1
|
Motavasseli D, Delorme C, Bayle N, Gracies JM, Roze E, Baude M. Use of Botulinum Toxin in Upper-Limb Tremor: Systematic Review and Perspectives. Toxins (Basel) 2024; 16:392. [PMID: 39330850 PMCID: PMC11436131 DOI: 10.3390/toxins16090392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Tremor is the most common movement disorder, with significant functional and psychosocial consequences. Oral medications have been disappointing or limited by side effects. Surgical techniques are effective but associated with risks and adverse events. Botulinum toxin (BT) represents a promising avenue but there is still no double-blind evidence of efficacy on upper limb function. A systematic review on the effects of BT in upper-limb tremor was conducted. METHODS A systematic search of the literature was conducted up to July 2023, including the keywords "botulinum toxin" and "tremor". All randomized controlled trials (RCTs) and open-label studies were analyzed. Independent reviewers assessed their methodological quality. RESULTS There were only eight published RCTs and seven published open-label studies, with relatively small sample sizes. This review suggests that BT is more effective when injections are patient-tailored, with analyses based on clinical judgement or kinematics. Subjective and objective measures frequently improve but transient weakness may occur after injections, especially if wrist or fingers extensors are targeted. A number of studies had methodological limitations. CONCLUSIONS The authors discuss how to optimize tremor assessments and effects of BT injection. Controlled evidence is still lacking but it is suggested that distal "asymmetric" BT injections (targeting flexors/pronators while sparing extensors/supinators) and proximal injections, involving shoulder rotators when indicated, may avoid excessive weakness while optimizing functional benefit.
Collapse
Affiliation(s)
- Damien Motavasseli
- Assistance Publique Hôpitaux de Paris, Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Cécile Delorme
- Assistance Publique Hôpitaux de Paris, Institut de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
| | - Nicolas Bayle
- Assistance Publique Hôpitaux de Paris, Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Jean-Michel Gracies
- Assistance Publique Hôpitaux de Paris, Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Emmanuel Roze
- Assistance Publique Hôpitaux de Paris, Institut de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
- Paris Brain Institute, INSERM, CNRS, Sorbonne University, F-75013 Paris, France
| | - Marjolaine Baude
- Assistance Publique Hôpitaux de Paris, Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri Mondor, F-94010 Créteil, France
- UR 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| |
Collapse
|
2
|
Gala AS, Wilkins KB, Petrucci MN, Kehnemouyi YM, Velisar A, Trager MH, Bronte-Stewart HM. The digital signature of emergent tremor in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:147. [PMID: 39112485 PMCID: PMC11306561 DOI: 10.1038/s41531-024-00754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Emergent tremor in Parkinson's disease (PD) can occur during sustained postures or movements that are different from action tremor. Tremor can contaminate the clinical rating of bradykinesia during finger tapping. Currently, there is no reliable way of isolating emergent tremor and measuring the cardinal motor symptoms based on voluntary movements only. In this study, we investigated whether emergent tremor during repetitive alternating finger tapping (RAFT) on a quantitative digitography (QDG) device could be reliably identified and distinguished from voluntary tapping. Ninety-six individuals with PD and forty-two healthy controls performed a thirty-second QDG-RAFT task and the Movement Disorders Society - Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III). Visual identification of tremor during QDG-RAFT was labeled by an experienced movement disorders specialist. Two methods of identifying tremor were investigated: 1) physiologically informed temporal thresholds 2) XGBoost model using temporal and amplitude features of tapping. The XGBoost model showed high accuracy for identifying tremor (area under the precision-recall curve of 0.981) and outperformed temporal-based thresholds. Percent time duration of classifier-identified tremor showed significant correlations with MDS-UPDRS III tremor subscores (r = 0.50, p < 0.0001). There was a significant change in QDG metrics for bradykinesia, rigidity, and arrhythmicity after tremor strikes were excluded (p < 0.01). The results demonstrate that emergent tremor during QDG-RAFT has a unique digital signature and the duration of tremor correlated with the MDS-UPDRS III tremor items. When involuntary tremor strikes were excluded, the QDG metrics of bradykinesia and rigidity were significantly worse, demonstrating the importance of distinguishing tremor from voluntary movement when rating bradykinesia.
Collapse
Affiliation(s)
- Aryaman S Gala
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin B Wilkins
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Anca Velisar
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | - Megan H Trager
- Columbia University College of Physicians and Surgeons, New York City, NY, USA
| | - Helen M Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, US.
| |
Collapse
|
3
|
Moon HC, Kim A, Park YS. Brain structure comparison among Parkinson disease, essential tremor, and healthy controls using 7T MRI. Medicine (Baltimore) 2024; 103:e38139. [PMID: 38728497 PMCID: PMC11081548 DOI: 10.1097/md.0000000000038139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Both Parkinson disease (PD) and Essential tremor (ET) are movement disorders causing tremors in elderly individuals. Although PD and ET are different disease, they often present with similar initial symptoms, making their differentiation challenging with magnetic resonance imaging (MRI) techniques. This study aimed to identify structural brain differences among PD, ET, and health controls (HCs) using 7-Tesla (T) MRI. We assessed the whole-brain parcellation in gray matter volume, thickness, subcortical volume, and small regions of basal ganglia in PD (n = 18), ET (n = 15), and HCs (n = 18), who were matched for age and sex. Brain structure analysis was performed automatic segmentation through Freesurfer software. Small regions of basal ganglia were manually segmented by ITK-SNAP. Additionally, we examined the associations between clinical indicators (symptom duration, unified Parkinson diseases rating scale (UPDRS), and clinical rating scale for tremor (CRST)) and brain structure. PD showed a significant reduction in gray matter volume in the postcentral region compared to ET. ET showed a significant reduction in cerebellum volume compared to HCs. There was a negative correlation between CRST scores (B and C) and gray matter thickness in right superior frontal in ET. This study demonstrated potential of 7T MRI in differentiating brain structure differences among PD, ET, and HCs. Specific findings, such as parietal lobe atrophy in PD compared to ET and cerebellum atrophy in ET compared to HCs, the importance of advanced imaging techniques in accurately diagnosing and distinguishing between movement disorders that present with similar initial symptoms.
Collapse
Affiliation(s)
- Hyeong Cheol Moon
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Aryun Kim
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Young Seok Park
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Neurosurgery, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Hussain MA, Qaisar R, Karim A, Ahmad F, Franzese F, Alsaad SM, Al-Masri AA, Alkahtani SA. Biomarkers of Physical and Mental Health for Prediction of Parkinson's Disease: A Population-Based Study from 15 European Countries. Arch Med Res 2024; 55:102988. [PMID: 38518526 DOI: 10.1016/j.arcmed.2024.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVES Early diagnosis of Parkinson's disease (PD) is critical for optimal treatment. However, the predictive potential of physical and mental health in PD is poorly characterized. METHODS We evaluated the potential of multiple demographic, physical, and mental factors in predicting the future onset of PD in older adults aged 50 years or older from 15 European countries. Individual study participants were followed over four waves of the Survey of Health, Ageing, and Retirement in Europe (SHARE) from 2013-2020. RESULTS Of 57,980 study participants, 442 developed PD during the study period. We identified male sex and advancing age from the sixth decade of life onward as significant predictors of future PD. Among physical factors, a low handgrip strength (HGS; men <27 kg, women <16 kg), being bothered by frailty, and recent falls were significantly associated with future PD. Among mental factors, a higher depression (Euro-D depression score >6) emerged as an independent predictor of future PD. Finally, the presence of hypertension or Alzheimer's disease (AD) increases the risk of future PD. CONCLUSIONS Altogether, male sex, advancing age, low HGS, frailty, depression, hypertension, and AD were identified as critical risk factors for future PD. Our results may be useful in the early identification and treatment of populations at risk for PD.
Collapse
Affiliation(s)
- M Azhar Hussain
- Department of Finance and Economics, College of Business Administration, University of Sharjah, Sharjah, United Arab Emirates; Department of Social Sciences and Business, Roskilde University, Roskilde, Denmark
| | - Rizwan Qaisar
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Asima Karim
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Firdos Ahmad
- Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Saad M Alsaad
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abeer A Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaea A Alkahtani
- Exercise Physiology Department, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Taha HB, Bogoniewski A. Analysis of biomarkers in speculative CNS-enriched extracellular vesicles for parkinsonian disorders: a comprehensive systematic review and diagnostic meta-analysis. J Neurol 2024; 271:1680-1706. [PMID: 38103086 PMCID: PMC10973014 DOI: 10.1007/s00415-023-12093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Parkinsonian disorders, including Parkinson's disease (PD), multiple system atrophy (MSA), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS), exhibit overlapping early-stage symptoms, complicating definitive diagnosis despite heterogeneous cellular and regional pathophysiology. Additionally, the progression and the eventual conversion of prodromal conditions such as REM behavior disorder (RBD) to PD, MSA, or DLB remain challenging to predict. Extracellular vesicles (EVs) are small, membrane-enclosed structures released by cells, playing a vital role in communicating cell-state-specific messages. Due to their ability to cross the blood-brain barrier into the peripheral circulation, measuring biomarkers in blood-isolated speculative CNS enriched EVs has become a popular diagnostic approach. However, replication and independent validation remain challenging in this field. Here, we aimed to evaluate the diagnostic accuracy of speculative CNS-enriched EVs for parkinsonian disorders. METHODS We conducted a PRISMA-guided systematic review and meta-analysis, covering 18 studies with a total of 1695 patients with PD, 253 with MSA, 21 with DLB, 172 with PSP, 152 with CBS, 189 with RBD, and 1288 HCs, employing either hierarchical bivariate models or univariate models based on study size. RESULTS Diagnostic accuracy was moderate for differentiating patients with PD from HCs, but revealed high heterogeneity and significant publication bias, suggesting an inflation of the perceived diagnostic effectiveness. The bias observed indicates that studies with non-significant or lower effect sizes were less likely to be published. Although results for differentiating patients with PD from those with MSA or PSP and CBS appeared promising, their validity is limited due to the small number of involved studies coming from the same research group. Despite initial reports, our analyses suggest that using speculative CNS-enriched EV biomarkers may not reliably differentiate patients with MSA from HCs or patients with RBD from HCs, due to their lesser accuracy and substantial variability among the studies, further complicated by substantial publication bias. CONCLUSION Our findings underscore the moderate, yet unreliable diagnostic accuracy of biomarkers in speculative CNS-enriched EVs in differentiating parkinsonian disorders, highlighting the presence of substantial heterogeneity and significant publication bias. These observations reinforce the need for larger, more standardized, and unbiased studies to validate the utility of these biomarkers but also call for the development of better biomarkers for parkinsonian disorders.
