1
|
Zhang S, Zhang Y, Zou H, Li X, Zou H, Wang Z, Zou C. FDP-Na-induced enhancement of glycolysis impacts larval growth and development and chitin biosynthesis in fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105560. [PMID: 37666596 DOI: 10.1016/j.pestbp.2023.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
Fructose 1, 6-diphosphate (FDP) is an endogenous intermediate in the glycolytic pathway, as well as an allosteric activator of phosphofructokinase (PFK). Based on the role in promoting glycolysis, FDP has been widely used as a therapeutic agent for mitigating the damage of endotoxemia and ischemia/reperfusion in clinical practice. However, the effect of exogenous FDP-induced glycolysis activation on insect carbohydrate metabolism and chitin synthesis remains largely unclear. Here, we investigated for the first time the effects of FDP-Na, an allosteric activator of PFK, on the growth and development of Hyphantria cunea larvae, a serious defoliator in agriculture and forestry, especially on glycolysis and chitin synthesis. The results showed that FDP-Na significantly restrained the growth and development of H. cunea larvae and resulted in larval lethality. After treatment with FDP-Na, hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) were significantly activated, and HcHK2, HcPFK, HcPK were dramatically upregulated, which suggested that FDP-Na enhanced glycolysis in H. cunea larvae. Meanwhile, FDP-Na also distinctly impacted chitin biosynthesis by disturbing transcriptions of genes in the chitin synthesis pathway, resulting in changes of chitin contents in the midgut and epidermis of H. cunea larvae. Therefore, we considered that FDP-Na caused the growth and development arrest, and impacted chitin biosynthesis, probably by disturbing in vivo glycolysis and carbohydrate metabolism in H. cunea larvae. The findings provide a new perspective on the mechanism by which glycolysis regulates insect growth and development, and lay the foundation for exploring the potential application of glycolysis activators in pest control as well.
Collapse
Affiliation(s)
- Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- Jilin Agricultural University, Jilin 132013, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Ze Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Qiu Q, Zou H, Zou H, Jing T, Li X, Yan G, Geng N, Zhang B, Zhang Z, Zhang S, Yao B, Zhang G, Zou C. 3-Bromopyruvate-induced glycolysis inhibition impacts larval growth and development and carbohydrate homeostasis in fall webworm, Hyphantria cunea Drury. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104961. [PMID: 34802511 DOI: 10.1016/j.pestbp.2021.104961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
As a typical glycolytic inhibitor, 3-bromopyruvate (3-BrPA) has been extensively studied in cancer therapy in recent decades. However, few studies focused on 3-BrPA in regulating the growth and development of insects, and the relationship and regulatory mechanism between glycolysis and chitin biosynthesis remain largely unknown. The Hyphantria cunea, named fall webworm, is a notorious defoliator, which caused a huge economic loss to agriculture and forestry. Here, we investigated the effects of 3-BrPA on the growth and development, glycolysis, carbohydrate homeostasis, as well as chitin synthesis in H. cunea larvae. To elucidate the action mechanism of 3-BrPA on H. cunea will provide a new insight for the control of this pest. The results showed that 3-BrPA dramatically restrained the growth and development of H. cunea larvae and resulted in larval lethality. Meanwhile, we confirmed that 3-BrPA caused a significant decrease in carbohydrate, adenosine triphosphate (ATP), pyruvic acid (PA), and triglyceride (TG) levels by inhibiting glycolysis in H. cunea larvae. Further studies indicated that 3-BrPA significantly affected the activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and trehalase, as well as expressions of the genes related to glycolysis, resulting in carbohydrate homeostasis disorder. Moreover, it was found that 3-BrPA enhanced 20-hydroxyecdysone (20E) signaling by upregulating HcCYP306A1 and HcCYP314A1, two critical genes in 20E synthesis pathway, and accelerated chitin synthesis by upregulating transcriptional levels of genes in the chitin synthesis pathway in H. cunea larvae. Taken together, our findings provide a novel insight into the mechanism of glycolytic inhibitor in regulating the growth and development of insects, and lay a foundation for the potential application of glycolytic inhibitors in pest control as well.
