1
|
Carrillo JT, Borthakur D. Characterization of a plant S-adenosylmethionine synthetase from Acacia koa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108618. [PMID: 38631157 DOI: 10.1016/j.plaphy.2024.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/05/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
The Acacia koa S-adenosylmethionine (SAM) synthetase was identified from transcriptome data and cloned into the T7-expression vector pEt14b. Assays indicate a thermoalkaliphic enzyme which tolerates conditions up to pH 10.5, 55 °C and 3 M KCl. In vitro examples of plant SAM-synthetase activity are scarce, however this study provides supporting evidence that these extremophilic properties may actually be typical for this plant enzyme. Enzyme kinetic constants (Km = 1.44 mM, Kcat = 1.29 s-1, Vmax 170 μM. min-1) are comparable to nonplant SAM-synthetases except that substrate inhibition was not apparent at 10 mM ATP/L-methionine. Methods were explored in this study to reduce feedback inhibition, which is known to limit SAM-synthetase activity in vitro. Four single-point mutation variants of the Acacia koa SAM-synthetase were produced, each with varying degrees of reduced reaction rate, greater sensitivity to product inhibition and loss of thermophilic properties. Although an enhanced mutant was not produced, this study describes the first mutagenesis of a plant SAM-synthetase. Overcoming feedback inhibition was accomplished by the addition of organic solvent to enzyme assays. Acetonitrile, methanol or dimethylformamide, when included as 25% of the assay volume, improved total SAM production by 30-65%.
Collapse
Affiliation(s)
- James T Carrillo
- University of Hawaii at Manoa, Department of Molecular Biosciences and Bioengineering, 1955 East-West Road, Agricultural Sciences 218, Honolulu, HI, 96822, USA.
| | - Dulal Borthakur
- University of Hawaii at Manoa, Department of Molecular Biosciences and Bioengineering, 1955 East-West Road, Agricultural Sciences 218, Honolulu, HI, 96822, USA.
| |
Collapse
|
2
|
Polar Interactions at the Dimer-Dimer Interface of Methionine Adenosyltransferase MAT I Control Tetramerization. Int J Mol Sci 2021; 22:ijms222413206. [PMID: 34948004 PMCID: PMC8703375 DOI: 10.3390/ijms222413206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Catalytic MATα1 subunits associate into kinetically distinct homo-dimers (MAT III) and homo-tetramers (MAT I) that synthesize S-adenosylmethionine in the adult liver. Pathological reductions in S-adenosylmethionine levels correlate with MAT III accumulation; thus, it is important to know the determinants of dimer–dimer associations. Here, polar interactions (<3.5 Å) at the rat MAT I dimer–dimer interface were disrupted by site-directed mutagenesis. Heterologous expression rendered decreased soluble mutant MATα1 levels that appeared mostly as dimers. Substitutions at the B1–B2 or B3–C1 β-strand loops, or changes in charge on helix α2 located behind, induced either MAT III or MAT I accumulation. Notably, double mutants combining neutral changes on helix α2 with substitutions at either β-strand loop further increased MAT III content. Mutations had negligible impact on secondary or tertiary protein structure, but induced changes of 5–10 °C in thermal stability. All mutants preserved tripolyphosphatase activity, although AdoMet synthesis was only detected in single mutants. Kinetic parameters were altered in all purified proteins, their AdoMet synthesis Vmax and methionine affinities correlating with the association state induced by the corresponding mutations. In conclusion, polar interactions control MATα1 tetramerization and kinetics, diverse effects being induced by changes on opposite β-sheet loops putatively leading to subtle variations in central domain β-sheet orientation.