Collapse
Affiliation(s)
- Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Aleksander Bogoniewski
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Tripathi RK, Goyal L, Singh S. Potential Therapeutic Approach using Aromatic l-amino Acid Decarboxylase and Glial-derived Neurotrophic Factor Therapy Targeting Putamen in Parkinson's Disease. Curr Gene Ther 2024; 24:278-291. [PMID: 38310455 DOI: 10.2174/0115665232283842240102073002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by specific loss of dopaminergic neurons, resulting in impaired motor movement. Its prevalence is twice as compared to the previous 25 years and affects more than 10 million individuals. Lack of treatment still uses levodopa and other options as disease management measures. Treatment shifts to gene therapy (GT), which utilizes direct delivery of specific genes at the targeted area. Therefore, the use of aromatic L-amino acid decarboxylase (AADC) and glial-derived neurotrophic factor (GDNF) therapy achieves an effective control to treat PD. Patients diagnosed with PD may experience improved therapeutic outcomes by reducing the frequency of drug administration while utilizing provasin and AADC as dopaminergic protective therapy. Enhancing the enzymatic activity of tyrosine hydroxylase (TH), glucocorticoid hormone (GCH), and AADC in the striatum would be useful for external L-DOPA to restore the dopamine (DA) level. Increased expression of glutamic acid decarboxylase (GAD) in the subthalamic nucleus (STN) may also be beneficial in PD. Targeting GDNF therapy specifically to the putaminal region is clinically sound and beneficial in protecting the dopaminergic neurons. Furthermore, preclinical and clinical studies supported the role of GDNF in exhibiting its neuroprotective effect in neurological disorders. Another Ret receptor, which belongs to the tyrosine kinase family, is expressed in dopaminergic neurons and sounds to play a vital role in inhibiting the advancement of PD. GDNF binding on those receptors results in the formation of a receptor-ligand complex. On the other hand, venous delivery of recombinant GDNF by liposome-based and encapsulated cellular approaches enables the secure and effective distribution of neurotrophic factors into the putamen and parenchyma. The current review emphasized the rate of GT target GDNF and AADC therapy, along with the corresponding empirical evidence.
Collapse
Affiliation(s)
- Raman Kumar Tripathi
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
7
|
Bronte-Stewart H, Gala A, Wilkins K, Pettruci M, Kehnemouyi Y, Velisar A, Trager M. The digital signature of emergent tremor in Parkinson's disease. RESEARCH SQUARE 2023:rs.3.rs-3467667. [PMID: 37961117 PMCID: PMC10635351 DOI: 10.21203/rs.3.rs-3467667/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Emergent tremor in Parkinson's disease (PD) can occur during sustained postures or movement that is different from action tremor. Tremor can contaminate the clinical rating of bradykinesia during finger tapping. Currently, there is no reliable way of isolating emergent tremor and measuring the cardinal motor symptoms based on voluntary movements only. Objective Investigate whether emergent tremor during repetitive alternating finger tapping (RAFT) on a quantitative digitography (QDG) device can be reliably identified and distinguished from voluntary tapping. Methods Ninety-six individuals with PD and forty-two healthy controls performed a thirty-second QDG-RAFT task and the Movement Disorders Society - Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS III). Visual identification of tremor during QDG-RAFT was labelled by an experienced movement disorders specialist. Two methods of identifying tremor were investigated: 1) physiologically-informed temporal thresholds 2) XGBoost model using temporal and amplitude features of tapping. Results The XGBoost model showed high accuracy for identifying tremor (area under the precision-recall curve of 0.981) and outperformed temporal-based thresholds. Percent time duration of classifier-identified tremor showed significant correlations with MDS-UPDRS III tremor subscores (r = 0.50, P < 0.0001). There was a significant change in QDG metrics for bradykinesia, rigidity and arrhythmicity after tremor strikes were excluded (p < 0.01). Conclusions Emergent tremor during QDG-RAFT has a unique digital signature and the duration of tremor correlated with the MDS-UPDRS III tremor items. When involuntary tremor strikes were excluded, the QDG metrics of bradykinesia and rigidity were significantly worse, demonstrating the importance of distinguishing tremor from voluntary movement when rating bradykinesia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan Trager
- Columbia University College of Physicians and Surgeons
| |
Collapse
|
8
|
Eguchi K, Takigawa I, Shirai S, Takahashi-Iwata I, Matsushima M, Kano T, Yaguchi H, Yabe I. Gait video-based prediction of unified Parkinson's disease rating scale score: a retrospective study. BMC Neurol 2023; 23:358. [PMID: 37798685 PMCID: PMC10552271 DOI: 10.1186/s12883-023-03385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The diagnosis of Parkinson's disease (PD) and evaluation of its symptoms require in-person clinical examination. Remote evaluation of PD symptoms is desirable, especially during a pandemic such as the coronavirus disease 2019 pandemic. One potential method to remotely evaluate PD motor impairments is video-based analysis. In this study, we aimed to assess the feasibility of predicting the Unified Parkinson's Disease Rating Scale (UPDRS) score from gait videos using a convolutional neural network (CNN) model. METHODS We retrospectively obtained 737 consecutive gait videos of 74 patients with PD and their corresponding neurologist-rated UPDRS scores. We utilized a CNN model for predicting the total UPDRS part III score and four subscores of axial symptoms (items 27, 28, 29, and 30), bradykinesia (items 23, 24, 25, 26, and 31), rigidity (item 22) and tremor (items 20 and 21). We trained the model on 80% of the gait videos and used 10% of the videos as a validation dataset. We evaluated the predictive performance of the trained model by comparing the model-predicted score with the neurologist-rated score for the remaining 10% of videos (test dataset). We calculated the coefficient of determination (R2) between those scores to evaluate the model's goodness of fit. RESULTS In the test dataset, the R2 values between the model-predicted and neurologist-rated values for the total UPDRS part III score and subscores of axial symptoms, bradykinesia, rigidity, and tremor were 0.59, 0.77, 0.56, 0.46, and 0.0, respectively. The performance was relatively low for videos from patients with severe symptoms. CONCLUSIONS Despite the low predictive performance of the model for the total UPDRS part III score, it demonstrated relatively high performance in predicting subscores of axial symptoms. The model approximately predicted the total UPDRS part III scores of patients with moderate symptoms, but the performance was low for patients with severe symptoms owing to limited data. A larger dataset is needed to improve the model's performance in clinical settings.
Collapse
Affiliation(s)
- Katsuki Eguchi
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan.
| | - Ichigaku Takigawa
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103- 0027, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Hokkaido, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan
| | - Ikuko Takahashi-Iwata
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan
| | - Takahiro Kano
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan
| |
Collapse
|
9
|
Graham L, Das J, Vitorio R, McDonald C, Walker R, Godfrey A, Morris R, Stuart S. Ocular microtremor: a structured review. Exp Brain Res 2023; 241:2191-2203. [PMID: 37632535 PMCID: PMC10471653 DOI: 10.1007/s00221-023-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Ocular microtremor (OMT) is the smallest of three involuntary fixational micro eye movements, which has led to it being under researched in comparison. The link between OMT and brain function generates a strong rationale for further study as there is potential for its use as a biomarker in populations with neurological injury and disease. This structured review focused on populations previously studied, instrumentation used for measurement, commonly reported OMT outcomes, and recommendations concerning protocol design and future studies. Current methods of quantifying OMT will be reviewed to analyze their efficacy and efficiency and guide potential development and understanding of novel techniques. Electronic databases were systematically searched and compared with predetermined inclusion criteria. 216 articles were identified in the search and screened by two reviewers. 16 articles were included for review. Findings showed that piezoelectric probe is the most common method of measuring OMT, with fewer studies involving non-invasive approaches, such as contact lenses and laser imaging. OMT frequency was seen to be reduced during general anesthesia at loss of consciousness and in neurologically impaired participants when compared to healthy adults. We identified the need for a non-invasive technique for measuring OMT and highlight its potential in clinical applications as an objective biomarker for neurological assessments. We highlight the need for further research on the clinical validation of OMT to establish its potential to identify or predict a meaningful clinical or functional state, specifically, regarding accuracy, precision, and reliability of OMT.
Collapse
Affiliation(s)
- Lisa Graham
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Julia Das
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Rodrigo Vitorio
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| | | | - Richard Walker
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Alan Godfrey
- Department of Computer and Information Science, Northumbria University, Newcastle upon Tyne, UK
| | - Rosie Morris
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK.
- Northumbria Healthcare NHS Foundation Trust, North Shields, UK.
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Mittal P, Dhankhar S, Chauhan S, Garg N, Bhattacharya T, Ali M, Chaudhary AA, Rudayni HA, Al-Zharani M, Ahmad W, Khan SUD, Singh TG, Mujwar S. A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:908. [PMID: 37513820 PMCID: PMC10385773 DOI: 10.3390/ph16070908] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The neurodegenerative condition known as Parkinson's disease (PD) is brought on by the depletion of dopaminergic neurons in the basal ganglia, which is the brain region that controls body movement. PD occurs due to many factors, from which one of the acknowledged effects of oxidative stress is pathogenic pathways that play a role in the development of Parkinson's disease. Antioxidants, including flavonoids, vitamins E and C, and polyphenolic substances, help to reduce the oxidative stress brought on by free radicals. Consequently, this lowers the risk of neurodegenerative disorders in the long term. Although there is currently no cure for neurodegenerative illnesses, these conditions can be controlled. The treatment of this disease lessens its symptoms, which helps to preserve the patient's quality of life. Therefore, the use of naturally occurring antioxidants, such as polyphenols, which may be obtained through food or nutritional supplements and have a variety of positive effects, has emerged as an appealing alternative management strategy. This article will examine the extent of knowledge about antioxidants in the treatment of neurodegenerative illnesses, as well as future directions for research. Additionally, an evaluation of the value of antioxidants as neuroprotective agents will be provided.
