1
|
Liu Z, Gan Y, Shen Z, Cai S, Wang X, Li Y, Li X, Fu H, Chen J, Li N. Role of copper homeostasis and cuproptosis in heart failure pathogenesis: implications for therapeutic strategies. Front Pharmacol 2025; 15:1527901. [PMID: 39850564 PMCID: PMC11754225 DOI: 10.3389/fphar.2024.1527901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Copper is an essential micronutrient involved in various physiological processes in various cell types. Consequently, dysregulation of copper homeostasis-either excessive or deficient-can lead to pathological changes, such as heart failure (HF). Recently, a new type of copper-dependent cell death known as cuproptosis has drawn increasing attention to the impact of copper dyshomeostasis on HF. Notably, copper dyshomeostasis was associated with the occurrence of HF. Hence, this review aimed to investigate the biological processes involved in copper uptake, transport, excretion, and storage at both the cellular and systemic levels in terms of cuproptosis and HF, along with the underlying mechanisms of action. Additionally, the role of cuproptosis and its related mitochondrial dysfunction in HF pathogenesis was analyzed. Finally, we reviewed the therapeutic potential of current drugs that target copper metabolism for treating HF. Overall, the conclusions of this review revealed the therapeutic potential of copper-based therapies that target cuproptosis for the development of strategies for the treatment of HF.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhen Shen
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Siqi Cai
- College of Art, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Xizhen Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Tian Z, Jiang S, Zhou J, Zhang W. Copper homeostasis and cuproptosis in mitochondria. Life Sci 2023; 334:122223. [PMID: 38084674 DOI: 10.1016/j.lfs.2023.122223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Mitochondria serve as sites for energy production and are essential for regulating various forms of cell death induced by metal metabolism, targeted anticancer drugs, radiotherapy and immunotherapy. Cuproptosis is an autonomous form of cell death that depends on copper (Cu) and mitochondrial metabolism. Although the recent discovery of cuproptosis highlights the significance of Cu and mitochondria, there is still a lack of biological evidence and experimental verification for the underlying mechanism. We provide an overview of how Cu and cuproptosis affect mitochondrial morphology and function. Through comparison with ferroptosis, similarities and differences in mitochondrial metabolism between cuproptosis and ferroptosis have been identified. These findings provide implications for further exploration of cuproptotic mechanisms. Furthermore, we explore the correlation between cuproptosis and immunotherapy or radiosensitivity. Ultimately, we emphasize the therapeutic potential of targeting cuproptosis as a novel approach for disease treatment.
Collapse
Affiliation(s)
- Ziying Tian
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Su Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jieyu Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
3
|
The Joint Influence of Tl+ and Thiol-Modifying Agents on Rat Liver Mitochondrial Parameters In Vitro. Int J Mol Sci 2022; 23:ijms23168964. [PMID: 36012228 PMCID: PMC9409397 DOI: 10.3390/ijms23168964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent data have shown that the mitochondrial permeability transition pore (MPTP) is the complex of the Ca2+-modified adenine nucleotide translocase (ANT) and the Ca2+-modified ATP synthase. We found in a previous study that ANT conformational changes may be involved in Tl+-induced MPTP opening in the inner membrane of Ca2+-loaded rat liver mitochondria. In this study, the effects of thiol-modifying agents (eosin-5-maleimide (EMA), fluorescein isothiocyanate (FITC), Cu(o-phenanthroline)2 (Cu(OP)2), and embelin (Emb)), and MPTP inhibitors (ADP, cyclosporine A (CsA), n-ethylmaleimide (NEM), and trifluoperazine (TFP)) on MPTP opening were tested simultaneously with increases in swelling, membrane potential (ΔΨmito) decline, decreases in state 3, 4, and 3UDNP (2,4-dinitrophenol-uncoupled) respiration, and changes in the inner membrane free thiol group content. The effects of these thiol-modifying agents on the studied mitochondrial characteristics were multidirectional and showed a clear dependence on their concentration. This research suggests that Tl+-induced MPTP opening in the inner membrane of calcium-loaded mitochondria may be caused by the interaction of used reagents (EMA, FITC, Emb, Cu(OP)2) with active groups of ANT, the mitochondrial phosphate carrier (PiC) and the mitochondrial respiratory chain complexes. This study provides further insight into the causes of thallium toxicity and may be useful in the development of new treatments for thallium poisoning.
