- UMR 7600 LPTMC, CNRS, 75252 Paris Cedex 05, France
| | - Giulia Russo
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | - Santo Motta
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| |
Collapse
|
26
|
Vallecilla C, Khiabani RH, Sandoval N, Fogel M, Briceño JC, Yoganathan AP. Effect of high altitude exposure on the hemodynamics of the bidirectional Glenn physiology: modeling incremented pulmonary vascular resistance and heart rate. J Biomech 2014; 47:1846-52. [PMID: 24755120 DOI: 10.1016/j.jbiomech.2014.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/22/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
The considerable blood mixing in the bidirectional Glenn (BDG) physiology further limits the capacity of the single working ventricle to pump enough oxygenated blood to the circulatory system. This condition is exacerbated under severe conditions such as physical activity or high altitude. In this study, the effect of high altitude exposure on hemodynamics and ventricular function of the BDG physiology is investigated. For this purpose, a mathematical approach based on a lumped parameter model was developed to model the BDG circulation. Catheterization data from 39 BDG patients at stabilized oxygen conditions was used to determine baseline flows and pressures for the model. The effect of high altitude exposure was modeled by increasing the pulmonary vascular resistance (PVR) and heart rate (HR) in increments up to 80% and 40%, respectively. The resulting differences in vascular flows, pressures and ventricular function parameters were analyzed. By simultaneously increasing PVR and HR, significant changes (p <0.05) were observed in cardiac index (11% increase at an 80% PVR and 40% HR increase) and pulmonary flow (26% decrease at an 80% PVR and 40% HR increase). Significant increase in mean systemic pressure (9%) was observed at 80% PVR (40% HR) increase. The results show that the poor ventricular function fails to overcome the increased preload and implied low oxygenation in BDG patients at higher altitudes, especially for those with high baseline PVRs. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different PVR increments.
Collapse
Affiliation(s)
| | - Reza H Khiabani
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 30332, USA
| | - Néstor Sandoval
- Department of Cardiovascular Surgery, Fundación Cardioinfantil, Bogotá, Colombia
| | - Mark Fogel
- Division of Cardiology, Children׳s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Juan Carlos Briceño
- Group of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia; Research Department, Fundación Cardioinfantil, Bogotá, Colombia
| | - Ajit P Yoganathan
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 30332, USA.
| |
Collapse
|
27
|
Baker CE, Corsini C, Cosentino D, Dubini G, Pennati G, Migliavacca F, Hsia TY. Effects of pulmonary artery banding and retrograde aortic arch obstruction on the hybrid palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2013; 146:1341-8. [DOI: 10.1016/j.jtcvs.2013.01.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/28/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
28
|
Transient hemodynamic changes upon changing a BCPA into a TCPC in staged Fontan operation: a computational model study. ScientificWorldJournal 2013; 2013:486815. [PMID: 24319371 PMCID: PMC3844169 DOI: 10.1155/2013/486815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022] Open
Abstract
The clinical benefits of the Fontan operation in treating single-ventricle defects have been well documented. However, perioperative mortality or morbidity remains a critical problem. The purpose of the present study was to identify the cardiovascular factors that dominate the transient hemodynamic changes upon the change of a bidirectional cavopulmonary (Glenn) anastomosis (BCPA) into a total cavopulmonary connection (TCPC). For this purpose, two computational models were constructed to represent, respectively, a single-ventricle circulation with a BCPA and that with a TCPC. A series of model-based simulations were carried out to quantify the perioperative hemodynamic changes under various cardiovascular conditions. Obtained results indicated that the presence of a low pulmonary vascular resistance and/or a low lower-body vascular resistance is beneficial to the increase in transpulmonary flow upon the BCPA to TCPC change. Moreover, it was found that ventricular diastolic dysfunction and mitral valve regurgitation, despite being well-known risk factors for poor postoperative outcomes, do not cause a considerable perioperative reduction in transpulmonary flow. The findings may help physicians to assess the perioperative risk of the TCPC surgery based on preoperative measurement of cardiovascular function.