Collapse
Affiliation(s)
- Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Nitika Garg
- Ganpati Institute of Pharmacy, Bilaspur 135102, India
| | - Tanima Bhattacharya
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 260 Kyunghee-daero, Seoul 02447, Republic of Korea
- Nondestructive Bio-Sensing Laboratory, Department of Biosystems Machinery Engineering, College of Agriculture and Life Science, Chungnam National University, 99 Daehak-ro, BLDG# E10-2, RM# 2213, Daejeon 34134, Republic of Korea
| | - Maksood Ali
- Department of Pharmacognosy, Orlean College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 42, Knowledge Park-III, Greater Noida 201308, India
- Department of Pharmacognosy, HIMT College of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, 8, Institutional Area, Knowledge Park-I, Greater Noida 201301, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Salah Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | | | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| |
Collapse
|
11
|
Liu W, Lin X, Chen X, Wang Q, Wang X, Yang B, Cai N, Chen R, Chen G, Lin Y. Vision-based estimation of MDS-UPDRS scores for quantifying Parkinson's disease tremor severity. Med Image Anal 2023; 85:102754. [PMID: 36702036 DOI: 10.1016/j.media.2023.102754] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative movement disorder among older individuals. As one of the typical symptoms of PD, tremor is a critical reference in the PD assessment. A widely accepted clinical approach to assessing tremors in PD is based on part III of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS). However, expert assessment of tremor is a time-consuming and laborious process that poses considerable challenges to the medical evaluation of PD. In this paper, we proposed a novel model, Global Temporal-difference Shift Network (GTSN), to estimate the MDS-UPDRS score of PD tremors based on video. The PD tremor videos were scored according to the majority vote of multiple raters. We used Eulerian Video Magnification (EVM) pre-processing to enhance the representations of subtle PD tremors in the videos. To make the model better focus on the tremors in the video, we proposed a special temporal difference module, which stacks the current optical flow to the result of inter-frame difference. The prediction scores were obtained from the Residual Networks (ResNet) embedded with a novel module, the Global Shift Module (GSM), which allowed the features of the current segment to include the global segment features. We carried out independent experiments using PD tremor videos of different body parts based on the scoring content of the MDS-UPDRS. On a fairly large dataset, our method achieved an accuracy of 90.6% for hands with rest tremors, 85.9% for tremors in the leg, and 89.0% for the jaw. An accuracy of 84.9% was obtained for postural tremors. Our study demonstrated the effectiveness of computer-assisted assessment for PD tremors based on video analysis. The latest version of the code is available at https://github.com/199507284711/PD-GTSN.
Collapse
Affiliation(s)
- Weiping Liu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Xiaozhen Lin
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xinghong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Qing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Xiumei Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Bin Yang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Naiqing Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Rong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Guannan Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| | - Yu Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
12
|
Bianchini E, Caliò B, Alborghetti M, Rinaldi D, Hansen C, Vuillerme N, Maetzler W, Pontieri FE. Step-Counting Accuracy of a Commercial Smartwatch in Mild-to-Moderate PD Patients and Effect of Spatiotemporal Gait Parameters, Laterality of Symptoms, Pharmacological State, and Clinical Variables. SENSORS (BASEL, SWITZERLAND) 2022; 23:214. [PMID: 36616812 PMCID: PMC9823757 DOI: 10.3390/s23010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Commercial smartwatches could be useful for step counting and monitoring ambulatory activity. However, in Parkinson's disease (PD) patients, an altered gait, pharmacological condition, and symptoms lateralization may affect their accuracy and potential usefulness in research and clinical routine. Steps were counted during a 6 min walk in 47 patients with PD and 47 healthy subjects (HS) wearing a Garmin Vivosmart 4 (GV4) on each wrist. Manual step counting was used as a reference. An inertial sensor (BTS G-Walk), placed on the lower back, was used to compute spatial-temporal gait parameters. Intraclass correlation coefficient (ICC) and mean absolute percentage error (MAPE) were used for accuracy evaluation and the Spearman test was used to assess the correlations between variables. The GV4 overestimated steps in PD patients with only a poor-to-moderate agreement. The OFF pharmacological state and wearing the device on the most-affected body side led to an unacceptable accuracy. The GV4 showed an excellent agreement and MAPE in HS at a self-selected speed, but an unacceptable performance at a slow speed. In PD patients, MAPE was not associated with gait parameters and clinical variables. The accuracy of commercial smartwatches for monitoring step counting might be reduced in PD patients and further influenced by the pharmacological condition and placement of the device.
Collapse
Affiliation(s)
- Edoardo Bianchini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Bianca Caliò
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Marika Alborghetti
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Domiziana Rinaldi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
- Santa Lucia Foundation, IRCCS, 00179 Rome, Italy
| | - Clint Hansen
- Department of Neurology, Kiel University, 24105 Kiel, Germany
| | - Nicolas Vuillerme
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France
- LabCom Telecom4Health, Orange Labs & Université Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| | - Walter Maetzler
- Department of Neurology, Kiel University, 24105 Kiel, Germany
| | - Francesco E. Pontieri
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
- Santa Lucia Foundation, IRCCS, 00179 Rome, Italy
| |
Collapse
|
13
|
Shermon S, Goldfinger M, Morris A, Harper B, Leder A, Santella AJ, Krishnamachari B. Effect of modifiable risk factors in Parkinson's disease: A case-control study looking at common dietary factors, toxicants, and anti-inflammatory medications. Chronic Illn 2022; 18:849-859. [PMID: 34494887 DOI: 10.1177/17423953211039789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate how common modifiable exposures, including dietary factors, select toxicants, and anti-inflammatory medications, may affect Parkinson's disease. METHODS Using surveys, a case-control study was conducted at a medical center, comparing Parkinson's disease patients (N = 149) and healthy controls (N = 105). Subjects reported exposure to red meats, vegetables, alcohol, tobacco, anti-inflammatory medications, and pesticides. The relationship between exposures and Parkinson's disease diagnosis was analyzed by logistic regression to generate odds ratio and 95% confidence interval. RESULTS Consuming red meat "sometimes" or "always" was positively associated with Parkinson's disease as compared to eating red meats "rarely" or "never"; (odds ratio = 2.15, 95% confidence interval = 1.06, 4.39; p = 0.03) and (odds ratio = 4.47, 95% confidence interval = 1.67, 11.94; p = 0.003), respectively. Exposure to pesticides showed a positive association with Parkinson's disease (odds ratio = 2.84, 95% confidence interval = 1.34, 6.00; p = 0.007). "Always" use of aspirin was inversely associated with Parkinson's disease (odds ratio = 0.32, 95% confidence interval = 0.14, 0.70; p = 0.004). "Ever" having used anti-histamines was inversely associated with Parkinson's disease (odds ratio = 0.37, 95% confidence interval = 0.17, 0.81; p = 0.01). DISCUSSION Our study suggests that there are modifiable external factors that are associated with Parkinson's disease. The present study can thus assist clinicians, policy makers, and people living with Parkinson's disease in improving the experience and management of Parkinson's disease.
Collapse
Affiliation(s)
- Suzanna Shermon
- 24575Case Western Reserve University/Metrohealth Medical Center, USA
| | | | - Alexander Morris
- Department of Clinical Specialties, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| | - Brian Harper
- Department of Clinical Specialties, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| | - Adena Leder
- Department of Osteopathic Manipulative Medicine, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| | - Anthony J Santella
- Department of Health Professions, 3871Hofstra University School of Health Professions, USA
| | - Bhuma Krishnamachari
- Department of Clinical Specialties, 43984New York Institute of Technology College of Osteopathic Medicine, USA
| |
Collapse
|
14
|
Mascia MM, Orofino G, Cimino P, Cadeddu G, Ercoli T, Defazio G. Writing tremor in Parkinson's disease: frequency and associated clinical features. J Neural Transm (Vienna) 2022; 129:1481-1485. [PMID: 36289110 DOI: 10.1007/s00702-022-02551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023]
Abstract
Action tremor in Parkinson's disease may present in up to 46% of patients, either as postural or kinetic tremor. How action tremor may affect handwriting has been the object of some investigations; however, clinical features of writing tremor in Parkinson's disease are still not well-characterised. One hundred consecutive patients with idiopathic Parkinson's disease were included in the study. Demographic and clinical data were collected through a standardized questionnaire. Patients were assessed for the presence of rest, action and writing tremor in on condition. The effect of a standardised sensory trick (gently touching the wrist of the upper limb manifesting tremor with the contralateral hand) was also investigated in all patients with action tremor. Writing tremor was found in 10% of patients (26% of patients with postural/kinetic tremor, either alone or in combination with rest tremor). Severity of writing tremor did not correlated with that of the other tremor variants and to the other clinical variables. Writing tremor was task-specific in 4/10 patients, no task-specific in 6/10. Sensory trick was effective on writing tremor in two patients but did not improve action tremor in any of the study patients. Results showed that writing tremor in Parkinson's disease is less common than other tremor variants, may be associated with other forms of action tremor, and may sometimes have dystonic features, including task-specificity and sensitivity to sensory trick.
Collapse
Affiliation(s)
- Marcello Mario Mascia
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, SS 554 km 4.500, 09042, Monserrato, Cagliari, Italy.
| | - Gianni Orofino
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, SS 554 km 4.500, 09042, Monserrato, Cagliari, Italy
| | - Paola Cimino
- Department of Medical Science and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Gianluca Cadeddu
- Department of Medical Science and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Tommaso Ercoli
- Department of Medical Science and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Institute of Neurology, Azienda Ospedaliero Universitaria di Cagliari, SS 554 km 4.500, 09042, Monserrato, Cagliari, Italy.,Department of Medical Science and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Yu N, Yu Y, Lin J, Yang Y, Wu J, Liang S, Wu J, Han J. A non-contact system for intraoperative quantitative assessment of bradykinesia in deep brain stimulation surgery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107005. [PMID: 35961073 DOI: 10.1016/j.cmpb.2022.107005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/20/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Deep brain stimulation (DBS) is an effective treatment for a number of neurological diseases, especially for the advanced stage of Parkinson's disease (PD). Objective assessment of patients' motor symptoms is crucial for accurate electrode targeting and treatment. Existing approaches suffer from subjective variability or interference with voluntary motion. This work is aimed to establish an objective assessment system to quantify bradykinesia in DBS surgery. METHODS Based on the analysis of the requirements for intraoperative assessment, we developed a system with non-contact measurement, online movement feature extraction, and interactive data analysis and visualization. An optical sensor, Leap Motion Controller (LMC), was taken to detect hand movement in three clinical tasks. A graphic user interface was designed to process, compare and visualize the collected data and assessment results online. Quantified movement features include amplitude, frequency, velocity, their decrement and variability, etc. Technical validation of the system was performed with a motion capture system (Mocap), with respect to data-level and feature-level accuracy and reliability. Clinical validation was conducted with 20 PD patients for intraoperative assessments in DBS surgery. Treatment responses with respect to the bradykinesia movement features were analyzed. Single case analysis and group statistical analysis were performed to examine the differences between preoperative and intraoperative performance, and the correlation between the clinical ratings and the quantified assessment was analyzed. RESULTS For the movements measured by LMC and Mocap, the average Pearson's correlation coefficient was 0.986, and the mean amplitude difference was 2.11 mm. No significant difference was found for all movement features quantified by LMC and Mocap. For the clinical tests, key movement features showed significant differences between the preoperative baseline and intraoperative performance when the brain stimulation was ON. The assessment results were significantly correlated with the MDS-UPDRS clinical ratings. CONCLUSIONS The proposed non-contact system has established itself as an objective intraoperative assessment, analysis, and visualization tool for DBS treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
| | - Yang Yu
- Department of Neurorehabilitation, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jianeng Lin
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Yuchen Yang
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China
| | - Jingchao Wu
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Siquan Liang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Jialing Wu
- Department of Neurorehabilitation, Tianjin Huanhu Hospital, Tianjin 300350, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, China.