Collapse
|
4
|
Buelna-Chontal M, Hernández-Esquivel L, Correa F, Díaz-Ruiz JL, Chávez E. Tamoxifen inhibits mitochondrial oxidative stress damage induced by copper orthophenanthroline. Cell Biol Int 2016; 40:1349-1356. [PMID: 27730705 DOI: 10.1002/cbin.10690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022]
Abstract
In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Jorge Luis Díaz-Ruiz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, México
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, D.F. México, 14080, México
| |
Collapse
|
5
|
Antineoplastic copper coordinated complexes (Casiopeinas) uncouple oxidative phosphorylation and induce mitochondrial permeability transition in cardiac mitochondria and cardiomyocytes. J Bioenerg Biomembr 2016; 48:43-54. [PMID: 26739598 DOI: 10.1007/s10863-015-9640-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/27/2015] [Indexed: 01/10/2023]
Abstract
Copper-based drugs, Casiopeinas (Cas), exhibit antiproliferative and antineoplastic activities in vitro and in vivo, respectively. Unfortunately, the clinical use of these novel chemotherapeutics could be limited by the development of dose-dependent cardiotoxicity. In addition, the molecular mechanisms underlying Cas cardiotoxicity and anticancer activity are not completely understood. Here, we explore the potential impact of Cas on the cardiac mitochondria energetics as the molecular mechanisms underlying Cas-induced cardiotoxicity. To explore the properties on mitochondrial metabolism, we determined Cas effects on respiration, membrane potential, membrane permeability, and redox state in isolated cardiac mitochondria. The effect of Cas on the mitochondrial membrane potential (Δψm) was also evaluated in isolated cardiomyocytes by confocal microscopy and flow cytometry. Cas IIIEa, IIgly, and IIIia predominately inhibited maximal NADH- and succinate-linked mitochondrial respiration, increased the state-4 respiration rate and reduced membrane potential, suggesting that Cas also act as mitochondrial uncouplers. Interestingly, cyclosporine A inhibited Cas-induced mitochondrial depolarization, suggesting the involvement of mitochondrial permeability transition pore (mPTP). Similarly to isolated mitochondria, in isolated cardiomyocytes, Cas treatment decreased the Δψm and cyclosporine A treatment prevented mitochondrial depolarization. The production of H2O2 increased in Cas-treated mitochondria, which might also increase the oxidation of mitochondrial proteins such as adenine nucleotide translocase. In accordance, an antioxidant scavenger (Tiron) significantly diminished Cas IIIia mitochondrial depolarization. Cas induces a prominent loss of membrane potential, associated with alterations in redox state, which increases mPTP opening, potentially due to thiol-dependent modifications of the pore, suggesting that direct or indirect inhibition of mPTP opening might reduce Cas-induced cardiotoxicity.
Collapse
|
6
|
Buelna-Chontal M, Pavón N, Correa F, Hernández-Esquivel L, Chávez E. Titration of lysine residues on adenine nucleotide translocase by fluorescamine induces permeability transition. Cell Biol Int 2013; 38:287-95. [PMID: 23765583 DOI: 10.1002/cbin.10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/27/2013] [Indexed: 11/11/2022]
Abstract
Chemical modification of primary amino groups of mitochondrial membrane proteins by the fluorescent probe fluorescamine induces non-specific membrane permeabilisation. Titration of the lysine ϵ-amino group promoted efflux of accumulated Ca(2+), collapse of transmembrane potential and mitochondrial swelling. Ca(2+) release was inhibited by cyclosporin A. Considering the latter, we assumed that fluorescamine induces permeability transition. Carboxyatractyloside also inhibited the reaction. Using a polyclonal antibody for adenine nucleotide translocase, Western blot analysis showed that the carrier appeared labelled with the fluorescent probe. The results point out the importance of the ϵ-amino group of lysine residues, located in the adenine nucleotide carrier, on the modulation of membrane permeability, since its blockage suffices to promote opening of the non-specific nanopore.