Collapse
|
29
|
Kanakis M, Lioulias A, Samanidis G, Loukas C, Mitropoulos F. Evolution in Experimental Fontan Circulation: A Review. Ann Thorac Cardiovasc Surg 2013; 19:177-85. [PMID: 23698375 DOI: 10.5761/atcs.ra.13-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meletios Kanakis
- Department of Pediatric and Congenital Heart Surgery, Onassis Cardiac Surgery Center, Athens, Greece
| | | | | | | | | |
Collapse
|
30
|
Baretta A, Corsini C, Yang W, Vignon-Clementel IE, Marsden AL, Feinstein JA, Hsia TY, Dubini G, Migliavacca F, Pennati G. Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:4316-4330. [PMID: 21969678 DOI: 10.1098/rsta.2011.0130] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objective of this work is to perform a virtual planning of surgical repairs in patients with congenital heart diseases--to test the predictive capability of a closed-loop multi-scale model. As a first step, we reproduced the pre-operative state of a specific patient with a univentricular circulation and a bidirectional cavopulmonary anastomosis (BCPA), starting from the patient's clinical data. Namely, by adopting a closed-loop multi-scale approach, the boundary conditions at the inlet and outlet sections of the three-dimensional model were automatically calculated by a lumped parameter network. Successively, we simulated three alternative surgical designs of the total cavopulmonary connection (TCPC). In particular, a T-junction of the venae cavae to the pulmonary arteries (T-TCPC), a design with an offset between the venae cavae (O-TCPC) and a Y-graft design (Y-TCPC) were compared. A multi-scale closed-loop model consisting of a lumped parameter network representing the whole circulation and a patient-specific three-dimensional finite volume model of the BCPA with detailed pulmonary anatomy was built. The three TCPC alternatives were investigated in terms of energetics and haemodynamics. Effects of exercise were also investigated. Results showed that the pre-operative caval flows should not be used as boundary conditions in post-operative simulations owing to changes in the flow waveforms post-operatively. The multi-scale approach is a possible solution to overcome this incongruence. Power losses of the Y-TCPC were lower than all other TCPC models both at rest and under exercise conditions and it distributed the inferior vena cava flow evenly to both lungs. Further work is needed to correlate results from these simulations with clinical outcomes.
Collapse
MESH Headings
- Anastomosis, Surgical
- Blood Flow Velocity
- Cardiology/methods
- Child, Preschool
- Computer Simulation
- Computers
- Heart Defects, Congenital/physiopathology
- Heart Defects, Congenital/surgery
- Humans
- Male
- Models, Anatomic
- Models, Cardiovascular
- Models, Theoretical
- Pulmonary Artery/abnormalities
- Pulmonary Artery/surgery
- Vena Cava, Inferior/abnormalities
- Vena Cava, Inferior/surgery
- Vena Cava, Superior/abnormalities
- Vena Cava, Superior/surgery
Collapse
Affiliation(s)
- A Baretta
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hsia TY, Cosentino D, Corsini C, Pennati G, Dubini G, Migliavacca F. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation 2011; 124:S204-10. [PMID: 21911814 DOI: 10.1161/circulationaha.110.010769] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Combining bilateral pulmonary artery banding with arterial duct stenting, the hybrid approach achieves stage 1 palliation for hypoplastic left heart syndrome with different flow characteristics than those after the surgical Norwood procedures. Accordingly, we used computational modeling to assess some of these differences, including influence on systemic and cerebral oxygen deliveries. METHODS AND RESULTS A 3-dimensional computational model of hybrid palliation was developed by the finite volume method, along with models of the Norwood operation with a modified Blalock-Tausig or right ventricle-to-pulmonary artery shunt. Hybrid circulation was modeled with a 7-mm ductal stent and bilateral pulmonary artery banding to a 2-mm diameter. A 3.5-mm conduit was used in the Blalock-Tausig shunt model, whereas a 5-mm conduit was used in the right ventricle-to-pulmonary artery shunt model. Coupled to all the models was an identical hydraulic network that described the entire circulatory system based on pre-stage 2 hemodynamics. This clinically validated multiscale approach predicts flow dynamics, as well as global cardiac output, mixed venous oxygen saturation, and systemic and cerebral oxygen delivery. Compared with either of the Norwood models, the hybrid palliation had higher pulmonary-to-systemic flow ratio and lower cardiac output. Total systemic oxygen delivery was markedly reduced in the hybrid palliation (Blalock-Tausig shunt 591, right ventricle-to-pulmonary artery shunt 640, and hybrid 475 mL · min(-1) · m(-2)). Cerebral oxygen delivery was similarly lower in the hybrid palliation. CONCLUSIONS These computational results suggest that the hybrid approach may provide inferior systemic and cerebral oxygen deliveries compared with either of the 2 surgical Norwood procedures before stage 2 palliation.