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen 518083, China.
| |
Collapse
|
16
|
Isaacson SH, Betté S, Pahwa R. Istradefylline for OFF Episodes in Parkinson’s Disease: A US Perspective of Common Clinical Scenarios. Degener Neurol Neuromuscul Dis 2022; 12:97-109. [PMID: 35910426 PMCID: PMC9329678 DOI: 10.2147/dnnd.s245197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The effective management of OFF episodes remains an important unmet need for patients with Parkinson’s disease (PD) who develop motor complications with long-term levodopa therapy. Istradefylline is a selective adenosine A2A receptor antagonist for the treatment of patients with PD experiencing OFF episodes while on levodopa/decarboxylase inhibitor. Originally approved in Japan, istradefylline was recently approved in the USA. In this article, we provide a specific review of the four clinical studies that the FDA included in the approval of istradefylline in the USA, and discuss common clinical scenarios, based on our experience, where treatment with istradefylline may benefit patients experiencing motor fluctuations.
Collapse
Affiliation(s)
- Stuart H Isaacson
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
- Correspondence: Stuart H Isaacson, Parkinson’s Disease and Movement Disorders Center of Boca Raton, 951 NW 13th Street, Bldg. 5-E, Boca Raton, FL, 33486, USA, Tel +1 561-392-1818, Fax +1 561-392-8989, Email
| | - Sagari Betté
- Parkinson’s Disease and Movement Disorders Center of Boca Raton, Boca Raton, FL, USA
| | - Rajesh Pahwa
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
17
|
Moussa M, Abou Chakra M, Papatsoris AG, Dellis A, Dabboucy B, Peyromaure M, Barry Delongchamps N, Bailly H, Duquesne I. Perspectives on the urological care in Parkinson's disease patients. Arch Ital Urol Androl 2022; 94:107-117. [PMID: 35352535 DOI: 10.4081/aiua.2022.1.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is recognized as the most common neurodegenerative disorder after Alzheimer's disease. Lower urinary tract symptoms are common in patients with PD, either storage symptoms (overactive bladder symptoms or OAB) or voiding symptoms. The most important diagnostic clues for urinary disturbances are provided by the patient's medical history. Urodynamic evaluation allows the determination of the underlying bladder disorder and may help in the treatment selection. Pharmacologic interventions especially anticholinergic medications are the first-line option for treating OAB in patients with PD. However, it is important to balance the therapeutic benefits of these drugs with their potential adverse effects. Intra-detrusor Botulinum toxin injections, electrical stimulation were also used to treat OAB in those patients with variable efficacy. Mirabegron is a β3-agonist that can also be used for OAB with superior tolerability to anticholinergics. Desmopressin is effective for the management of nocturnal polyuria which has been reported to be common in PD. Deep brain stimulation (DBS) surgery is effective in improving urinary functions in PD patients. Sexual dysfunction is also common in PD. Phosphodiesterase type 5 inhibitors are first-line therapies for PD-associated erectile dysfunction (ED). Treatment with apomorphine sublingually is another therapeutic option for PD patients with ED. Pathologic hypersexuality has occasionally been reported in patients with PD, linked to dopaminergic agonists. The first step of treatment of hypersexuality consists of reducing the dose of dopaminergic medication. This review summarizes the epidemiology, pathogenesis, risk factors, genetic, clinical manifestations, diagnostic test, and management of PD. Lastly, the urologic outcomes and therapies are reviewed.
Collapse
Affiliation(s)
- Mohamad Moussa
- Urology Department, Zahraa Hospital, University Medical Center, Beirut.
| | - Mohamad Abou Chakra
- Department of Urology, Faculty of Medical Sciences, Lebanese University, Beirut.
| | - Athanasios G Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens, Athens.
| | | | - Baraa Dabboucy
- Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut.
| | - Michael Peyromaure
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| | - Nicolas Barry Delongchamps
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| | - Hugo Bailly
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| | - Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris.
| |
Collapse
|
18
|
Gopal A, Hsu WY, Allen DD, Bove R. Remote Assessments of Hand Function in Neurological Disorders: Systematic Review. JMIR Rehabil Assist Technol 2022; 9:e33157. [PMID: 35262502 PMCID: PMC8943610 DOI: 10.2196/33157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Loss of fine motor skills is observed in many neurological diseases, and remote monitoring assessments can aid in early diagnosis and intervention. Hand function can be regularly assessed to monitor loss of fine motor skills in people with central nervous system disorders; however, there are challenges to in-clinic assessments. Remotely assessing hand function could facilitate monitoring and supporting of early diagnosis and intervention when warranted. OBJECTIVE Remote assessments can facilitate the tracking of limitations, aiding in early diagnosis and intervention. This study aims to systematically review existing evidence regarding the remote assessment of hand function in populations with chronic neurological dysfunction. METHODS PubMed and MEDLINE, CINAHL, Web of Science, and Embase were searched for studies that reported remote assessment of hand function (ie, outside of traditional in-person clinical settings) in adults with chronic central nervous system disorders. We excluded studies that included participants with orthopedic upper limb dysfunction or used tools for intervention and treatment. We extracted data on the evaluated hand function domains, validity and reliability, feasibility, and stage of development. RESULTS In total, 74 studies met the inclusion criteria for Parkinson disease (n=57, 77% studies), stroke (n=9, 12%), multiple sclerosis (n=6, 8%), spinal cord injury (n=1, 1%), and amyotrophic lateral sclerosis (n=1, 1%). Three assessment modalities were identified: external device (eg, wrist-worn accelerometer), smartphone or tablet, and telerehabilitation. The feasibility and overall participant acceptability were high. The most common hand function domains assessed included finger tapping speed (fine motor control and rigidity), hand tremor (pharmacological and rehabilitation efficacy), and finger dexterity (manipulation of small objects required for daily tasks) and handwriting (coordination). Although validity and reliability data were heterogeneous across studies, statistically significant correlations with traditional in-clinic metrics were most commonly reported for telerehabilitation and smartphone or tablet apps. The most readily implementable assessments were smartphone or tablet-based. CONCLUSIONS The findings show that remote assessment of hand function is feasible in neurological disorders. Although varied, the assessments allow clinicians to objectively record performance in multiple hand function domains, improving the reliability of traditional in-clinic assessments. Remote assessments, particularly via telerehabilitation and smartphone- or tablet-based apps that align with in-clinic metrics, facilitate clinic to home transitions, have few barriers to implementation, and prompt remote identification and treatment of hand function impairments.
Collapse
Affiliation(s)
- Arpita Gopal
- Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Wan-Yu Hsu
- Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Diane D Allen
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco/San Francisco State University, San Francisco, CA, United States
| | - Riley Bove
- Weill Institute of Neurosciences, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Examination of pituitary adenylate cyclase-activating polypeptide in Parkinson’s disease focusing on correlations with motor symptoms. GeroScience 2022; 44:785-803. [PMID: 35220508 PMCID: PMC9135934 DOI: 10.1007/s11357-022-00530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
The neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) have been shown in numerous in vitro and in vivo models of Parkinson’s disease (PD) supporting the theory that PACAP could have an important role in the pathomechanism of the disorder affecting mostly older patients. Earlier studies found changes in PACAP levels in neurological disorders; therefore, the aim of our study was to examine PACAP in plasma samples of PD patients. Peptide levels were measured with ELISA and correlated with clinical parameters, age, stage of the disorder based on the Hoehn and Yahr (HY) scale, subtype of the disease, treatment, and specific scores measuring motor and non-motor symptoms, such as movement disorder society-unified Parkinson’s disease rating scale (MDS-UPDRS), Epworth sleepiness scale (ESS), Parkinson’s disease sleep scale (PDSS-2), and Beck depression inventory (BDI). Our results showed significantly decreased PACAP levels in PD patients without deep brain stimulation (DBS) therapy and in akinetic-rigid subtype; additionally we also observed a further decrease in the HY stage 3 and 4. Elevated PACAP levels were found in patients with DBS. There were no significant correlations between PACAP level with MDS-UPDRS, type of pharmacological treatment, PDSS-2 sleepiness, or depression (BDI) scales, but we found increased PACAP level in patients with more severe sleepiness problems based on the ESS scale. Based on these results, we suggest that following the alterations of PACAP with other frequently used clinical biomarkers in PD patients might improve strategic planning of further therapeutic interventions and help to provide a clearer prognosis regarding the future perspective of the disease.
Collapse
|
20
|
Kim J, Wichmann T, Inan OT, DeWeerth SP. Analyzing the Effects of Parameters for Tremor Modulation via Phase-Locked Electrical Stimulation on a Peripheral Nerve. J Pers Med 2022; 12:76. [PMID: 35055390 PMCID: PMC8779889 DOI: 10.3390/jpm12010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Non-invasive neuromodulation is a promising alternative to medication or deep-brain stimulation treatment for Parkinson's Disease or essential tremor. In previous work, we developed and tested a wearable system that modulates tremor via the non-invasive, electrical stimulation of peripheral nerves. In this article, we examine the proper range and the effects of various stimulation parameters for phase-locked stimulation. (2) Methods: We recruited nine participants with essential tremor. The subjects performed a bean-transfer task that mimics an eating activity to elicit kinetic tremor while using the wearable stimulation system. We examined the effects of stimulation with a fixed duty cycle, at different stimulation amplitudes and frequencies. The epochs of stimulation were locked to one of four phase positions of ongoing tremor, as measured with an accelerometer. We analyzed stimulation-evoked changes of the frequency and amplitude of tremor. (3) Results: We found that the higher tremor amplitude group experienced a higher rate of tremor power reduction (up to 65%) with a higher amplitude of stimulation when the stimulation was applied at the ±peak of tremor phase. (4) Conclusions: The stimulation parameter can be adjusted to optimize tremor reduction, and this study lays the foundation for future large-scale parameter optimization experiments for personalized peripheral nerve stimulation.
Collapse
Affiliation(s)
- Jeonghee Kim
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843, USA
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA 30322, USA;
- Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center at Emory University, Atlanta, GA 30329, USA
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (O.T.I.); (S.P.D.)
| | - Stephen P. DeWeerth
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (O.T.I.); (S.P.D.)