Collapse
|
3
|
Panmanee J, Bradley-Clarke J, Mato JM, O'Neill PM, Antonyuk SV, Hasnain SS. Control and regulation of S-Adenosylmethionine biosynthesis by the regulatory β subunit and quinolone-based compounds. FEBS J 2019; 286:2135-2154. [PMID: 30776190 PMCID: PMC6850014 DOI: 10.1111/febs.14790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/17/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Methylation is an underpinning process of life and provides control for biological processes such as DNA synthesis, cell growth, and apoptosis. Methionine adenosyltransferases (MAT) produce the cellular methyl donor, S‐Adenosylmethionine (SAMe). Dysregulation of SAMe level is a relevant event in many diseases, including cancers such as hepatocellular carcinoma and colon cancer. In addition, mutation of Arg264 in MATα1 causes isolated persistent hypermethioninemia, which is characterized by low activity of the enzyme in liver and high level of plasma methionine. In mammals, MATα1/α2 and MATβV1/V2 are the catalytic and the major form of regulatory subunits, respectively. A gating loop comprising residues 113–131 is located beside the active site of catalytic subunits (MATα1/α2) and provides controlled access to the active site. Here, we provide evidence of how the gating loop facilitates the catalysis and define some of the key elements that control the catalytic efficiency. Mutation of several residues of MATα2 including Gln113, Ser114, and Arg264 lead to partial or total loss of enzymatic activity, demonstrating their critical role in catalysis. The enzymatic activity of the mutated enzymes is restored to varying degrees upon complex formation with MATβV1 or MATβV2, endorsing its role as an allosteric regulator of MATα2 in response to the levels of methionine or SAMe. Finally, the protein–protein interacting surface formed in MATα2:MATβ complexes is explored to demonstrate that several quinolone‐based compounds modulate the activity of MATα2 and its mutants, providing a rational for chemical design/intervention responsive to the level of SAMe in the cellular environment. Enzymes Methionine adenosyltransferase (http://www.chem.qmul.ac.uk/iubmb/enzyme/EC2/5/1/6.html). Database Structural data are available in the RCSB PDB database under the PDB ID http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FBN (Q113A), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FBP (S114A: P22121), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FBO (S114A: I222), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FCB (P115G), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FCD (R264A), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6FAJ (wtMATα2: apo), http://www.rcsb.org/pdb/search/structidSearch.do?structureId=6G6R (wtMATα2: holo)
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Jack Bradley-Clarke
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Jose M Mato
- Metabolomics Unit, CIC bioGUNE, CIBERehd, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Paul M O'Neill
- Department of Chemistry, School of Physical Sciences, University of Liverpool, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - S Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| |
Collapse
|
4
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
5
|
Garrido F, Pacheco M, Vargas-Martínez R, Velasco-García R, Jorge I, Serrano H, Portillo F, Vázquez J, Pajares MÁ. Identification of hepatic protein-protein interaction targets for betaine homocysteine S-methyltransferase. PLoS One 2018; 13:e0199472. [PMID: 29924862 PMCID: PMC6010280 DOI: 10.1371/journal.pone.0199472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023] Open
Abstract
Protein-protein interactions are an important mechanism for the regulation of enzyme function allowing metabolite channeling, crosstalk between pathways or the introduction of post-translational modifications. Therefore, a number of high-throughput studies have been carried out to shed light on the protein networks established under different pathophysiological settings. Surprisingly, this type of information is quite limited for enzymes of intermediary metabolism such as betaine homocysteine S-methyltransferase, despite its high hepatic abundancy and its role in homocysteine metabolism. Here, we have taken advantage of two approaches, affinity purification combined with mass spectrometry and yeast two-hybrid, to further uncover the array of interactions of betaine homocysteine S-methyltransferase in normal liver of Rattus norvegicus. A total of 131 non-redundant putative interaction targets were identified, out of which 20 were selected for further validation by coimmunoprecipitation. Interaction targets validated by two different methods include: S-methylmethionine homocysteine methyltransferase or betaine homocysteine methyltransferase 2, methionine adenosyltransferases α1 and α2, cAMP-dependent protein kinase catalytic subunit alpha, 4-hydroxyphenylpyruvic acid dioxygenase and aldolase b. Network analysis identified 122 nodes and 165 edges, as well as a limited number of KEGG pathways that comprise: the biosynthesis of amino acids, cysteine and methionine metabolism, the spliceosome and metabolic pathways. These results further expand the connections within the hepatic methionine cycle and suggest putative cross-talks with additional metabolic pathways that deserve additional research.
