1
|
Rossi M, Hamed M, Rodríguez-Antigüedad J, Cornejo-Olivas M, Breza M, Lohmann K, Klein C, Rajalingam R, Marras C, van de Warrenburg BP. Genotype-Phenotype Correlations for ATX-TBP (SCA17): MDSGene Systematic Review. Mov Disord 2023; 38:368-377. [PMID: 36374860 DOI: 10.1002/mds.29278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 17 or ATX-TBP is a CAG/CAA repeat expansion disorder characterized by marked clinical heterogeneity. Reports of affected carriers with subthreshold repeat expansions and of patients with Parkinson's disease (PD) with expanded repeats have cast doubt on the established cutoff values of the expansions and the phenotypic spectrum of this disorder. The objective of this systematic review was to explore the genotype-phenotype relationships for repeat expansions in TBP to delineate the ATX-TBP phenotype and reevaluate the pathological range of repeat expansions. The International Parkinson and Movement Disorder Society Genetic Mutation Database (MDSGene) standardized data extraction protocol was followed. Clinically affected carriers of reported ATX-TBP expansions were included. Publications that contained repeat sizes in screened cohorts of patients with PD and/or healthy individuals were included for a separate evaluation of cutoff values. Phenotypic and genotypic data for 346 ATX-TBP patients were curated. Overall, 97.7% of the patients had ≥41 repeats, while 99.6% of patients with PD and 99.9% of healthy individuals had ≤42 repeats, with a gray zone of reduced penetrance between 41 and 45 repeats. Pure parkinsonism was more common in ATX-TBP patients with 41 to 45 repeats than in the group with ≥46 repeats, which conversely more often presented with a complex phenotype with mixed movement disorders. An updated genotype-phenotype assessment for ATX-TBP is provided, and new repeat expansion cutoff values of reduced penetrance (41-45 expanded repeats) and full penetrance (46-66 expanded repeats) are proposed. These adjusted cutoff values will have diagnostic and counseling implications and may guide future clinical trial protocol. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Sección de Movimientos Anormales, Departamento de Neurología, Fleni, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Moath Hamed
- New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Jon Rodríguez-Antigüedad
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Institut d'Investigacions Biomediques-Sant Pau, Barcelona, Spain
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Carrera de Medicina, Universidad Científica del Sur, Lima, Peru
| | - Marianthi Breza
- 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Parkinsonism in spinocerebellar ataxia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:125273. [PMID: 25866756 PMCID: PMC4383270 DOI: 10.1155/2015/125273] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022]
Abstract
Spinocerebellar ataxia (SCA) presents heterogeneous clinical phenotypes, and parkinsonism is reported in diverse SCA subtypes. Both levodopa responsive Parkinson disease (PD) like phenotype and atypical parkinsonism have been described especially in SCA2, SCA3, and SCA17 with geographic differences in prevalence. SCA2 is the most frequently reported subtype of SCA related to parkinsonism worldwide. Parkinsonism in SCA2 has unique genetic characteristics, such as low number of expansions and interrupted structures, which may explain the sporadic cases with low penetrance. Parkinsonism in SCA17 is more remarkable in Asian populations especially in Korea. In addition, an unclear cutoff of the pathologic range is the key issue in SCA17 related parkinsonism. SCA3 is more common in western cohorts. SCA6 and SCA8 have also been reported with a PD-like phenotype. Herein, we reviewed the epidemiologic, clinical, genetic, and pathologic features of parkinsonism in SCAs.
Collapse
|
3
|
Brockmann K, Reimold M, Globas C, Hauser TK, Walter U, Machulla HJ, Rolfs A, Schöls L. PET and MRI Reveal Early Evidence of Neurodegeneration in Spinocerebellar Ataxia Type 17. J Nucl Med 2012; 53:1074-80. [DOI: 10.2967/jnumed.111.101543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, Fox PT, Eickhoff SB. Investigating function and connectivity of morphometric findings--exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage 2012; 62:1354-66. [PMID: 22659444 DOI: 10.1016/j.neuroimage.2012.05.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/07/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022] Open
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disorder characterized by progressive cerebellar ataxia but also a broad spectrum of other neuropsychiatric signs. As anatomical and structural studies have shown severe cerebellar atrophy in SCA17 and a differentiation of the human cerebellum into an anterior sensorimotor and posterior cognitive/emotional partition has been implicated, we aimed at investigating functional connectivity patterns of two cerebellar clusters of atrophy revealed by a morphometric analysis in SCA17 patients. In particular, voxel-based morphometry (VBM) revealed a large cluster of atrophy in SCA17 in the bilateral anterior cerebellum (lobule V) and another one in the left posterior cerebellum (lobules IX, VIIb, VIIIA, VIIIB). These two cerebellar clusters were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modeling (MACM) and task-free resting state connectivity analysis. Results demonstrated first consistent functional connectivity throughout the cerebellum itself; the anterior cerebellar seed showed stronger connectivity to lobules V, VI and to some extent I-IV, and the posterior cerebellar seed to the posterior lobules VI-IX. Importantly, the cerebellar anterior seed also showed consistently stronger functional connectivity than the posterior one with pre- and motor areas as well as the primary somatosensory cortex. In turn, task-based task-independent functional connectivity analyses revealed that the cerebellar posterior seed was linked with fronto-temporo-parietal areas as well as partly the insula and the thalamus, i.e., brain regions implicated in cognitive and affective processes. Functional characterization of experiments activating either cerebellar seed further corroborated this notion, revealing mainly motor-related functions for the anterior cluster and predominantly cognitive functions were associated for the posterior one. The differential functional connectivity of the cerebellar anterior and posterior cluster highlights the manifold connections and dichotomy of the human cerebellum, providing additional valuable information about probably disrupted cerebellar-cerebral connections and reflecting the brunt of motor but also the broad spectrum of neuropsychiatric deficits in SCA17.