- Department of Biomedical Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
21
|
Kumar S, Goyal L, Singh S. Tremor and Rigidity in Patients with Parkinson's Disease: Emphasis on Epidemiology, Pathophysiology and Contributing Factors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:596-609. [PMID: 34620070 DOI: 10.2174/1871527320666211006142100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Parkinson's disease (PD) is the second most prominent neurodegenerative movement disorder after Alzheimer's disease, involving 2-3% of the population aged above 65 years. This is mainly triggered by the depletion of dopaminergic neurons located in substantia nigra pars compacta (SNpc) in the region of basal ganglia. At present, diagnosis for symptoms of PD is clinical, contextual, unspecified and therapeutically incomprehensive. Analysis of various causes of PD is essential for an accurate examination of the disease. Among the different causes, such as tremors and rigidity, unresponsiveness to the current treatment approach contributes to mortality. In the present review article, we describe various key factors of pathogenesis and physiology associated with tremors and rigidity necessary for the treatment of PI (postural instability) in patients with PD. Additionally, several reports showing early tremor and rigidity causes, particularly age, cortex lesions, basal ganglia lesions, genetic abnormalities, weakened reflexes, nutrition, fear of fall, and altered biomechanics, have been explored. By summarizing the factors that contribute to the disease, histopathological studies can assess rigidity and tremor in PD. With a clear understanding of the contributing factors, various prospective studies can be done to assess the incidence of rigidity and tremors.
Collapse
Affiliation(s)
- Shivam Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
22
|
Hett K, Lyu I, Trujillo P, Lopez AM, Aumann M, Larson KE, Hedera P, Dawant B, Landman BA, Claassen DO, Oguz I. Anatomical texture patterns identify cerebellar distinctions between essential tremor and Parkinson's disease. Hum Brain Mapp 2021; 42:2322-2331. [PMID: 33755270 PMCID: PMC8090778 DOI: 10.1002/hbm.25331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023] Open
Abstract
Voxel-based morphometry is an established technique to study focal structural brain differences in neurologic disease. More recently, texture-based analysis methods have enabled a pattern-based assessment of group differences, at the patch level rather than at the voxel level, allowing a more sensitive localization of structural differences between patient populations. In this study, we propose a texture-based approach to identify structural differences between the cerebellum of patients with Parkinson's disease (n = 280) and essential tremor (n = 109). We analyzed anatomical differences of the cerebellum among patients using two features: T1-weighted MRI intensity, and a texture-based similarity feature. Our results show anatomical differences between groups that are localized to the inferior part of the cerebellar cortex. Both the T1-weighted intensity and texture showed differences in lobules VIII and IX, vermis VIII and IX, and middle peduncle, but the texture analysis revealed additional differences in the dentate nucleus, lobules VI and VII, vermis VI and VII. This comparison emphasizes how T1-weighted intensity and texture-based methods can provide a complementary anatomical structure analysis. While texture-based similarity shows high sensitivity for gray matter differences, T1-weighted intensity shows sensitivity for the detection of white matter differences.
Collapse
Affiliation(s)
- Kilian Hett
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Ilwoo Lyu
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Paula Trujillo
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Alexander M. Lopez
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Megan Aumann
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kathleen E. Larson
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Peter Hedera
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA,Department of NeurologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Benoit Dawant
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Bennett A. Landman
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Daniel O. Claassen
- Department of NeurologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ipek Oguz
- Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
23
|
Schaefer LV, Löffler N, Klein J, Bittmann FN. Mechanomyography and acceleration show interlimb asymmetries in Parkinson patients without tremor compared to controls during a unilateral motor task. Sci Rep 2021; 11:2631. [PMID: 33514788 PMCID: PMC7846755 DOI: 10.1038/s41598-021-81672-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
The mechanical muscular oscillations are rarely the objective of investigations regarding the identification of a biomarker for Parkinson's disease (PD). Therefore, the aim of this study was to investigate whether or not this specific motor output differs between PD patients and controls. The novelty is that patients without tremor are investigated performing a unilateral isometric motor task. The force of armflexors and the forearm acceleration (ACC) were recorded as well as the mechanomyography of the biceps brachii (MMGbi), brachioradialis (MMGbra) and pectoralis major (MMGpect) muscles using a piezoelectric-sensor-based system during a unilateral motor task at 70% of the MVIC. The frequency, a power-frequency-ratio, the amplitude variation, the slope of amplitudes and their interlimb asymmetries were analysed. The results indicate that the oscillatory behavior of muscular output in PD without tremor deviates from controls in some parameters: Significant differences appeared for the power-frequency-ratio (p = 0.001, r = 0.43) and for the amplitude variation (p = 0.003, r = 0.34) of MMGpect. The interlimb asymmetries differed significantly concerning the power-frequency-ratio of MMGbi (p = 0.013, r = 0.42) and MMGbra (p = 0.048, r = 0.39) as well as regarding the mean frequency (p = 0.004, r = 0.48) and amplitude variation of MMGpect (p = 0.033, r = 0.37). The mean (M) and variation coefficient (CV) of slope of ACC differed significantly (M: p = 0.022, r = 0.33; CV: p = 0.004, r = 0.43). All other parameters showed no significant differences between PD and controls. It remains open, if this altered mechanical muscular output is reproducible and specific for PD.
Collapse
Affiliation(s)
- Laura V Schaefer
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, house 24, 14476, Potsdam, Golm, Germany.
| | - Nils Löffler
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, house 24, 14476, Potsdam, Golm, Germany
| | - Julia Klein
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, house 24, 14476, Potsdam, Golm, Germany
| | - Frank N Bittmann
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, house 24, 14476, Potsdam, Golm, Germany
| |
Collapse
|
24
|
Sigcha L, Pavón I, Costa N, Costa S, Gago M, Arezes P, López JM, De Arcas G. Automatic Resting Tremor Assessment in Parkinson's Disease Using Smartwatches and Multitask Convolutional Neural Networks. SENSORS 2021; 21:s21010291. [PMID: 33406692 PMCID: PMC7794726 DOI: 10.3390/s21010291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/28/2022]
Abstract
Resting tremor in Parkinson's disease (PD) is one of the most distinctive motor symptoms. Appropriate symptom monitoring can help to improve management and medical treatments and improve the patients' quality of life. Currently, tremor is evaluated by physical examinations during clinical appointments; however, this method could be subjective and does not represent the full spectrum of the symptom in the patients' daily lives. In recent years, sensor-based systems have been used to obtain objective information about the disease. However, most of these systems require the use of multiple devices, which makes it difficult to use them in an ambulatory setting. This paper presents a novel approach to evaluate the amplitude and constancy of resting tremor using triaxial accelerometers from consumer smartwatches and multitask classification models. These approaches are used to develop a system for an automated and accurate symptom assessment without interfering with the patients' daily lives. Results show a high agreement between the amplitude and constancy measurements obtained from the smartwatch in comparison with those obtained in a clinical assessment. This indicates that consumer smartwatches in combination with multitask convolutional neural networks are suitable for providing accurate and relevant information about tremor in patients in the early stages of the disease, which can contribute to the improvement of PD clinical evaluation, early detection of the disease, and continuous monitoring.
Collapse
Affiliation(s)
- Luis Sigcha
- Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain; (L.S.); (J.M.L.); (G.D.A.)
- ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal; (N.C.); (S.C.); (P.A.)
| | - Ignacio Pavón
- Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain; (L.S.); (J.M.L.); (G.D.A.)
- Correspondence: ; Tel.: +34-91-067-7222
| | - Nélson Costa
- ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal; (N.C.); (S.C.); (P.A.)
| | - Susana Costa
- ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal; (N.C.); (S.C.); (P.A.)
| | - Miguel Gago
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
| | - Pedro Arezes
- ALGORITMI Research Center, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal; (N.C.); (S.C.); (P.A.)
| | - Juan Manuel López
- Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain; (L.S.); (J.M.L.); (G.D.A.)
| | - Guillermo De Arcas
- Instrumentation and Applied Acoustics Research Group (I2A2), ETSI Industriales, Universidad Politécnica de Madrid, Campus Sur UPM, Ctra. Valencia, Km 7, 28031 Madrid, Spain; (L.S.); (J.M.L.); (G.D.A.)
| |
Collapse
|
25
|
Ge W, Lueck CJ, Apthorp D, Suominen H. Which features of postural sway are effective in distinguishing Parkinson's disease from controls? A systematic review. Brain Behav 2021; 11:e01929. [PMID: 33145991 PMCID: PMC7821610 DOI: 10.1002/brb3.1929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Postural sway may be useful as an objective measure of Parkinson's disease (PD). Existing studies have analyzed many different features of sway using different experimental paradigms. We aimed to determine what features have been used to measure sway and then to assess which feature(s) best differentiate PD patients from controls. We also aimed to determine whether any refinements might improve discriminative power and so assist in standardizing experimental conditions and analysis of data. METHODS In this systematic review of the literature, effect size (ES) was calculated for every feature reported by each article and then collapsed across articles where appropriate. The influence of clinical medication status, visual state, and sampling rate on ES was also assessed. RESULTS Four hundred and forty-three papers were retrieved. 25 contained enough information for further analysis. The most commonly used features were not the most effective (e.g., PathLength, used 14 times, had ES of 0.47, while TotalEnergy, used only once, had ES of 1.78). Increased sampling rate was associated with increased ES (PathLength ES increased to 1.12 at 100 Hz from 0.40 at 10 Hz). Measurement during "OFF" clinical status was associated with increased ES (PathLength ES was 0.83 OFF compared to 0.21 ON). CONCLUSIONS This review identified promising features for analysis of postural sway in PD, recommending a sampling rate of 100 Hz and studying patients when OFF to maximize ES. ES complements statistical significance as it is clinically relevant and is easily compared across experiments. We suggest that machine learning is a promising tool for the future analysis of postural sway in PD.