Collapse
Affiliation(s)
- Tain-Yen Hsia
- Cardiac Unit, Great Ormond Street Hospital for Children and Institute of Cardiovascular Sciences, University College of London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
32
|
Throckmorton AL, Carr JP, Tahir SA, Tate R, Downs EA, Bhavsar SS, Wu Y, Grizzard JD, Moskowitz WB. Mechanical Cavopulmonary Assistance of a Patient-Specific Fontan Physiology: Numerical Simulations, Lumped Parameter Modeling, and Suction Experiments. Artif Organs 2011; 35:1036-47. [DOI: 10.1111/j.1525-1594.2011.01339.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Shi Y, Lawford P, Hose R. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 2011; 10:33. [PMID: 21521508 PMCID: PMC3103466 DOI: 10.1186/1475-925x-10-33] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 04/26/2011] [Indexed: 11/16/2022] Open
Abstract
Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models, and this application is also addressed. As an example of 0D cardiovascular modelling, a small selection of simple models have been represented in the CellML mark-up language and uploaded to the CellML model repository http://models.cellml.org/. They are freely available to the research and education communities. Conclusion Each published cardiovascular model has merit for particular applications. This review categorises 0D and 1D models, highlights their advantages and disadvantages, and thus provides guidance on the selection of models to assist various cardiovascular modelling studies. It also identifies directions for further development, as well as current challenges in the wider use of these models including service to represent boundary conditions for local 3D models and translation to clinical application.
Collapse
Affiliation(s)
- Yubing Shi
- Medical Physics Group, Department of Cardiovascular Science, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| | | | | |
Collapse
|
34
|
Pennati G, Corsini C, Cosentino D, Hsia TY, Luisi VS, Dubini G, Migliavacca F. Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning. Interface Focus 2011; 1:297-307. [PMID: 22670201 DOI: 10.1098/rsfs.2010.0021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/14/2011] [Indexed: 11/12/2022] Open
Abstract
Cavopulmonary connections are surgical procedures used to treat a variety of complex congenital cardiac defects. Virtual pre-operative planning based on in silico patient-specific modelling might become a powerful tool in the surgical decision-making process. For this purpose, three-dimensional models can be easily developed from medical imaging data to investigate individual haemodynamics. However, the definition of patient-specific boundary conditions is still a crucial issue. The present study describes an approach to evaluate the vascular impedance of the right and left lungs on the basis of pre-operative clinical data and numerical simulations. Computational fluid dynamics techniques are applied to a patient with a bidirectional cavopulmonary anastomosis, who later underwent a total cavopulmonary connection (TCPC). Multi-scale models describing the surgical region and the lungs are adopted, while the flow rates measured in the venae cavae are used at the model inlets. Pre-operative and post-operative conditions are investigated; namely, TCPC haemodynamics, which are predicted using patient-specific pre-operative boundary conditions, indicates that the pre-operative balanced lung resistances are not compatible with the TCPC measured flows, suggesting that the pulmonary vascular impedances changed individually after the surgery. These modifications might be the consequence of adaptation to the altered pulmonary blood flows.