Collapse
Affiliation(s)
- Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
van Gaalen J, Giunti P, van de Warrenburg BP. Movement disorders in spinocerebellar ataxias. Mov Disord 2011; 26:792-800. [PMID: 21370272 DOI: 10.1002/mds.23584] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/12/2010] [Accepted: 11/14/2010] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant spinocerebellar ataxias (SCAs) can present with a large variety of noncerebellar symptoms, including movement disorders. In fact, movement disorders are frequent in many of the various SCA subtypes, and they can be the presenting, dominant, or even isolated disease feature. When combined with cerebellar ataxia, the occurrence of a specific movement disorder can provide a clue toward the underlying genotype. There are reasons to believe that for some coexisting movement disorders, the cerebellar pathology itself is the culprit, for example, in the case of cortical myoclonus and perhaps dystonia. However, movement disorders in SCAs are more likely related to extracerebellar pathology, and imaging and neuropathological data indeed show involvement of other parts of the motor system (substantia nigra, striatum, pallidum, motor cortex) in some SCA subtypes. When confronted with a patient with an isolated movement disorder, that is, without ataxia, there is currently no reason to routinely screen for SCA gene mutations, the only exceptions being SCA2 in autosomal dominant parkinsonism (particularly in Asian patients) and SCA17 in the case of a Huntington's disease-like presentation without an HTT mutation.
Collapse
Affiliation(s)
- Judith van Gaalen
- Department of Neurology, Donders Institute of Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
6
|
Reetz K, Lencer R, Hagenah JM, Gaser C, Tadic V, Walter U, Wolters A, Steinlechner S, Zühlke C, Brockmann K, Klein C, Rolfs A, Binkofski F. Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. THE CEREBELLUM 2010; 9:210-7. [PMID: 20016963 DOI: 10.1007/s12311-009-0150-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinocerebellar ataxia (SCA17) is a rare genetic disorder characterized by a variety of neuropsychiatric symptoms. Recently, using magnetic resonance imaging (MRI) voxel-based morphometry (VBM), several specific functional-structural correlations comprising differential degeneration related to motor and psychiatric symptoms were reported in patients with SCA17. To investigate gray matter volume (GMV) changes over time and its association to clinical neuropsychiatric symptomatology, nine SCA17 mutation carriers and nine matched healthy individuals underwent a detailed neuropsychiatric clinical examination and a high-resolution T1-weighted volume MRI scan, both at baseline and follow-up after 18 months. Follow-up images revealed a progressive GMV reduction in specific degeneration patterns. In contrast to healthy controls, SCA17 patients showed a greater atrophy not only in cerebellar regions but also in cortical structures such as the limbic system (parahippocampus, cingulate) and parietal precuneus. Clinically, progression of motor symptoms was more pronounced than that of psychiatric symptoms. Correlation with the clinical motor scores revealed a progressive reduction of GMV in cerebellar and cerebral motor networks, whereas correlation with psychiatric scores displayed a more widespread GMV impairment in frontal, limbic, parietal, and also cerebellar structures. Interestingly, changes in global functioning were correlated with bilateral atrophy within the para-/hippocampus. While there was a good temporal association between worsening of motor symptoms and progression in cerebral and cortical neurodegeneration, the progression in psychiatric related neurodegeneration seemed to be more widespread and complex, showing progressive atrophy that preceded the further development of clinical psychiatric symptoms.