Collapse
Affiliation(s)
- Wenbo Ge
- Research School of Computer Science, Australian National University, Canberra, ACT, Australia
| | - Christian J Lueck
- Department of Neurology, Canberra Hospital, Canberra, ACT, Australia.,Australian National University Medical School, Canberra, ACT, Australia
| | - Deborah Apthorp
- Research School of Computer Science, Australian National University, Canberra, ACT, Australia.,School of Psychology, University of New England, Armidale, NSW, Australia
| | - Hanna Suominen
- Research School of Computer Science, Australian National University, Canberra, ACT, Australia.,Machine Learning Research Group, Data61/CSIRO, Canberra, ACT, Australia.,Department of Future Technologies, University of Turku, Turku, Finland
| |
Collapse
|
26
|
Unilateral Resting Tremor in a Thigh Muscle in Parkinson’s Disease. Tremor Other Hyperkinet Mov (N Y) 2020; 10:44. [PMID: 33178483 PMCID: PMC7597572 DOI: 10.5334/tohm.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Hossein‐Tehrani MR, Ghaedian T, Hooshmandi E, Kalhor L, Foroughi AA, Ostovan VR. Brain TRODAT‐SPECT Versus MRI Morphometry in Distinguishing Early Mild Parkinson's Disease from Other Extrapyramidal Syndromes. J Neuroimaging 2020; 30:683-689. [DOI: 10.1111/jon.12740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/26/2023] Open
Affiliation(s)
| | - Tahereh Ghaedian
- Nuclear Medicine and Molecular Imaging Research Center, Namazi Teaching Hospital Shiraz University of Medical Sciences Shiraz Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Leila Kalhor
- Nuclear Medicine and Molecular Imaging Research Center, Namazi Teaching Hospital Shiraz University of Medical Sciences Shiraz Iran
| | - Amin Abolhasani Foroughi
- Medical Imaging Research Center Shiraz University of Medical Sciences Shiraz Iran
- Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
28
|
Zhang H, Deng K, Li H, Albin RL, Guan Y. Deep Learning Identifies Digital Biomarkers for Self-Reported Parkinson's Disease. PATTERNS 2020; 1. [PMID: 32699844 PMCID: PMC7375444 DOI: 10.1016/j.patter.2020.100042] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Large-scale population screening and in-home monitoring for patients with Parkinson's disease (PD) has so far been mainly carried out by traditional healthcare methods and systems. Development of mobile health may provide an independent, future method to detect PD. Current PD detection algorithms will benefit from better generalizability with data collected in real-world situations. In this paper, we report the top-performing smartphone-based method in the recent DREAM Parkinson's Disease Digital Biomarker Challenge for digital diagnosis of PD. Utilizing real-world accelerometer records, this approach differentiated PD from control subjects with an area under the receiver-operating characteristic curve of 0.87 by 3D augmentation of accelerometer records, a significant improvement over other state-of-the-art methods. This study paves the way for future at-home screening of PD and other neurodegenerative conditions affecting movement.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kaiwen Deng
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.,Neurology Service & GRECC, VAAAHS, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Lead Contact
| |
Collapse
|
29
|
Lopez AM, Trujillo P, Hernandez AB, Lin YC, Kang H, Landman BA, Englot DJ, Dawant BM, Konrad PE, Claassen DO. Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor. Mov Disord 2020; 35:1181-1188. [PMID: 32343870 DOI: 10.1002/mds.28044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) and essential tremor (ET) are commonly encountered movement disorders. Pathophysiologic processes that localize to the cerebellum are described in both. There are limited studies investigating cerebellar structural changes in these conditions, largely because of inherent challenges in the efficiency of segmentation. METHODS We applied a novel multiatlas cerebellar segmentation method to T1-weighted images in 282 PD and 111 essential tremor patients to define 26 cerebellar lobule volumes. The severity of postural and resting tremor in both populations and gait and postural instability in PD patients were defined using subscores of the UPDRS and Washington Heights-Inwood Genetic Study motor scales. These clinical measurements were related to lobule volume size. Multiple comparisons were controlled using a false discovery rate method. RESULTS Group differences were identified between ET and PD patients, with reductions in deep cerebellar nucleus volume in ET versus reduced lobule VI volume in PD. In ET patients, lobule VIII was negatively correlated with the severity of postural tremor. In PD patients, lobule IV was positively correlated with resting tremor and total tremor severity. We observed differences in cerebellar structure that localized to sensorimotor lobules of the cerebellum. Lobule volumes appeared to differentially relate to clinical symptoms, suggesting important clinicopathologic distinctions between these conditions. These results emphasize the role of the cerebellum in tremor symptoms and should foster future clinical and pathologic investigations of the sensorimotor lobules of the cerebellum. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexander M Lopez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adreanna B Hernandez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ya-Chen Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bennett A Landman
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit M Dawant
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter E Konrad
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Obstructive sleep apnea in Parkinson's disease: a study in 239 Chinese patients. Sleep Med 2020; 67:237-243. [DOI: 10.1016/j.sleep.2019.11.1251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 03/19/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
|
31
|
Schaefer LV, Bittmann FN. Parkinson patients without tremor show changed patterns of mechanical muscle oscillations during a specific bilateral motor task compared to controls. Sci Rep 2020; 10:1168. [PMID: 31980683 PMCID: PMC6981166 DOI: 10.1038/s41598-020-57766-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is still not understood. There are investigations which show a changed oscillatory behaviour of brain circuits or changes in variability of, e.g., gait parameters in PD. The aim of this study was to investigate whether or not the motor output differs between PD patients and healthy controls. Thereby, patients without tremor are investigated in the medication off state performing a special bilateral isometric motor task. The force and accelerations (ACC) were recorded as well as the Mechanomyography (MMG) of the biceps brachii, the brachioradialis and of the pectoralis major muscles using piezoelectric-sensors during the bilateral motor task at 60% of the maximal isometric contraction. The frequency, a specific power ratio, the amplitude variation and the slope of amplitudes were analysed. The results indicate that the oscillatory behaviour of motor output in PD patients without tremor deviates from controls: thereby, the 95%-confidence-intervals of power ratio and of amplitude variation of all signals are disjoint between PD and controls and show significant differences in group comparisons (power ratio: p = 0.000-0.004, r = 0.441-0.579; amplitude variation: p = 0.000-0.001, r = 0.37-0.67). The mean frequency shows a significant difference for ACC (p = 0.009, r = 0.43), but not for MMG. It remains open, whether this muscular output reflects changes of brain circuits and whether the results are reproducible and specific for PD.
Collapse
Affiliation(s)
- Laura V Schaefer
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Potsdam, Germany.
| | - Frank N Bittmann
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
32
|
Stress Management Training (SMT) Improves Coping of Tremor-Boosting Psychosocial Stressors and Depression in Patients with Parkinson's Disease: A Controlled Prospective Study. PARKINSONS DISEASE 2018; 2018:4240178. [PMID: 30510675 PMCID: PMC6230397 DOI: 10.1155/2018/4240178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/19/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022]
Abstract
Background Stress reduction and relaxation exercises are therapeutically suggested to patients with Parkinson's disease (PD) and tremor, but data regarding efficacy or preferential methods are missing. Objective To investigate the effect of a standardized stress management training (SMT) according to Kaluza on coping with tremor-boosting psychosocial stress factors. Methods 8-week SMT was applied to 82 PD patients with tremor and 30 controls. Changes in stress-associated factors were measured applying four scales: Kaluza's “warning signs for stress” and “stress-amplifying thoughts” and Beck Depression Inventory (BDI) and quality of life (PDQ-8). Short-term outcome (8 weeks) was evaluated in both groups, and long-term outcome (3–6 months) was evaluated only in PD patients. Results At baseline, PDQ-8 was worse in PD patients compared to controls. PD patients improved significantly regarding short- and long-term outcome scores of “warning signs for stress,” “stress-amplifying thoughts,” and BDI scores, independently of disease severity or duration. Younger and male PD patients showed the best benefit. Controls improved comparably to PD patients but significantly only with respect to “stress-amplifying thoughts.” Retrospectively, 88% (29/33) of PD patients were rated SMT as helpful 12–18 months later. Self-practicing SMT exercises correlated significantly with subjectively better coping with tremor-related daily impairment and subjective short-term and long-term tremor reduction. Conclusion SMT should be a part of therapy of PD patients with tremor.
Collapse
|
33
|
Aleksanyan Z, Bureneva O, Safyannikov N. Tensometric tremorography in high-precision medical diagnostic systems. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:321-330. [PMID: 30271224 PMCID: PMC6145354 DOI: 10.2147/mder.s168831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The objective of the study was to develop a system for the precision diagnostics of pathologies of motor brain regions based on tensometric measurement and to explore its diagnostic capabilities. MATERIALS AND METHODS Tremor is a syndrome that indicates the abnormal state of the central nervous system, primarily in the motor brain regions. Analysis of tremor parameters provides significant information about the changes in the body motion control and can be used as an objective index of the central nervous system state. Existing methods are aimed at the analysis of visible tremor based on the use of different sensors. We suggest an alternative approach based on the use of a tensometric system performing tremor measurements when the tremor appears on the background of voluntary isometric efforts. The key advantage of our approach is that it allows to determine the tremor before its visible manifestation. In the article, we describe hardware implementation of our tremor analysis system. RESULTS In the article, we represent the new methodology and the original equipment based on the control of isometric effort. Isometric effort formed by a patient is controlled with the use of a feedback system on the patient's monitor. We evaluated the performance of our equipment with more than 400 healthy volunteers and patients with various pathologies of the central nervous system motor regions, and the results of the investigations, allowing to identify tremor parameters typical for parkinsonism, are represented in our article. CONCLUSION Testing of the system confirmed its high diagnostic validity and reliability, high sensitivity, simplicity and high speed of information processing. The approach based on tensometric measurements is very promising for the diagnostics of Parkinson disease and dysfunctions of a central nervous system.
Collapse
Affiliation(s)
- Zoya Aleksanyan
- Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga Bureneva
- Department of Computer Science and Engineering, Saint-Petersburg State Electrotechnical University "LETI", Saint Peterburg, Russia,
| | - Nikolay Safyannikov
- Department of Computer Science and Engineering, Saint-Petersburg State Electrotechnical University "LETI", Saint Peterburg, Russia,
| |
Collapse
|
34
|
The Role of the Anesthesiologist during Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Tremor: A Single-Center Experience. PARKINSONS DISEASE 2018; 2018:9764807. [PMID: 30123491 PMCID: PMC6079322 DOI: 10.1155/2018/9764807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 01/30/2023]
Abstract
Ablative incisionless neurosurgery has become possible through advances in focused ultrasound and magnetic resonance imaging (MRI). The great advantage of MRI-guided focused ultrasound (MRgFUS) is that the ablation is performed through an intact skull without surgery. Here, we review the new modality of MRgFUS for treating tremor and enlighten the role of the anesthesiologist in the unique procedural setting of the MRI suite. During the MRgFUS process, the patients should be awake and are required to cooperate with the medical staff to allow assessment of tremor reduction and potential occurrence of adverse effects. In addition, the patient's head is immobilized inside the MRI tunnel for hours. This combination presents major challenges for the attending anesthesiologist, who is required to try to prevent pain and nausea and when present, to treat these symptoms. Anxiety, vertigo, and vomiting may occur during treatment and require urgent treatment. Here, we review the literature available on anesthetic management during the procedure and our own experience and provide recommendations based on our collected knowledge.
Collapse
|
35
|
Tucker D, Lu Y, Zhang Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol 2018; 55:5137-5153. [PMID: 28840449 PMCID: PMC5826781 DOI: 10.1007/s12035-017-0712-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Methylene blue (MB) is a well-established drug with a long history of use, owing to its diverse range of use and its minimal side effect profile. MB has been used classically for the treatment of malaria, methemoglobinemia, and carbon monoxide poisoning, as well as a histological dye. Its role in the mitochondria, however, has elicited much of its renewed interest in recent years. MB can reroute electrons in the mitochondrial electron transfer chain directly from NADH to cytochrome c, increasing the activity of complex IV and effectively promoting mitochondrial activity while mitigating oxidative stress. In addition to its beneficial effect on mitochondrial protection, MB is also known to have robust effects in mitigating neuroinflammation. Mitochondrial dysfunction has been identified as a seemingly unifying pathological phenomenon across a wide range of neurodegenerative disorders, which thus positions methylene blue as a promising therapeutic. In both in vitro and in vivo studies, MB has shown impressive efficacy in mitigating neurodegeneration and the accompanying behavioral phenotypes in animal models for such conditions as stroke, global cerebral ischemia, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review summarizes recent work establishing MB as a promising candidate for neuroprotection, with particular emphasis on the contribution of mitochondrial function to neural health. Furthermore, this review will briefly examine the link between MB, neurogenesis, and improved cognition in respect to age-related cognitive decline.