Collapse
Affiliation(s)
- Giancarlo Pennati
- Laboratory of Biological Structure Mechanics, Structural Engineering Department , Politecnico di Milano , Piazza Leonardo da Vinci, 32, 20133 Milan , Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Vignon-Clementel IE, Marsden AL, Feinstein JA. A primer on computational simulation in congenital heart disease for the clinician. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2010.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Hsia TY, Migliavacca F, Pennati G, Balossino R, Dubini G, de Leval MR, Bradley SM, Bove EL. Management of a Stenotic Right Ventricle-Pulmonary Artery Shunt Early After the Norwood Procedure. Ann Thorac Surg 2009; 88:830-7; discussion 837-8. [DOI: 10.1016/j.athoracsur.2009.05.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/15/2022]
|
37
|
Kilner PJ, Balossino R, Dubini G, Babu-Narayan SV, Taylor AM, Pennati G, Migliavacca F. Pulmonary regurgitation: the effects of varying pulmonary artery compliance, and of increased resistance proximal or distal to the compliance. Int J Cardiol 2008; 133:157-66. [PMID: 18722025 DOI: 10.1016/j.ijcard.2008.06.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/11/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Pulmonary regurgitation is common after repair of tetralogy of Fallot, predisposing to right ventricular dilatation and potentially fatal arrhythmias. Magnetic resonance studies of such patients led us to hypothesize that the amount of regurgitation, in the absence of an effective valve, depends on pulmonary arterial compliance and on the location of resistance relative to the compliance. METHODS AND RESULTS Using a pre-existing mathematical model representing the cardiovascular system, removal of the virtual pulmonary valve gave a triphasic pulmonary artery flow curve similar in shape to those recorded in patients with free regurgitation, with a regurgitant fraction of 30%. There was no reversal of flow at pulmonary capillary level, the regurgitant volume originating entirely from the compliance of the virtual pulmonary arteries and arterioles. Doubling their compliance increased regurgitation to 35%, whereas halving it decreased regurgitation to 23%. Doubling the total pulmonary vascular resistance by increasing arteriolar resistance increased regurgitation to 46%, whereas doubling it by simulating pulmonary annular stenosis proximal to the compliance limited regurgitation to 10%, but at the cost of a 32 mmHg peak systolic pressure drop. CONCLUSIONS The model supported our hypotheses, indicating the relevance to pulmonary regurgitation of previously overlooked variables. The virtual pulmonary regurgitation was exacerbated by pulmonary artery compliance and by elevated resistance distal to it, but was limited by more proximal resistance. These relationships merit careful clinical investigation as they would have implications for the initial management, subsequent investigation and decisions on re-intervention in patients with pulmonary regurgitation.
Collapse
Affiliation(s)
- Philip J Kilner
- CMR Unit, Royal Brompton Hospital and Imperial College, London, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Bove EL, Migliavacca F, de Leval MR, Balossino R, Pennati G, Lloyd TR, Khambadkone S, Hsia TY, Dubini G. Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock–Taussig and right ventricle–pulmonary artery shunts for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 2008; 136:312-320.e2. [PMID: 18692636 DOI: 10.1016/j.jtcvs.2007.04.078] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/23/2007] [Accepted: 04/09/2007] [Indexed: 11/26/2022]
|
39
|
Kitajima HD, Sundareswaran KS, Teisseyre TZ, Astary GW, Parks WJ, Skrinjar O, Oshinski JN, Yoganathan AP. Comparison of Particle Image Velocimetry and Phase Contrast MRI in a Patient-Specific Extracardiac Total Cavopulmonary Connection. J Biomech Eng 2008; 130:041004. [DOI: 10.1115/1.2900725] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Particle image velocimetry (PIV) and phase contrast magnetic resonance imaging (PC-MRI) have not been compared in complex biofluid environments. Such analysis is particularly useful to investigate flow structures in the correction of single ventricle congenital heart defects, where fluid dynamic efficiency is essential. A stereolithographic replica of an extracardiac total cavopulmonary connection (TCPC) is studied using PIV and PC-MRI in a steady flow loop. Volumetric two-component PIV is compared to volumetric three-component PC-MRI at various flow conditions. Similar flow structures are observed in both PIV and PC-MRI, where smooth flow dominates the extracardiac TCPC, and superior vena cava flow is preferential to the right pulmonary artery, while inferior vena cava flow is preferential to the left pulmonary artery. Where three-component velocity is available in PC-MRI studies, some helical flow in the extracardiac TCPC is observed. Vessel cross sections provide an effective means of validation for both experiments, and velocity magnitudes are of the same order. The results highlight similarities to validate flow in a complex patient-specific extracardiac TCPC. Additional information obtained by velocity in three components further describes the complexity of the flow in anatomic structures.