Collapse
Affiliation(s)
- Francisco Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - María Pacheco
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Rocío Vargas-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Roberto Velasco-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Group, Spanish National Center for Cardiovascular Research (CNIC) and CIBERCV, Melchor Fernández de Almagro 3, Madrid, Spain
| | - Horacio Serrano
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Francisco Portillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Group, Spanish National Center for Cardiovascular Research (CNIC) and CIBERCV, Melchor Fernández de Almagro 3, Madrid, Spain
| | - María Ángeles Pajares
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, Madrid, Spain
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Zano SP, Pavlovsky AG, Viola RE. Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni. ACTA ACUST UNITED AC 2014; 70:442-50. [PMID: 24531478 DOI: 10.1107/s139900471303023x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/04/2013] [Indexed: 05/28/2023]
Abstract
S-Adenosylmethionine (AdoMet) participates in a wide range of methylation and other group-transfer reactions and also serves as the precursor for two groups of quorum-sensing molecules that function as regulators of the production of virulence factors in Gram-negative bacteria. The synthesis of AdoMet is catalyzed by AdoMet synthetases (MATs), a ubiquitous family of enzymes found in species ranging from microorganisms to mammals. The AdoMet synthetase from the bacterium Campylobacter jejuni (cjMAT) is an outlier among this homologous enzyme family, with lower sequence identity, numerous insertions and substitutions, and higher catalytic activity compared with other bacterial MATs. Alterations in the structure of this enzyme provide an explanation for its unusual dimeric quaternary structure relative to the other MATs. Taken together with several active-site substitutions, this new structure provides insights into its improved kinetic properties with alternative substrates.
Collapse
Affiliation(s)
- Stephen P Zano
- Department of Chemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Ronald E Viola
- Department of Chemistry, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
7
|
Zano SP, Bhansali P, Luniwal A, Viola RE. Alternative substrates selective for S-adenosylmethionine synthetases from pathogenic bacteria. Arch Biochem Biophys 2013; 536:64-71. [PMID: 23711747 DOI: 10.1016/j.abb.2013.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 01/29/2023]
Abstract
S-adenosyl-l-methionine (AdoMet) synthetase catalyzes the production of AdoMet, the major biological methyl donor and source of methylene, amino, ribosyl, and aminopropyl groups in the metabolism of all known organism. In addition to these essential functions, AdoMet can also serve as the precursor for two different families of quorum sensing molecules that trigger virulence in Gram-negative human pathogenic bacteria. The enzyme responsible for AdoMet biosynthesis has been cloned, expressed and purified from several of these infectious bacteria. AdoMet synthetase (MAT) from Neisseria meningitidis shows similar kinetic parameters to the previously characterized Escherichia coli enzyme, while the Pseudomonas aeruginosa enzyme has a decreased catalytic efficiency for its MgATP substrate. In contrast, the more distantly related MAT from Campylobacter jejuni has an altered quaternary structure and possesses a higher catalytic turnover than the more closely related family members. Methionine analogs have been examined to delineate the substrate specificity of these enzyme forms, and several alternative substrates have been identified with the potential to block quorum sensing while still serving as precursors for essential methyl donation and radical generation reactions.
Collapse
Affiliation(s)
- Stephen P Zano
- Department of Chemistry, The University of Toledo, Toledo, OH 43606, United States
| | | | | | | |
Collapse
|
8
|
How are mammalian methionine adenosyltransferases regulated in the liver? A focus on redox stress. FEBS Lett 2013; 587:1711-6. [PMID: 23669363 DOI: 10.1016/j.febslet.2013.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/24/2013] [Accepted: 04/28/2013] [Indexed: 12/20/2022]
Abstract
S-adenosylmethionine synthesis is a key process for cell function, and needs to be regulated at multiple levels. In recent years, advances in the knowledge of methionine adenosyltransferases have been significant. The discovery of nuclear localization of these enzymes suggests their transport to provide the methyl donor, S-adenosylmethionine, for DNA and histone methyltransferases in epigenetic modifications, opening new regulatory possibilities. Previous hypotheses considered only the cytoplasmic regulation of these enzymes, hence the need of an update to integrate recent findings. Here, we focus mainly on the liver and redox mechanisms, and their putative effects on localization and interactions of methionine adenosyltransferases.