Collapse
Affiliation(s)
- Mabel Buelna-Chontal
- Departamento de Bioquímica Instituto Nacional de Cardiología Ignacio Chávez, Mexico, D.F., 014080, Mexico
| | | | | | | | | |
Collapse
|
7
|
Adiele RC, Stevens D, Kamunde C. Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 2012; 26:164-73. [DOI: 10.1016/j.tiv.2011.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/25/2011] [Accepted: 10/28/2011] [Indexed: 12/14/2022]
|
8
|
The role of a membrane-bound glutathione transferase in the peroxynitrite-induced mitochondrial permeability transition pore: Formation of a disulfide-linked protein complex. Arch Biochem Biophys 2011; 516:160-72. [DOI: 10.1016/j.abb.2011.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 01/16/2023]
|
9
|
Lee KK, Shimoji M, Hossain QS, Sunakawa H, Aniya Y. Novel function of glutathione transferase in rat liver mitochondrial membrane: Role for cytochrome c release from mitochondria☆⁎Some of the data were presented at the ISSX (International Society for Study of Xenobiotics) Meeting, Oct.12, 2007, in Sendai, Japan. Toxicol Appl Pharmacol 2008; 232:109-18. [DOI: 10.1016/j.taap.2008.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/30/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
|
10
|
The effect of N-ethylmaleimide on permeability transition as induced by carboxyatractyloside, agaric acid, and oleate. Cell Biochem Biophys 2008; 51:81-7. [PMID: 18649145 DOI: 10.1007/s12013-008-9016-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
Abstract
In this work, we studied the effect of N-ethylmaleimide on permeability transition. The findings indicate that the amine inhibited the effects of carboxyatractyloside and agaric acid. It is known that these reagents interact with the adenine nucleotide carrier through the cytosolic side. When oleate, which interacts through the matrix side, was used it was found that the amine amplified the effects of oleate on permeability transition. The results also show that N-ethylmaleimide strengthened the inhibition induced by carboxyatractyloside, agaric acid, and oleate on ADP exchange. Furthermore, it was also found that oleate improved the binding of eosin-5-maleimide on the adenine nucleotide translocase.
Collapse
|
11
|
García N, Martínez-Abundis E, Pavón N, Chávez E. On the opening of an insensitive cyclosporin A non-specific pore by phenylarsine plus mersalyl. Cell Biochem Biophys 2007; 49:84-90. [PMID: 17906363 DOI: 10.1007/s12013-007-0047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 11/30/1999] [Accepted: 07/17/2007] [Indexed: 01/08/2023]
Abstract
The purpose of this work was addressed to provide new information on the effect of thiol reagents on mitochondrial non-specific pore opening, and its response to cyclosporin A (CSA). To meet this proposal phenylarsine oxide (PHA) and mersalyl were employed as tools to induce permeability transition and CSA to inhibit it. PHA-induced mitochondrial dysfunction, characterized by Ca2+ efflux, swelling, and membrane de-energization, was inhibited by N-ethylmaleimide and CSA. Conversely, mersalyl failed to inhibit the inducing effect of phenylarsine oxide, it rather strengthened it. In addition, the effect of mersalyl was associated with cross-linking of membrane proteins. The content of membrane thiol groups accessible to react with PHA, mersalyl, and PHA plus mersalyl was determined. In all situations, permeability transition was accompanied by a significant decrease in the whole free membrane thiol content. Interestingly, it is also shown that mersalyl hinders the protective effect of cyclosporin A on PHA-induced matrix Ca2+ efflux.