Collapse
Affiliation(s)
- Hiroumi D. Kitajima
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, U. A. Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332-0535
| | - Kartik S. Sundareswaran
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, U. A. Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332-0535
| | - Thomas Z. Teisseyre
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, U. A. Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332-0535
| | - Garrett W. Astary
- Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, U. A. Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332-0535
| | - W. James Parks
- Children’s Healthcare of Atlanta, Emory University School of Medicine, 1440 Clifton Road North East, Atlanta, GA 30322
| | - Oskar Skrinjar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0535
| | - John N. Oshinski
- Emory University School of Medicine, 1440 Clifton Road North East, Atlanta, GA 30322
| | - Ajit P. Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, U. A. Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332-0535; Emory University School of Medicine, 1440 Clifton Road North East, Atlanta, GA 30322
| |
Collapse
|
40
|
Modeling the Fontan circulation: where we are and where we need to go. Pediatr Cardiol 2008; 29:3-12. [PMID: 17917765 DOI: 10.1007/s00246-007-9104-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/30/2007] [Accepted: 07/03/2007] [Indexed: 10/22/2022]
Abstract
The Fontan procedure and its subsequent modifications over the past 30 years can be described as a class of surgical procedures for patients born with complex congenital heart disease exhibiting a single-ventricle physiology. The long-term outcome for children currently undergoing a Fontan procedure remains worrisome because of multiple late morbidities observed. Despite significant modeling efforts spanning three decades, improvements to the Fontan procedure have occurred without comprehensive validation from these modeling studies. Careful examination shows that modeling studies to date offer only a "glimpse through a keyhole" into understanding and modeling a representative range of the variations in anatomy and physiology that exist in Fontan patients. Suggestions for future investigations are provided.
Collapse
|
41
|
Hunter KS, Lanning CJ, Chen SYJ, Zhang Y, Garg R, Ivy DD, Shandas R. Simulations of congenital septal defect closure and reactivity testing in patient-specific models of the pediatric pulmonary vasculature: A 3D numerical study with fluid-structure interaction. J Biomech Eng 2006; 128:564-72. [PMID: 16813447 PMCID: PMC4050970 DOI: 10.1115/1.2206202] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical imaging methods are highly effective in the diagnosis of vascular pathologies, but they do not currently provide enough detail to shed light on the cause or progression of such diseases, and would be hard pressed to foresee the outcome of surgical interventions. Greater detail of and prediction capabilities for vascular hemodynamics and arterial mechanics are obtained here through the coupling of clinical imaging methods with computational techniques. Three-dimensional, patient-specific geometric reconstructions of the pediatric proximal pulmonary vasculature were obtained from x-ray angiogram images and meshed for use with commercial computational software. Two such models from hypertensive patients, one with multiple septal defects, the other who underwent vascular reactivity testing, were each completed with two sets of suitable fluid and structural initial and boundary conditions and used to obtain detailed transient simulations of artery wall motion and hemodynamics in both clinically measured and predicted configurations. The simulation of septal defect closure, in which input flow and proximal vascular stiffness were decreased, exhibited substantial decreases in proximal velocity, wall shear stress (WSS), and pressure in the post-op state. The simulation of vascular reactivity, in which distal vascular resistance and proximal vascular stiffness were decreased, displayed negligible changes in velocity and WSS but a significant drop in proximal pressure in the reactive state. This new patient-specific technique provides much greater detail regarding the function of the pulmonary circuit than can be obtained with current medical imaging methods alone, and holds promise for enabling surgical planning.