Collapse
Affiliation(s)
- Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
36
|
Valcarenghi RV, Alvarez AM, Santos SSC, Siewert JS, Nunes SFL, Tomasi AVR. The daily lives of people with Parkinson's disease. Rev Bras Enferm 2018; 71:272-279. [PMID: 29412283 DOI: 10.1590/0034-7167-2016-0577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/11/2017] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To understand the daily lives of people with Parkinson's disease. METHOD Qualitative research, using as methodological and theoretical referential the Grounded Theory and Symbolic Interactionism, respectively. The in-depth interview was conducted with 30 people with Parkinson's disease. RESULTS From data analysis, three themes were selected: Living with the disease - living with the treatment and changes in lifestyle; Modifying of one's job performance - revealing incapacity for work and the need to anticipate retirement and; Living with the stigma - the feeling of prejudice against the disease and the perceived limitations of the health services. FINAL CONSIDERATIONS Living with a chronic and non-transferable disease encompasses social, physical and cultural effects, along with the personal experiences of each unique individual. This study assists the improvement of care to people with the disease, because the care practice emerges from the interactions between the subjects.
Collapse
Affiliation(s)
- Rafaela Vivian Valcarenghi
- Universidade Federal de Santa Catarina, Postgraduate Program in Nursing. Florianópolis, Santa Catarina, Brazil
| | - Angela Maria Alvarez
- Universidade Federal de Santa Catarina, Postgraduate Program in Nursing. Florianópolis, Santa Catarina, Brazil
| | - Silvana Sidney Costa Santos
- Universidade Federal do Rio Grande, School of Nursing, Department of Nursing. Rio Grande, Rio Grande do Sul, Brazil
| | - Josiane Steil Siewert
- Universidade Federal de Santa Catarina, Postgraduate Program in Nursing. Florianópolis, Santa Catarina, Brazil
| | | | - Andrelise Viana Rosa Tomasi
- Universidade Federal de Santa Catarina, Postgraduate Program in Nursing. Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
37
|
Niranjan A, Raju SS, Monaco EA, Flickinger JC, Lunsford LD. Is staged bilateral thalamic radiosurgery an option for otherwise surgically ineligible patients with medically refractory bilateral tremor? J Neurosurg 2018; 128:617-626. [DOI: 10.3171/2016.11.jns162044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEUnilateral Gamma Knife thalamotomy (GKT) is a well-established treatment for patients with medically refractory tremor who are not eligible for invasive procedures due to increased risk of compications. The purpose of this study was to evaluate whether staged bilateral GKT provides benefit with acceptable risk to patients suffering from disabling medically refractory bilateral tremor.METHODSEleven patients underwent staged bilateral GKT during a 17-year period (1999–2016). Eight patients had essential tremor (ET), 2 had Parkinson's disease (PD)–related tremor, and 1 had multiple-sclerosis (MS)–related tremor. For the first GKT, a median maximum dose of 140 Gy was delivered to the posterior-inferior region of the nucleus ventralis intermedius (VIM) through a single isocenter with 4-mm collimators. Patients who benefitted from unilateral GKT were eligible for a contralateral GKT 1–2 years later (median 22 months). For the second GKT, a median maximum dose of 130 Gy was delivered to the opposite VIM nucleus to a single 4-mm isocenter. The Fahn-Tolosa-Marin (FTM) clinical tremor rating scale was used to score tremor, drawing, and drinking before and after each GKT. The FTM writing score was assessed only for the dominant hand before and after the first GKT. The Karnofsky Performance Status (KPS) was used to assess quality of life and activities of daily living before and after the first and second GKT.RESULTSThe median time to last follow-up after the first GKT was 35 months (range 11–70 months). All patients had improvement in at least 1 FTM score after the first GKT. Three patients (27.3%) had tremor arrest and complete restoration of function (noted via FTM tremor, writing, drawing, and drinking scores equaling zero). No patient had tremor recurrence or diminished tremor relief after the first GKT. One patient experienced new temporary neurological deficit (contralateral lower-extremity hemiparesis) from the first GKT. The median time to last follow-up after the second GKT was 12 months (range 2–70 months). Nine patients had improvement in at least 1 FTM score after the second GKT. Two patients had tremor arrest and complete restoration of function. No patient experienced tremor recurrence or diminished tremor relief after the second GKT. No patient experienced new neurological or radiological adverse effect from the second GKT. Statistically significant improvements were noted in the KPS score following the first and second GKT.CONCLUSIONSStaged bilateral GKT provided effective relief for medically refractory, disabling, bilateral tremor without increased risk of neurological complications. It is an appropriate strategy for carefully selected patients with medically refractory bilateral tremor who are not eligible for deep brain stimulation.
Collapse
Affiliation(s)
| | - Sudesh S. Raju
- 2University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
38
|
Radder DL, Sturkenboom IH, van Nimwegen M, Keus SH, Bloem BR, de Vries NM. Physical therapy and occupational therapy in Parkinson's disease. Int J Neurosci 2017; 127:930-943. [DOI: 10.1080/00207454.2016.1275617] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Danique L.M. Radder
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingrid H. Sturkenboom
- Department of Rehabilitation-Occupational Therapy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies van Nimwegen
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Samyra H. Keus
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nienke M. de Vries
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
39
|
Aytürk Z, Yilmaz R, Akbostanci MC. Re-emergent tremor in Parkinson's disease: Clinical and accelerometric properties. J Clin Neurosci 2016; 37:31-33. [PMID: 28017533 DOI: 10.1016/j.jocn.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/02/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
Re-emergent tremor (RET) and the classical parkinsonian rest tremor were considered as two different phenomena of the same central tremor circuit. However, clinical and accelerometric characteristics of these tremors were not previously compared in a single study. We evaluated disease characteristics and accelerometric measurements of two tremor types in 42 patients with Parkinson's disease. Disease specific features and accelerometric measurements of peak frequency, amplitude at peak frequency and the root mean square (RMS) amplitude of two tremor types were compared. Eighteen patients had RET and the mean latency of the RET was 9.48 (±9.2)s. Groups of only rest tremor and RET did not differ significantly in age of disease onset, disease duration and severity and mean levodopa equivalent dose. Comparison of peak frequency and amplitude at peak frequency were not different between the groups, but RMS amplitude was significantly higher in the RET group (p=0.03). RMS amplitude of RET was also correlated with disease severity (r=.48, p=0.04). These results support the previous notion that rest tremor and RET are analogue, both are triggered by the same central ossilator with RET being only the suppression of the rest tremor due to arm repositioning.
Collapse
Affiliation(s)
- Zübeyde Aytürk
- Turgut Özal University, Faculty of Medicine, Department of Neurology, Ankara, Turkey.
| | - Rezzak Yilmaz
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tuebingen, Tuebingen, Germany.
| | - M Cenk Akbostanci
- Ankara University, School of Medicine, Department of Neurology, Ankara, Turkey.
| |
Collapse
|
40
|
Pretzer-Aboff I, Bunting-Perry L, Spindler M. The Implications of Parkinson's Disease for Women's Health. J Obstet Gynecol Neonatal Nurs 2016; 45:723-36. [DOI: 10.1016/j.jogn.2016.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 10/21/2022] Open
|
41
|
The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson's disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commun 2016; 4:86. [PMID: 27535749 PMCID: PMC4989531 DOI: 10.1186/s40478-016-0346-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s Disease (PD) is the second most common neurodegenerative disease worldwide, affecting 1 % of the population over 65 years of age. Dopaminergic cell death in the substantia nigra and accumulation of Lewy bodies are the defining neuropathological hallmarks of the disease. Neuronal death and dysfunction have been reported in other central nervous system regions, including the retina. Symptoms of PD typically manifest only when more than 70 % of dopaminergic cells are lost, and the definitive diagnosis of PD can only be made histologically at post-mortem, with few biomarkers available. In this study, a rotenone-induced rodent model of PD was employed to investigate retinal manifestations in PD and their usefulness in assessing the efficacy of a novel therapeutic intervention with a liposomal formulation of the PPAR-γ (Peroxisome proliferator-activated receptor gamma) agonist rosiglitazone. Retinal assessment was performed using longitudinal in vivo imaging with DARC (detection of apoptosing retinal cells) and OCT (optical coherence tomography) technologies and revealed increased RGCs (Retinal Ganglion Cells) apoptosis and a transient swelling of the retinal layers at day 20 of the rotenone insult. Follow-up of this model demonstrated characteristic histological neurodegenerative changes in the substantia nigra and striatum by day 60, suggesting that retinal changes precede the “traditional” pathological manifestations of PD. The therapeutic effect of systemic administration of different formulations of rosiglitazone was then evaluated, both in the retina and the brain. Of all treatment regimen tested, sustained release administration of liposome-encapsulated rosiglitazone proved to be the most potent therapeutic strategy, as evidenced by its significant neuroprotective effect on retinal neurons at day 20, and on nigrostriatal neurons at day 60, provided convincing evidence for its potential as a treatment for PD. Our results demonstrate significant retinal changes occurring in this model of PD. We show that rosiglitazone can efficiently protect retinal neurons from the rotenone insult, and that systemic administration of liposome-encapsulated rosiglitazone has an enhanced neuroprotective effect on the retina and CNS (Central Nervous System). To our knowledge, this is the first in vivo evidence of RGCs loss and early retinal thickness alterations in a PD model. Together, these findings suggest that retinal changes may be a good surrogate biomarker for PD, which may be used to assess new treatments both experimentally and clinically.