Collapse
|
9
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
10
|
Nozaki T, Ali V, Tokoro M. Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa. ADVANCES IN PARASITOLOGY 2005; 60:1-99. [PMID: 16230102 DOI: 10.1016/s0065-308x(05)60001-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulfur-containing amino acids play indispensable roles in a wide variety of biological activities including protein synthesis, methylation, and biosynthesis of polyamines and glutathione. Biosynthesis and catabolism of these amino acids need to be carefully regulated to achieve the requirement of the above-mentioned activities and also to eliminate toxicity attributable to the amino acids. Genome-wide analyses of enzymes involved in the metabolic pathways of sulfur-containing amino acids, including transsulfuration, sulfur assimilatory de novo cysteine biosynthesis, methionine cycle, and degradation, using genome databases available from a variety of parasitic protozoa, reveal remarkable diversity between protozoan parasites and their mammalian hosts. Thus, the sulfur-containing amino acid metabolic pathways are a rational target for the development of novel chemotherapeutic and prophylactic agents against diseases caused by protozoan parasites. These pathways also demonstrate notable heterogeneity among parasites, suggesting that the metabolism of sulfur-containing amino acids reflects the diversity of parasitism among parasite species, and probably influences their biology and pathophysiology such as virulence competence and stress defense.
Collapse
Affiliation(s)
- Tomoyoshi Nozaki
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | |
Collapse
|
11
|
Sanchez-Perez GF, Gasset M, Calvete JJ, Pajares MA. Role of an intrasubunit disulfide in the association state of the cytosolic homo-oligomer methionine adenosyltransferase. J Biol Chem 2003; 278:7285-93. [PMID: 12496263 DOI: 10.1074/jbc.m210177200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant rat liver methionine adenosyltransferase has been refolded into fully active tetramers (MAT I) and dimers (MAT III), using as a source chaotrope-solubilized aggregates resulting from specific washes of inclusion bodies. The conditions of refolding, dialysis in the presence of 10 mm dithiothreitol or 10 mm GSH with 1 mm GSSG, allowed the production of both isoforms, the nature of the redox agent determining the capacity of the final product (MAT I/III) to interconvert. Refolding in the presence of 10 mm dithiothreitol yielded mainly MAT III in a concentration-dependent equilibrium with the homotetramer MAT I. However, refolding in the presence of the redox pair GSH/GSSG resulted in a stable MAT I and III mixture. Blockage of dimer-tetramer interconversion has been found related to the production of a single intramolecular disulfide in methionine adenosyltransferase during the GSH/GSSG folding process. The residues involved in this disulfide have been identified by mass spectrometry and using a set of single cysteine mutants as cysteines 35 and 61. In addition, a kinetic intermediate in the MAT I dissociation to MAT III has been detected. The physiological importance of these results is discussed in light of the structural and regulatory data available.