Collapse
Affiliation(s)
- Noemí García
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano # 1, Col. Sección XVI, Tlalpam, Mexico, DF, 014080, Mexico.
| | | | | | | |
Collapse
|
12
|
García N, Martínez-Abundis E, Pavón N, Chávez E. Sodium inhibits permeability transition by decreasing potassium matrix content in rat kidney mitochondria. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:442-50. [PMID: 16762575 DOI: 10.1016/j.cbpb.2006.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 04/18/2006] [Accepted: 04/18/2006] [Indexed: 01/19/2023]
Abstract
Inner membrane mitochondria undergo a permeability increase elicited after the opening of a nonspecific pore due to supraphysiological matrix Ca2+ load, and the presence of an inducer. Multiple inducers have been used to promote the transition in permeability; among them are carboxyatractyloside (CAT) and reactive oxygen-derived species. In contrast, inhibitors such as ADP and cyclosporin A have been commonly used. In this work, we show that the opening or closure of the nonspecific pore depends on the cationic composition of the incubation medium. It was found that when mitochondria were incubated in either 125 mM KCl or 125 mM LiCl, ADP was essential to maintain selective membrane permeability. Interestingly, the nucleotide was not required when the medium contained 125 mM NaCl. Furthermore, it was established that CAT promotes membrane leakage in K(+)- or Li(+)-incubated mitochondria, while it failed to do so in Na(+)-incubated mitochondria. Evidence is also presented on the ability of Na+ to induce resistance in mitochondria against membrane damage by oxidative stress. Mitochondrial Ca2+ discharge, swelling, and transmembrane electric gradient were analyzed to establish permeability transition. It is concluded that the protection provided by Na+ was accomplished by inducing matrix K+ depletion, which, in turn, diminished the free fraction of matrix Ca2+.
Collapse
Affiliation(s)
- Noemí García
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, DF, México, Mexico
| | | | | | | |
Collapse
|
13
|
Zalk R, Israelson A, Garty E, Azoulay-Zohar H, Shoshan-Barmatz V. Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J 2005; 386:73-83. [PMID: 15456403 PMCID: PMC1134768 DOI: 10.1042/bj20041356] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The VDAC (voltage-dependent anion channel) plays a central role in apoptosis, participating in the release of apoptogenic factors including cytochrome c. The mechanisms by which VDAC forms a protein-conducting channel for the passage of cytochrome c are not clear. The present study approaches this problem by addressing the oligomeric status of VDAC and its role in the induction of the permeability transition pore and cytochrome c release. Chemical cross-linking of isolated mitochondria or purified VDAC with five different reagents proved that VDAC exists as dimers, trimers or tetramers. Fluorescence resonance energy transfer between fluorescently labelled VDACs supports the concept of dynamic VDAC oligomerization. Mitochondrial cross-linking prevented both permeability transition pore opening and release of cytochrome c, yet had no effect on electron transport or Ca2+ uptake. Bilayer-reconstituted purified cross-linked VDAC showed decreased conductance and voltage-independent channel activity. In the dithiobis(succinimidyl propionate)-cross-linked VDAC, these channel properties could be reverted to those of the native VDAC by cleavage of the cross-linking. Cross-linking of VDAC reconstituted into liposomes inhibited the release of the proteoliposome-encapsulated cytochrome c. Moreover, encapsulated, but not soluble cytochrome c induced oligomerization of liposome-reconstituted VDAC. Thus the results indicate that VDAC exists in a dynamic equilibrium between dimers and tetramers and suggest that oligomeric VDAC may be involved in mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Ran Zalk
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adrian Israelson
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Erez S. Garty
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Heftsi Azoulay-Zohar
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- To whom correspondence should be addressed (email )
| |
Collapse
|
14
|
Xia T, Jiang C, Li L, Wu C, Chen Q, Liu SS. A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro. FEBS Lett 2002; 510:62-6. [PMID: 11755532 DOI: 10.1016/s0014-5793(01)03228-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We recently described that there is a feedback amplification of cytochrome c release from mitochondria by caspases. Here we investigated how caspases impact on mitochondria to induce cytochrome c release and found that recombinant caspase-3 induced opening of permeability transition pore and reduction of membrane potential in vitro. These events were inhibited by Bcl-xL, cyclosporin A and z-VAD.fmk. Moreover, caspase-3 stimulated the rate of mitochondrial state 4 respiration, superoxide production and NAD(P)H oxidation in a Bcl-xL- and cyclosporin A-inhibitable manner. These results suggest that caspase-3 induces cytochrome c release by inducing permeability transition pore opening which is associated with changes in mitochondrial respiration and redox potential.