Collapse
Affiliation(s)
- Kendall S Hunter
- Department of Pediatric Cardiology, University of Colorado Health Sciences Center, 1056 E. 19th Ave., Denver, CO 80218, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Effects of atrial contraction, atrioventricular interaction and heart valve dynamics on human cardiovascular system response. Med Eng Phys 2005; 28:762-79. [PMID: 16376600 DOI: 10.1016/j.medengphy.2005.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 09/29/2005] [Accepted: 11/15/2005] [Indexed: 11/23/2022]
Abstract
Various simulation models of different complexity have been proposed to model the dynamic response of the human cardiovascular system. In a related paper we proposed an improved numerical model to study the dynamic response of the cardiovascular system, and the pressures, volumes and flow-rates in the four chambers of the heart, which included the effects of atrial contraction, atrioventricular interaction, and heart valve dynamics. This paper investigates the effects of each one of these aspects of the model on the overall dynamic system response. The dynamic response is studied under different situations, with and without including the effect of various features of the model, and these situations are studied and compared among themselves and to detailed aspects of expected healthy-system response. As an important contribution with potential clinical applications, this paper examines the corresponding effects of atrioventricular interaction, and heart valve opening and closing dynamics to the general system dynamic response. This isolation of physical cause-effect relationships is difficult to study with purely experimental methods. The simulation results agree well with results in the open literature. Comparison shows that introduction of these new features greatly improves the simulation accuracy of the effects of a, v and c waves, and in predicting regurgitant valve flow, the dichrotic notch, and E/A velocity ratio.
Collapse
|
43
|
Korakianitis T, Shi Y. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med Eng Phys 2005; 28:613-28. [PMID: 16293439 DOI: 10.1016/j.medengphy.2005.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 09/29/2005] [Accepted: 10/06/2005] [Indexed: 11/15/2022]
Abstract
Numerical modeling of the human cardiovascular system has always been an active research direction since the 19th century. In the past, various simulation models of different complexities were proposed for different research purposes. In this paper, an improved numerical model to study the dynamic function of the human circulation system is proposed. In the development of the mathematical model, the heart chambers are described with a variable elastance model. The systemic and pulmonary loops are described based on the resistance-compliance-inertia concept by considering local effects of flow friction, elasticity of blood vessels and inertia of blood in different segments of the blood vessels. As an advancement from previous models, heart valve dynamics and atrioventricular interaction, including atrial contraction and motion of the annulus fibrosus, are specifically modeled. With these improvements the developed model can predict several important features that were missing in previous numerical models, including regurgitant flow on heart valve closure, the value of E/A velocity ratio in mitral flow, the motion of the annulus fibrosus (called the KG diaphragm pumping action), etc. These features have important clinical meaning and their changes are often related to cardiovascular diseases. Successful simulation of these features enhances the accuracy of simulations of cardiovascular dynamics, and helps in clinical studies of cardiac function.
Collapse
|
44
|
Laganà K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G. Multiscale modeling of the cardiovascular system: application to the study of pulmonary and coronary perfusions in the univentricular circulation. J Biomech 2005; 38:1129-41. [PMID: 15797594 DOI: 10.1016/j.jbiomech.2004.05.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2004] [Indexed: 11/18/2022]
Abstract
The objective of this study is to compare the coronary and pulmonary blood flow dynamics resulting from two configurations of systemic-to-pulmonary artery shunts currently utilized during the Norwood procedure: the central (CS) and modified Blalock Taussig (MBTS) shunts. A lumped parameter model of the neonatal cardiovascular circulation and detailed 3-D models of the shunt based on the finite volume method were constructed. Shunt sizes of 3, 3.5 and 4 mm were considered. A multiscale approach was adopted to prescribe appropriate and realistic boundary conditions for the 3-D models of the Norwood circulation. Results showed that the average shunt flow rate is higher for the CS option than for the MBTS and that pulmonary flow increases with shunt size for both options. Cardiac output is higher for the CS option for all shunt sizes. Flow distribution between the left and the right pulmonary arteries is not completely balanced, although for the CS option the discrepancy is low (50-51% of the pulmonary flow to the right lung) while for the MBTS it is more pronounced with larger shunt sizes (51-54% to the left lung). The CS option favors perfusion to the right lung while the MBTS favors the left. In the CS option, a smaller percentage of aortic flow is distributed to the coronary circulation, while that percentage rises for the MBTS. These findings may have important implications for coronary blood flow and ventricular function.