Collapse
Affiliation(s)
- Gabino F Sanchez-Perez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Tolan DR, Schuler B, Beernink PT, Jaenicke R. Thermodynamic Analysis of the Dissociation of the Aldolase Tetramer Substituted at One or Both of the Subunit Interfaces. Biol Chem 2003; 384:1463-71. [PMID: 14669989 DOI: 10.1515/bc.2003.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fructose-1,6-bis(phosphate) aldolase isologous tetramer tightly associates through two different subunit interfaces defined by its 222 symmetry. Both single- and double-interfacial mutant aldolases have a destabilized quaternary structure, but there is little effect on the catalytic activity. These enzymes are however thermolabile. This study demonstrates the temperature-dependent dissociation of the mutant enzymes and determines the dissociation free energies of both mutant and native aldolase. Subunit dissociation is measured by sedimentation equilibrium in the analytical ultracentrifuge. At 25 degrees C the tetramer-dimer dissociation constants for each single-mutant enzyme are similar, about 10(-6) M. For the double-mutant enzyme, sedimentation velocity experiments on sucrose density gradients support a tetramer-monomer equilibrium. Furthermore, sedimentation equilibrium experiments determined a dissociation constant of 10(-15) M3 for the double-mutant enzyme. By the same methods the upper limit for the dissociation constant of wild-type aldolase A is approximately 10(-28) M3, which indicates an extremely stable tetramer. The thermodynamic values describing monomer-tetramer and dimer-tetramer equilibria are analyzed with regard to possible cooperative interaction between the two subunit interfaces.
Collapse
Affiliation(s)
- Dean R Tolan
- Biology Department, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | | | |
Collapse
|
13
|
LeGros L, Halim AB, Chamberlin ME, Geller A, Kotb M. Regulation of the human MAT2B gene encoding the regulatory beta subunit of methionine adenosyltransferase, MAT II. J Biol Chem 2001; 276:24918-24. [PMID: 11337507 DOI: 10.1074/jbc.m102816200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet), a key molecule in transmethylation reactions and polyamine biosynthesis. The MAT II isozyme consists of a catalytic alpha2 and a regulatory beta subunit. Down-regulation of the MAT II beta subunit expression causes a 6-10-fold increase in intracellular AdoMet levels. To understand the mechanism by which the beta subunit expression is regulated, we cloned the MAT2B gene, determined its organization, characterized its 5'-flanking sequences, and elucidated the in vitro and in vivo regulation of its promoter. Transcription of the MAT2B gene initiates at position -203 relative to the translation start site. Promoter deletion analysis defined a minimal promoter between positions +52 and +93 base pairs, a GC-rich region. Inclusion of the sequences between -4 and +52 enhanced promoter activity; this was primarily because of an Sp1 recognition site at +9/+15. The inclusion of sequences up to position -115 provided full activity; this was attributed to a TATA at -32. The Sp1 site at position +9 was key for the formation of protein.DNA complexes. Mutation of both the Sp1 site at +9 and the TATA at -32 reduced promoter activity to its minimal level. Supershift assays showed no effect of the anti-Sp1 antibody on complex formation, whereas the anti-Sp3 antibody had a strong effect on protein.DNA complex formation, suggesting that Sp3 is one of the main factors binding to this Sp1 site. Chromatin immunoprecipitation assays supported the involvement of both Sp1 and Sp3 in complexes formed on the MAT2B promoter. The data show that the 5'-untranslated sequences play an important role in regulating the MAT2B gene and identifies the Sp1 site at +9 as a potential target for modulating MAT2B expression, a process that can have a major effect on intracellular AdoMet levels.
Collapse
Affiliation(s)
- L LeGros
- Department of Surgery, University of Tennessee, 956 Court Ave., Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
14
|
González B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz-Aparicio J. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. J Mol Biol 2000; 300:363-75. [PMID: 10873471 DOI: 10.1006/jmbi.2000.3858] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two oligomeric forms, a tetramer (MAT I) and a dimer (MAT III), MAT I being the one that shows a higher level of affinity for methionine but a lower SAM synthesis capacity. We have solved the crystal structure of rat liver MAT I at 2.7 A resolution, complexed with a methionine analogue: l-2-amino-4-methoxy-cis-but-3-enoic acid (l-cisAMB). The enzyme consists of four identical subunits arranged in two tight dimers that are related by crystallographic 2-fold symmetry. The crystal structure shows the positions of the relevant cysteine residues in the chain, and that Cys35 and Cys61 are perfectly oriented for forming a disulphide link. This result leads us to propose a hypothesis to explain the control of MAT I/III exchange and hence, the effects observed on activity. We have identified the methionine-binding site into the active-site cavity, for the first time. The l-cisAMB inhibitor is stacked against Phe251 aromatic ring in a rather planar conformation, and its carboxylate group coordinates a Mg(2+), which, in turn, is linked to Asp180. The essential role of the involved residues in MAT activity has been confirmed by site-directed mutagenesis. Phe251 is exposed to solvent and is located in the beginning of the flexible loop Phe251-Ala260 that is connecting the N-terminal domain to the central domain. We postulate that a conformational change may take place during the enzymatic reaction and this is possibly the reason of the unusual two-step mechanism involving tripolyphosphate hydrolysis. Other important mechanistic implications are discussed on the light of the results. Moreover, the critical role that certain residues identified in this study may have in methionine recognition opens further possibilities for rational drug design.