Collapse
|
42
|
Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.06.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Effect of levodopa-carbidopa intestinal gel on resting tremors in patients with advanced Parkinson's disease. NPJ PARKINSONS DISEASE 2016; 2:16015. [PMID: 28725698 PMCID: PMC5516571 DOI: 10.1038/npjparkd.2016.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/19/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
Abstract
Resting tremors occur in more than 70% of patients with advanced Parkinson’s disease (PD). PD patients with resting tremors are typically treated with oral dopaminergic therapy or non-dopaminergic agents. However, treatment response with these medications is inconsistent and often unsatisfactory. Levodopa-carbidopa intestinal gel (LCIG, also known in the United States as carbidopa-levodopa enteral suspension (CLES)), administered continuously by a portable pump via a percutaneous endoscopic gastrojejunostomy (PEG-J) tube, significantly improves motor complications in patients with advanced PD. This was a post hoc analysis of a large phase 3, 12-month, open-label study evaluating long-term safety and efficacy of LCIG via PEG-J tube (NCT00335153). Unified Parkinson’s Disease Rating Scale Part III Question 20 total scores at baseline, measuring resting tremors, were used to stratify patients into three subgroups (none, mild, or significant baseline resting tremors). Out of 354 enrolled patients, 286 had baseline and post-PEG-J assessments of resting tremors and were included in this analysis. At baseline the majority of patients (69%) had no resting tremors, whereas 13% had mild resting tremors, and 18% had significant resting tremors. A complete resolution in resting tremors after 12 months of LCIG treatment was reported for 78% and 70% of patients with mild and significant baseline resting tremors, respectively. Improvements in motor complications and quality of life occurred regardless of degree of baseline resting tremors. LCIG may provide more consistent and sustained improvements in resting tremors that were not well-controlled with optimized oral medication among patients with advanced PD.
Collapse
|
44
|
Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016; 188:1157-1165. [PMID: 27221269 DOI: 10.1503/cmaj.151179] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Philippe Rizek
- Department of Clinical Neurological Sciences, Western University, London, Ont
| | - Niraj Kumar
- Department of Clinical Neurological Sciences, Western University, London, Ont
| | - Mandar S Jog
- Department of Clinical Neurological Sciences, Western University, London, Ont.
| |
Collapse
|
45
|
Kwon KY, Lee HM, Lee SM, Kang SH, Koh SB. Comparison of motor and non-motor features between essential tremor and tremor dominant Parkinson's disease. J Neurol Sci 2016; 361:34-8. [DOI: 10.1016/j.jns.2015.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
|
46
|
Lafo JA, Jones JD, Okun MS, Bauer RM, Price CC, Bowers D. Memory Similarities Between Essential Tremor and Parkinson's Disease: A Final Common Pathway? Clin Neuropsychol 2015; 29:985-1001. [PMID: 26689342 DOI: 10.1080/13854046.2015.1118553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE A growing body of literature supports the view that essential tremor (ET) involves alteration of cerebellar-thalamo-cortical networks which can result in working memory and executive deficits. In this study, we tested the hypothesis that individuals with ET would exhibit worse performance on memory tasks requiring more intrinsic organization and structuring (i.e., word lists) relative to those with fewer 'executive' demands (i.e., stories), similar to that previously observed in individuals with Parkinson's disease (PD). METHOD Participants included a convenience sample of 68 ET patients and 68 idiopathic PD patients, retrospectively matched based on age, education, and sex. All patients underwent routine neuropsychological evaluation assessing recent memory, auditory attention/working memory, language, and executive function. Memory measures included the Hopkins Verbal Learning Test-R and WMS-III Logical Memory. RESULTS Both ET and PD patients performed significantly worse on word list than story memory recall tasks. The magnitude of the difference between these two memory tasks was similar for ET and PD patients. In both patient groups, performance on measures of executive function and auditory attention/working memory was not distinctly correlated with word list vs. story recall. CONCLUSIONS These findings suggest that frontal-executive dysfunction in both ET and PD may negatively influence performance on memory tests that are not inherently organized. Although the pathophysiology of these two 'movement disorders' are quite distinct, both have downstream effects on thalamo-frontal circuitry which may provide a common pathway for a similar memory phenotype. Findings are discussed in terms of neuroimaging evidence, conceptual models, and best practice.
Collapse
Affiliation(s)
- Jacob A Lafo
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Jacob D Jones
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Michael S Okun
- b Department of Neurology , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Russell M Bauer
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Catherine C Price
- a Department of Clinical and Health Psychology, College of Public Health & Health Professions , University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| | - Dawn Bowers
- b Department of Neurology , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA.,c Center for Movement Disorders and Neurorestoration , University of Florida College of Medicine, University of Florida , Gainesville , FL , USA
| |
Collapse
|
47
|
Kassavetis P, Saifee TA, Roussos G, Drougkas L, Kojovic M, Rothwell JC, Edwards MJ, Bhatia KP. Developing a Tool for Remote Digital Assessment of Parkinson's Disease. Mov Disord Clin Pract 2015; 3:59-64. [PMID: 30363542 DOI: 10.1002/mdc3.12239] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 07/10/2015] [Indexed: 11/07/2022] Open
Abstract
Background The natural fluctuation of motor symptoms of Parkinson's disease (PD) makes judgement of any change challenging and the use of clinical scales such as the International Parkinson and Movement Disorder Society (MDS)-UPDRS imperative. Recently developed commodity mobile communication devices, such as smartphones, could possibly be used to assess motor symptoms in PD patients in a convenient way with low cost. We provide the first report on the development and testing of stand-alone software for mobile devices that could be used to assess both tremor and bradykinesia of PD patients. Methods We assessed motor symptoms with a custom-made smartphone application in 14 patients and compared the results with their MDS-UPDRS scores. Results We found significant correlation between five subscores of MDS-UPDRS (rest tremor, postural tremor, pronation-supination, leg agility, and finger tapping) and eight parameters of the data collected with the smartphone. Conclusions These results provide evidence as a proof of principle that smartphones could be a useful tool to objectively assess motor symptoms in PD in clinical and experimental settings.
Collapse
Affiliation(s)
- Panagiotis Kassavetis
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square London United Kingdom.,Department of Neurology Boston University Boston Massachusetts USA
| | - Tabish A Saifee
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square London United Kingdom
| | | | | | - Maja Kojovic
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square London United Kingdom.,Department of Neurology University Medical Center Ljubljana Slovenia
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square London United Kingdom
| | - Mark J Edwards
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square London United Kingdom
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders UCL Institute of Neurology Queen Square London United Kingdom
| |
Collapse
|
48
|
Choi SM, Kim BC, Chang J, Choi KH, Nam TS, Kim JT, Lee SH, Park MS, Yoon W, de Leon MJ. Comparison of the Brain Volume in Essential Tremor and Parkinson's Disease Tremor Using an Automated Segmentation Method. Eur Neurol 2015; 73:303-9. [PMID: 25925562 DOI: 10.1159/000381708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/15/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Essential tremor (ET) and Parkinson's disease (PD) are common neurological disorders in elderly people, and some features of ET and PD may overlap. Quantitative analysis of brain atrophy may be useful in differentiating neurodegenerative disorders. The aim of this study was to identify the volumetric differences of subcortical structures in patients with ET and PD tremor using an automated segmentation method. METHODS Volumetric MRIs were obtained in 45 patients with ET, 45 patients with PD tremor, and 45 age- and sex-matched control subjects. The volume of the different brain structures was measured by the automated segmentation method (FreeSurfer). RESULTS Volumetric data obtained with automated segmentation of cerebral regions showed a significant atrophy of the cerebellum in patients with ET. Cerebellar atrophy of ET patients was more significant in the white matter than in the grey matter, and it was noted only in patients with ET having a head tremor. No volumetric differences were found between the PD group and the control group. CONCLUSION Our study suggests that volumetric differences in subcortical structures using whole brain segmentation method may help to differentiate ET from PD tremor.
Collapse
Affiliation(s)
- Seong-Min Choi
- Department of Neurology, Chonnam National University Hospital, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Beudel M, Little S, Pogosyan A, Ashkan K, Foltynie T, Limousin P, Zrinzo L, Hariz M, Bogdanovic M, Cheeran B, Green AL, Aziz T, Thevathasan W, Brown P. Tremor Reduction by Deep Brain Stimulation Is Associated With Gamma Power Suppression in Parkinson's Disease. Neuromodulation 2015; 18:349-54. [PMID: 25879998 PMCID: PMC4829100 DOI: 10.1111/ner.12297] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objectives Rest tremor is a cardinal symptom of Parkinson's disease (PD), and is readily suppressed by deep brain stimulation (DBS) of the subthalamic nucleus (STN). The therapeutic effect of the latter on bradykinesia and rigidity has been associated with the suppression of exaggerated beta (13–30 Hz) band synchronization in the vicinity of the stimulating electrode, but there is no correlation between beta suppression and tremor amplitude. In the present study, we investigate whether tremor suppression is related to suppression of activities at other frequencies. Materials and Methods We recorded hand tremor and contralateral local field potential (LFP) activity from DBS electrodes during stimulation of the STN in 15 hemispheres in 11 patients with PD. DBS was applied with increasing voltages starting at 0.5 V until tremor suppression was achieved or until 4.5 V was reached. Results Tremor was reduced to 48.9% ± 10.9% of that without DBS once stimulation reached 2.5–3 V (t14 = −4.667, p < 0.001). There was a parallel suppression of low gamma (31–45 Hz) power to 92.5% ± 3% (t14 = −2.348, p = 0.034). This was not seen over a band containing tremor frequencies and their harmonic (4–12 Hz), or over the beta band. Moreover, low gamma power correlated with tremor severity (mean r = 0.43 ± 0.14, p = 0.008) within subjects. This was not the case for LFP power in the other two bands. Conclusions Our findings support a relationship between low gamma oscillations and PD tremor, and reinforce the principle that the subthalamic LFP is a rich signal that may contain information about the severity of multiple different Parkinsonian features.
Collapse
Affiliation(s)
- Martijn Beudel
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Simon Little
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alek Pogosyan
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital, Kings College London, London, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience & Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Marko Bogdanovic
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander L Green
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tipu Aziz
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Wesley Thevathasan
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.,The Bionics Institute, Melbourne, Victoria, Australia
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
García AM, Brea J, Morales-García JA, Perez DI, González A, Alonso-Gil S, Gracia-Rubio I, Ros-Simó C, Conde S, Cadavid MI, Loza MI, Perez-Castillo A, Valverde O, Martinez A, Gil C. Modulation of cAMP-specific PDE without emetogenic activity: new sulfide-like PDE7 inhibitors. J Med Chem 2014; 57:8590-607. [PMID: 25264825 DOI: 10.1021/jm501090m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A forward chemical genetic approach was followed to discover new targets and lead compounds for Parkinson's disease (PD) treatment. By analysis of the cell protection produced by some small molecules, a diphenyl sulfide compound was revealed to be a new phosphodiesterase 7 (PDE7) inhibitor and identified as a new hit. This result allows us to confirm the utility of PDE7 inhibitors as a potential pharmacological treatment of PD. On the basis of these data, a diverse family of diphenyl sulfides has been developed and pharmacologically evaluated in the present work. Moreover, to gain insight into the safety of PDE7 inhibitors for human chronic treatment, we evaluated the new compounds in a surrogate emesis model, showing nonemetic effects.
Collapse
Affiliation(s)
- Ana M García
- Centro de Investigaciones Biológicas (CSIC) , Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|