Collapse
Affiliation(s)
- Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4). THE CEREBELLUM 2009; 7:170-8. [PMID: 18418687 DOI: 10.1007/s12311-008-0016-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spinocerebellar ataxia 17 (SCA17) or Huntington's disease-like-4 is a neurodegenerative disease caused by the expansion above 44 units of a CAG/CAA repeat in the coding region of the TATA box binding protein (TBP) gene leading to an abnormal expansion of a polyglutamine stretch in the corresponding protein. Alleles with 43 and 44 repeats have been identified in sporadic cases and their pathogenicity remains uncertain. Furthermore, incomplete penetrance of pathological alleles with up to 49 repeats has been suggested. The imperfect nature of the repeat makes intergenerational instability extremely rare and de novo mutations are most likely the result of partial duplications. This is one of the rarer forms of autosomal dominant cerebellar ataxia but the associated phenotype is often severe, involving various systems (cerebral cortex, striatum, and cerebellum), with extremely variable age at onset (range: 3-75 years) and clinical presentation. This gene is thought to account for a small proportion of patients with a Huntington's disease-like phenotype and cerebellar signs. Parkinson's disease-like, Creutzfeldt-Jakob disease-like and Alzheimer disease-like phenotypes have also been described with small SCA17 expansions. The abnormal protein is expressed at the same level as its normal counterpart and forms neuronal intranuclear inclusions containing other proteins involved in protein folding or degradation. The increase in the size of the glutamine stretch enhances transcription in vitro, probably leading to transcription deregulation. Interestingly, the TBP protein mutated in SCA17 is recruited in the inclusions of other polyglutaminopathies, suggesting its involvement in the transcription down-regulation observed in these diseases.
Collapse
|
8
|
Grundmann K, Laubis-Herrmann U, Dressler D, Vollmer-Haase J, Bauer P, Stuhrmann M, Schulte T, Schöls L, Topka H, Riess O. Mutation at the SCA17 locus is not a common cause of primary dystonia. J Neurol 2005; 251:1232-4. [PMID: 15503103 DOI: 10.1007/s00415-004-0520-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/20/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is a dominant progressive neurodegenerative disorder, caused by a triplet repeat expansion within the TATA-binding protein. As well as ataxia and dementia, Parkinsonism and dystonia are common in SCA17. In some pedigrees focal dystonia in the absence of ataxia has been described as a main clinical feature. To evaluate the relevance of SCA17 mutations for primary dystonia, we examined the TBP repeat expansion in a series of 288 patients with different subtypes of primary torsion dystonia. We did not find any repeat sizes in the pathogenic range. We conclude that the SCA17 repeat expansion is not a common cause of familial and sporadic dystonia.
Collapse
Affiliation(s)
- Kathrin Grundmann
- Department of Medical Genetics, University Tübingen, Calwerstrasse 7, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
van Roon-Mom WMC, Reid SJ, Faull RLM, Snell RG. TATA-binding protein in neurodegenerative disease. Neuroscience 2005; 133:863-72. [PMID: 15916858 DOI: 10.1016/j.neuroscience.2005.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/17/2005] [Accepted: 03/19/2005] [Indexed: 11/29/2022]
Abstract
TATA binding protein (TBP) is a general transcription factor that plays an important role in initiation of transcription. In recent years evidence has emerged implicating TPB in the molecular mechanism of a number of neurodegenerative diseases. Wild type TBP in humans contains a long polyglutamine stretch ranging in size from 29 to 42. It has been found associated with aggregated proteins in several of the polyglutamine disorders. Expansion in the CAA/CAG composite repeat beyond 42 has been shown to cause a cerebellar ataxia, SCA17. The involvement of such an important housekeeping protein in the disease mechanism suggests a major impact on the functioning of cells. The question remains, does TBP contribute to these diseases through a loss of normal function, likely to be catastrophic to a cell, or the gain of an aberrant function? This review deals with the function of TBP in transcription and cell function. The distribution of the polyglutamine coding allele lengths in TBP of the normal population and in SCA17 is reviewed and an outline is given on the reported cases of SCA17. The role of TBP in other polyglutamine disorders will be addressed as well as its possible role in other neurodegenerative diseases.
Collapse
Affiliation(s)
- W M C van Roon-Mom
- Division of Anatomy with Radiology, Faculty of Medicine and Health Sciences, University of Auckland, 85 Park Road, 1003 Auckland, New Zealand
| | | | | | | |
Collapse
|
10
|
Günther P, Storch A, Schwarz J, Sabri O, Steinbach P, Wagner A, Hesse S. Basal ganglia involvement of a patient with SCA 17--a new form of autosomal dominant spinocerebellar ataxia. J Neurol 2004; 251:896-7. [PMID: 15258801 DOI: 10.1007/s00415-004-0462-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/27/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
|