Collapse
Affiliation(s)
- Tian Xia
- National Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, P R China
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's and The Royal London School of Medicine, UK
| | | |
Collapse
|
16
|
Fennell DA, Cotter FE. Controlling the mitochondrial gatekeeper for effective chemotherapy. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02271.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Zazueta C, Sánchez C, García N, Correa F. Possible involvement of the adenine nucleotide translocase in the activation of the permeability transition pore induced by cadmium. Int J Biochem Cell Biol 2000; 32:1093-101. [PMID: 11091142 DOI: 10.1016/s1357-2725(00)00041-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low levels of cadmium induce a rapid calcium efflux in energized rat kidney mitochondria. This is accompanied by the collapse of the transmembrane gradient in a partial CSA-sensitive fashion. The binding of 109Cd2+ to mitochondria is a saturable function; in the presence of NEM, the binding of 2.5 nmol 109Cd2+/mg of protein suffices to induce the opening of the permeability transition pore. It was found that cadmium bound mainly to proteins of molecular weight between 30 and 50 kDa. In the presence of the monothiol reagent NEM, the label is concentrated in the 30 kDa protein. Following the addition of the reducing agent dithiothreitol, calcium is reaccumulated and the membrane potential restored. This correlates with a significant loss of label in the 30 kDa protein region. The 30 kDa protein was identified as the adenine nucleotide translocase by labelling experiments with eosin 5-maleimide and experiments of reconstitution.
Collapse
Affiliation(s)
- C Zazueta
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano No. 1, Colonia Sección XVI, México, D.F. 014080, Mexico.
| | | | | | | |
Collapse
|
18
|
García N, Zazueta C, Carrillo R, Correa F, Chávez E. Copper sensitizes the mitochondrial permeability transition to carboxytractyloside and oleate. Mol Cell Biochem 2000; 209:119-23. [PMID: 10942209 DOI: 10.1023/a:1007151511817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Addition of 5 microM copper to rat kidney mitochondria enhances the effect of carboxyatractyloside and oleate on pore opening, in a cyclosporin A-sensitive fashion. The effects of the pair copper-carboxyatractyloside were observed on matrix Ca2+ efflux, mitochondrial swelling and on the transmembrane electric gradient. The effect of Cu2+ emphasizes the importance of membrane thiol groups located, probably, in the ADP/ATP translocase (ANT), on permeability transition. It was also found that Cu2+ does not block the fluorescent label of ANT by eosin 5-maleimide, but abolishes the inhibition by CAT on the labeling. This suggests that the binding of Cu2+ to cysteine residues of ANT promotes a conformational change in the carrier, strengthening the effect of CAT and oleate on membrane leakage.
Collapse
Affiliation(s)
- N García
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, México, DF México
| | | | | | | | | |
Collapse
|
19
|
Chávez E, Peña A, Zazueta C, Ramírez J, García N, Carrillo R. Inactivation of mitochondrial permeability transition pore by octylguanidine and octylamine. J Bioenerg Biomembr 2000; 32:193-8. [PMID: 11768752 DOI: 10.1023/a:1005516115189] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial permeability transition occurs through a Ca2+-dependent opening of a transmembrane pore, whose identity has been attributed to that of the adenine nucleotide translocase (ANT). In this work, we induced permeability transition by adding 0.5 microM carboxyatractyloside. The process was evaluated analyzing Ca2+ efflux, a drop in transmembrane electric gradient, and swelling. We found that the amphiphyllic cations octylguanidine and octylamine, at the concentration of 100 microM, inhibited, almost completely, nonspecific membrane permeability. Hexylguanidine, hexylamine, as well as guanidine chloride and hydroxylamine failed to do so. The inhibition was reversed after the addition of 40 mM Li+, Na+ K+, Rb+, or Cs+; K+ was the most effective. We propose that the positive charge of the amines interact with negative charges of membrane proteins, more likely the ADP/ATP carrier, while the alkyl chain penetrates into the hydrophobic milieu of the inner membrane, fixing the reagent.