Collapse
Affiliation(s)
- Katia Laganà
- Laboratory of Biological Structure Mechanics, Bioengineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Arts T, Delhaas T, Bovendeerd P, Verbeek X, Prinzen FW. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am J Physiol Heart Circ Physiol 2005; 288:H1943-54. [PMID: 15550528 DOI: 10.1152/ajpheart.00444.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With circulatory pathology, patient-specific simulation of hemodynamics is required to minimize invasiveness for diagnosis, treatment planning, and followup. We investigated the advantages of a smart combination of often already known hemodynamic principles. The CircAdapt model was designed to simulate beat-to-beat dynamics of the four-chamber heart with systemic and pulmonary circulation while incorporating a realistic relation between pressure-volume load and tissue mechanics and adaptation of tissues to mechanical load. Adaptation was modeled by rules, where a locally sensed signal results in a local action of the tissue. The applied rules were as follows: For blood vessel walls, 1) flow shear stress dilates the wall and 2) tensile stress thickens the wall; for myocardial tissue, 3) strain dilates the wall material, 4) larger maximum sarcomere length increases contractility, and 5) contractility increases wall mass. The circulation was composed of active and passive compliances and inertias. A realistic circulation developed by self-structuring through adaptation provided mean levels of systemic pressure and flow. Ability to simulate a wide variety of patient-specific circumstances was demonstrated by application of the same adaptation rules to the conditions of fetal circulation followed by a switch to the newborn circulation around birth. It was concluded that a few adaptation rules, directed to normalize mechanical load of the tissue, were sufficient to develop and maintain a realistic circulation automatically. Adaptation rules appear to be the key to reduce dramatically the number of input parameters for simulating circulation dynamics. The model may be used to simulate circulation pathology and to predict effects of treatment.
Collapse
Affiliation(s)
- Theo Arts
- Dept. of Biophysics, Faculty of Medicine, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Magosso E, Cavalcanti S, Ursino M. Theoretical analysis of rest and exercise hemodynamics in patients with total cavopulmonary connection. Am J Physiol Heart Circ Physiol 2002; 282:H1018-34. [PMID: 11834500 DOI: 10.1152/ajpheart.00231.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the impact of a total cavopulmonary connection on the main hemodynamic quantities, both at rest and during exercise, when compared with normal biventricular circulation. The analysis was performed by means of a mathematical model of the cardiovascular system. The model incorporates the main parameters of systemic and pulmonary circulation, the pulsating heart, and the action of arterial and cardiopulmonary baroreflex mechanisms. Furthermore, the effect of changes in intrathoracic pressure on venous return is also incorporated. Finally, the response to moderate dynamic exercise is simulated, including the effect of a central command, local metabolic vasodilation, and the "muscle pump" mechanism. Simulations of resting conditions indicate that the action of baroreflex regulatory mechanisms alone can only partially compensate for the absence of the right heart. Cardiac output and mean systemic arterial pressure at rest show a large decrease compared with the normal subject. More acceptable hemodynamic quantity values are obtained by combining the action of regulatory mechanisms with a chronic change in parameters affecting mean filling pressure. With such changes assumed, simulations of the response to moderate exercise show that univentricular circulation exhibits a poor capacity to increase cardiac output and to sustain aerobic metabolism, especially when the oxygen consumption rate is increased above 1.2-1.3 l/min. The model ascribes the poor response to exercise in these patients to the incapacity to sustain venous return caused by the high resistance to venous return and/or to exhaustion of volume compensation reserve.
Collapse
Affiliation(s)
- Elisa Magosso
- Department of Electronics, Computer Science and Systems, University of Bologna, 40136 Bologna, Italy.
| | | | | |
Collapse
|
47
|
Migliavacca F, Pennati G, Dubini G, Fumero R, Pietrabissa R, Urcelay G, Bove EL, Hsia TY, de Leval MR. Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol 2001; 280:H2076-86. [PMID: 11299209 DOI: 10.1152/ajpheart.2001.280.5.h2076] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoplastic left heart syndrome is the most common lethal cardiac malformation of the newborn. Its treatment, apart from heart transplantation, is the Norwood operation. The initial procedure for this staged repair consists of reconstructing a circulation where a single outlet from the heart provides systemic perfusion and an interpositioning shunt contributes blood flow to the lungs. To better understand this unique physiology, a computational model of the Norwood circulation was constructed on the basis of compartmental analysis. Influences of shunt diameter, systemic and pulmonary vascular resistance, and heart rate on the cardiovascular dynamics and oxygenation were studied. Simulations showed that 1) larger shunts diverted an increased proportion of cardiac output to the lungs, away from systemic perfusion, resulting in poorer O2 delivery, 2) systemic vascular resistance exerted more effect on hemodynamics than pulmonary vascular resistance, 3) systemic arterial oxygenation was minimally influenced by heart rate changes, 4) there was a better correlation between venous O2 saturation and O2 delivery than between arterial O2 saturation and O2 delivery, and 5) a pulmonary-to-systemic blood flow ratio of 1 resulted in optimal O2 delivery in all physiological states and shunt sizes.