Collapse
Affiliation(s)
- B González
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
LeGros HL, Halim AB, Geller AM, Kotb M. Cloning, expression, and functional characterization of the beta regulatory subunit of human methionine adenosyltransferase (MAT II). J Biol Chem 2000; 275:2359-66. [PMID: 10644686 DOI: 10.1074/jbc.275.4.2359] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAT II, the extrahepatic form of methionine adenosyltransferase (MAT), consists of catalytic alpha(2)/alpha(2') subunits and a noncatalytic beta subunit, believed to have a regulatory function. The full-length cDNA that encodes the beta subunit of human MAT II was cloned and found to encode for a 334-amino acid protein with a calculated molecular weight of 37,552. Analysis of sequence homology showed similarity with bacterial enzymes that catalyze the reduction of TDP-linked sugars. The beta subunit cDNA was cloned into the pQE-30 expression vector, and the recombinant His tagged protein, which was expressed in Escherichia coli, was recognized by antibodies to the human MAT II, to synthetic peptides copying the sequence of native beta subunit protein, and to the rbeta protein. There is no cross-reactivity between the MAT II alpha(2) or beta subunits. None of the anti-beta subunit antibodies reacted with protein extracts of E. coli host cells, suggesting that these bacteria have no beta subunit protein. Interestingly, the rbeta subunit associated with E. coli as well as human MAT alpha subunits. This association changed the kinetic properties of both enzymes and lowered the K(m) of MAT for L-methionine. Together, the data show that we have cloned and expressed the human MAT II beta subunit and confirmed its long suspected regulatory function. This knowledge affords a molecular means by which MAT activity and consequently the levels of AdoMet may be modulated in mammalian cells.
Collapse
Affiliation(s)
- H L LeGros
- Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA
| | | | | | | |
Collapse
|
16
|
Martínez-Chantar ML, Pajares MA. Assignment of a single disulfide bridge in rat liver methionine adenosyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:132-7. [PMID: 10601859 DOI: 10.1046/j.1432-1327.2000.00974.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rat liver methionine adenosyltransferase incorporated 8 mol of N-ethylmaleimide per mol of subunit upon denaturation in the presence of 8 M urea, whereas 10 such groups were labelled when dithiothreitol was also included. This observation prompted a re-examination of the state of the thiol groups, which was carried out using peptide mapping, amino acid analysis and N-terminal sequencing. The results obtained revealed a disulfide bridge between Cys35 and Cys61. This disulfide did not appear to be conserved because cysteines homologous to residue 61 do not exist in methionine adenosyltransferases of other origins, therefore suggesting its importance for the differential aspects of the liver-specific enzyme.