Collapse
Affiliation(s)
- E Chávez
- Departamento de Bioquímica Instituto Nacional de Cardiología, Ignacio Chávez, UNAM, Mexico, DF, Mexico.
| | | | | | | | | | | |
Collapse
|
20
|
Sugrue MM, Wang Y, Rideout HJ, Chalmers-Redman RM, Tatton WG. Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem Biophys Res Commun 1999; 261:123-30. [PMID: 10405334 DOI: 10.1006/bbrc.1999.0984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is accumulating evidence that mitochondrial membrane potential (DeltaPsi(M)) is reduced in aged cells. In addition, a decrease of DeltaPsi(M) has been shown to be an early event in many forms of apoptosis. Here we use a mitochondrial potentiometric dye with in situ laser scanning confocal microscopic (LSCM) imaging to demonstrate that DeltaPsi(M) is dramatically decreased in both the p53-overexpressing, senescent EJ tumor cells and in pre-apoptotic PC12 cells compared to controls. Treatment with cyclosporin A (CSA), which facilitates closure of the mitochondrial permeability transition pore (PTP), was able to reverse the decrease in DeltaPsi(M) in pre-apoptotic PC12 cells but not in the senescent EJ-p53 cells. The capacity to prevent dissipation of DeltaPsi(M) in response to agents that facilitate PTP closure may differentiate cells entering apoptosis from those participating in senescence. Therefore, regulation of the closure of the mitochondrial PTP in the presence of decreased DeltaPsi(M) may be a decisional checkpoint in distinguishing between growth arrest pathways.
Collapse
Affiliation(s)
- M M Sugrue
- Department of Pediatrics, Division of Hematology/Oncology, Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, 10029-6574, USA.
| | | | | | | | | |
Collapse
|
21
|
Chalmers-Redman RM, Fraser AD, Carlile GW, Pong A, Tatton WG. Glucose protection from MPP+-induced apoptosis depends on mitochondrial membrane potential and ATP synthase. Biochem Biophys Res Commun 1999; 257:440-7. [PMID: 10198232 DOI: 10.1006/bbrc.1999.0487] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MPP+ inhibits mitochondrial complex I and alpha-ketoglutarate dehydrogenase causing necrosis or apoptosis of catecholaminergic neurons. Low glucose levels or glycolytic blockade has been shown to potentiate MPP+ toxicity. We found that MPP+ caused concentration-dependent apoptosis of neuronally differentiated PC12 cells and that glucose, but not pyruvate, supplementation reduced apoptosis. Oligomycin concentrations sufficient to inhibit ATP synthase blocked the decreased apoptosis afforded by glucose supplementation. Laser-scanning confocal microscope imaging of chloromethyl-tetramethylrosamine methyl ester fluorescence to estimate DeltaPsiM showed that MPP+ and atractyloside reduced DeltaPsiM, while cyclosporin A (CSA) and glucose supplementation reversed decreases in DeltaPsiM caused by MPP+. Oligomycin blocked the effect of glucose supplementation on DeltaPsiM. These findings show that (i) MPP+-induced and atractyloside-induced apoptosis are associated with reduced DeltaPsiM; (ii) CSA maintains DeltaPsiM and reduces MPP+-induced apoptosis; and (iii) glucose supplementation maintains DeltaPsiM, likely by glycolytic ATP-dependent proton pumping at ATP synthase and reduces MPP+-induced apoptosis.
Collapse
Affiliation(s)
- R M Chalmers-Redman
- Department of Neurology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, 10029-6574, USA
| | | | | | | | | |
Collapse
|