Collapse
Affiliation(s)
- F Migliavacca
- Cardiothoracic Unit, Great Ormond Street Hospital for Children, WC1N 3JH London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cavalcanti S, Gnudi G, Masetti P, Ussia GP, Marcelletti CF. Analysis by mathematical model of haemodynamic data in the failing Fontan circulation. Physiol Meas 2001; 22:209-22. [PMID: 11236882 DOI: 10.1088/0967-3334/22/1/324] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several late complications jeopardize the clinical performance of recipients of the Fontan operation. The underlying causes have been referred to disturbed flow dynamics in the cavopulmonary connections. Presumably, the large pressure drops occurring in the inferior and superior connections play a pivotal role in the pressure level of the entire circulation, especially in the venous. To address this issue, we retrospectively reviewed catheterization data of six patients with failing Fontan circulation and compared them with those of six patients with functioning Fontan circulation. The impact on the systemic and pulmonary pressure of the increase in the cavopulmonary connection resistances was studied through a steady-state mathematical model of the univentricular closed-loop circulation. In the patients with failing Fontan, pressure in the venae cavae was found to be significantly higher, especially at the inferior cava (19.3 +/- 2.2 versus 12.5 +/- 2.3 mmHg) with the pressure drop at the inferior cavopulmonary connection significantly increased (4.7 +/- 3.1 versus 0.33 +/- 0.82 mmHg). The proposed mathematical model permits us to clearly relate the pressure increase in the venae cavae to an increased resistance in the cavopulmonary connections. Therefore, the present analysis confirms that, to avoid possible congestion of venous circulation, the definitive palliation of univentricular heart should not cause pressure drops at the cavopulmonary connections.
Collapse
Affiliation(s)
- S Cavalcanti
- Department of Electronics Informatics and Systems, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
49
|
Pennati G, Migliavacca F, Dubini G, Pietrabissa R, Fumero R, de Leval MR. Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow. J Surg Res 2000; 89:43-52. [PMID: 10720452 DOI: 10.1006/jsre.1999.5799] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The bidirectional cavopulmonary anastomosis with additional pulmonary blood flow is used as a staged procedure or a definitive palliation of univentricular hearts. In this paper the flow competition occurring between the caval and the pulmonary flows is investigated. The hemodynamics in the superior vena cava and the blood flow distribution into the lungs, as well as the systemic arterial oxygen availability, are correlated with the severity of the right ventricle outflow tract obstruction and the pulmonary arteriolar resistance. MATERIALS AND METHODS Computer models of the pre- and postoperative hemodynamics of univentricular hearts were developed. The effects of increasing severity of the right ventricle outflow tract obstruction, with a pulmonary arteriolar resistance ranging from 0.8 to 7.9 nonindexed Woods units, were simulated. RESULTS The study indicates that the presence of an additional pulmonary blood flow from the native pulmonary artery may be beneficial. Since an excessive additional blood flow may cause central venous hypertension, its optimal value should be chosen according to the value of pulmonary arteriolar resistance. The model was utilized to simulate four clinical cases. CONCLUSIONS The simulations show that the model can predict the postoperative hemodynamics and could therefore be usefully applied to predict quantitatively the effect of the native pulmonary blood flow following bidirectional cavopulmonary anastomosis.
Collapse
Affiliation(s)
- G Pennati
- Dipartimento di Bioingegneria, Politecnico di Milano, Milan, 20133, Italy
| | | | | | | | | | | |
Collapse
|