Collapse
Affiliation(s)
- M L Martínez-Chantar
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
17
|
Halim AB, LeGros L, Geller A, Kotb M. Expression and functional interaction of the catalytic and regulatory subunits of human methionine adenosyltransferase in mammalian cells. J Biol Chem 1999; 274:29720-5. [PMID: 10514445 DOI: 10.1074/jbc.274.42.29720] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet). The mammalian MAT II isozyme consists of catalytic alpha(2) and regulatory beta subunits. The aim of this study was to investigate the interaction and kinetic behavior of the human MAT II subunit proteins in mammalian cells. COS-1 cells were transiently transfected with pTargeT vector harboring full-length cDNA that encodes for the MAT II alpha(2) or beta subunits. Expression of the His-tagged recombinant alpha(2) (ralpha(2)) subunit in COS-1 cells markedly increased MAT II activity and resulted in a shift in the K(m) for L-methionine (L-Met) from 15 microM (endogenous MAT II) to 75 microM (ralpha(2)), and with the apparent existence of two kinetic forms of MAT in the transfected COS-1 cell extracts. By contrast, expression of the recombinant beta (rbeta) subunit had no effect on the K(m) for L-Met of the endogenous MAT II, while it did cause an increase in both the V(max) and the specific activity of endogenous MAT. Co-expression of both ralpha(2) and rbeta subunits resulted in a significant increase of MAT specific activity with the appearance of a single kinetic form of MAT (K(m) = 20 microM). The recombinant MAT II alpha(2) and rbeta subunit associated spontaneously either in cell-free system or in COS-1 cells co-expressing both subunits. Analysis of nickel-agarose-purified His-tagged ralpha(2) subunit from COS-1 cell extracts showed that the beta subunit co-purified with the alpha(2) subunit. Furthermore, the alpha(2) and beta subunits co-migrated in native polyacrylamide gels. Together, the data provide evidence for alpha(2) and beta MAT subunit association. In addition, the beta subunit regulated MAT II activity by reducing its K(m) for L-Met and by rendering the enzyme more susceptible to feedback inhibition by AdoMet. We believe that the previously described differential expression of MAT II beta subunit may be an important mechanism by which MAT activity can be modulated to provide different levels of AdoMet that may be required at different stages of cell growth and differentiation.
Collapse
Affiliation(s)
- A B Halim
- Department of Surgery, University of Tennessee, Memphis, Tennessee 38104, USA
| | | | | | | |
Collapse
|
18
|
Ruiz F, Corrales FJ, Miqueo C, Mato JM. Nitric oxide inactivates rat hepatic methionine adenosyltransferase In vivo by S-nitrosylation. Hepatology 1998; 28:1051-7. [PMID: 9755242 DOI: 10.1002/hep.510280420] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the mechanism of nitric oxide (NO) action on hepatic methionine adenosyltransferase (MAT) activity using S-nitrosoglutathione (GSNO) as NO donor. Hepatic MAT plays an essential role in the metabolism of methionine, converting this amino acid into S-adenosylmethionine. Hepatic MAT exists in two oligomeric states: as a tetramer (MAT I) and as a dimer (MAT III) of the same subunit. This subunit contains 10 cysteine residues. In MAT I, S-nitrosylation of 1 thiol residue per subunit was associated with a marked inactivation of the enzyme (about 70%) that was reversed by glutathione (GSH). In MAT III, S-nitrosylation of 3 thiol residues per subunit led to a similar inactivation of the enzyme, which was also reversed by GSH. Incubation of isolated rat hepatocytes with S-nitrosoglutathione monoethyl ester (EGSNO), a NO donor permeable through the cellular membrane, induced a dose-dependent inactivation of MAT that was reversed by removing the NO donor from the cell suspension. MAT, purified from isolated rat hepatocytes, contained S-nitrosothiol groups and the addition of increasing concentrations of EGSNO to the hepatocyte suspension led to a progressive S-nitrosylation of the enzyme. Removal of the NO donor from the incubation media resulted in loss of most NO groups associated to the enzyme. Finally, induction in rats of the production of NO, by the administration of bacterial lipopolysaccharide (LPS), induced a fivefold increase in the S-nitrosylation of hepatic MAT, which led to a marked inactivation of the enzyme. Thus, the activity of liver MAT appears to be regulated in vivo by S-nitrosylation.
Collapse
Affiliation(s)
- F Ruiz
- Division of Hepatology and Gene Therapy, Department of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|