Collapse
Affiliation(s)
- Qian Qiu
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Haifeng Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - XingPeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Gaige Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Nannan Geng
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bihan Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Zhidong Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bin Yao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
3
|
Wang G, Zhou JJ, Li Y, Gou Y, Quandahor P, Liu C. Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris. Sci Rep 2021; 11:15864. [PMID: 34354165 PMCID: PMC8342477 DOI: 10.1038/s41598-021-95390-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Trehalose serves multifarious roles in growth and development of insects. In this study, we demonstrated that the high trehalose diet increased the glucose content, and high glucose diet increased the glucose content but decreased the trehalose content of Acyrthosiphon pisum. RNA interference (RNAi) of trehalose-6-phosphate synthase gene (ApTPS) decreased while RNAi of trehalase gene (ApTRE) increased the trehalose and glucose contents. In the electrical penetration graph experiment, RNAi of ApTPS increased the percentage of E2 waveform and decreased the percentage of F and G waveforms. The high trehalose and glucose diets increased the percentage of E2 waveform of A. pisum red biotype. The correlation between feeding behavior and sugar contents indicated that the percentage of E1 and E2 waveforms were increased but np, C, F and G waveforms were decreased in low trehalose and glucose contents. The percentage of np, E1 and E2 waveforms were reduced but C, F and G waveforms were elevated in high trehalose and glucose contents. The results suggest that the A. pisum with high trehalose and glucose contents spent less feeding time during non-probing phase and phloem feeding phase, but had an increased feeding time during probing phase, stylet work phase and xylem feeding phase.
Collapse
Affiliation(s)
- Guang Wang
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Jing-Jiang Zhou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,grid.443382.a0000 0004 1804 268XState Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025 China
| | - Yan Li
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Yuping Gou
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Peter Quandahor
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| | - Changzhong Liu
- grid.411734.40000 0004 1798 5176College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070 China ,Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070 China
| |
Collapse
|
4
|
Bazazi S, Arganda S, Moreau M, Jeanson R, Dussutour A. Responses to nutritional challenges in ant colonies. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Trivedi A, Kaushik P, Pandey A. Identification and metabolite profiling of Sitophilus oryzae L. by 1D and 2D NMR spectroscopy. BULLETIN OF ENTOMOLOGICAL RESEARCH 2010; 100:287-296. [PMID: 19814847 DOI: 10.1017/s0007485309990289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The polyphagous insect Sitophilus oryzae L. (Coleoptera:Curculionidae) has a tremendous adaptability in feeding behaviour, making it a serious invasive pest of stored cereals. The present study identifies the metabolite composition of Sitophilus oryzae (S. oryzae) using Nuclear Magnetic Resonance (NMR) spectroscopy. Assignment of 1D-proton by NMR, 1H-1H COSY, 2D-TOCSY 1H-1H, had been done. Amongst the various biochemically important metabolites isoleucine, valine, leucine, beta-hydroxybutyrate, lysine, glutamate, glutamine, proline, lactate, alanine, di-methylamine, alpha-glucose, beta-glucose, choline, glycerophosphorylcholine and tyrosine are present in S. oryzae. In wheat-fed S. oryzae, the presence of threonine and the absence of lactate is observed. In rice-fed S. oryzae, however, the presence of lactate and the absence of threonine were observed. Barley-fed S. oryzae shows presence of both tyrosine and lactate. It is concluded that the pest S. oryzae has adaptability on different stored cereals and grains, depicting the presence of earlier reported metabolites. The present study aims to identify the key metabolic components and associated enzymes in Sitophilus oryzae fed on different cereals.
Collapse
Affiliation(s)
- A Trivedi
- NMR Laboratory, Division of SAIF, Central Drug Research Institute, Chattar Manzil Palace, Post Box 173, Lucknow-226 001, India.
| | | | | |
Collapse
|
6
|
Geister TL, Lorenz MW, Hoffmann KH, Fischer K. Adult nutrition and butterfly fitness: effects of diet quality on reproductive output, egg composition, and egg hatching success. Front Zool 2008; 5:10. [PMID: 18616795 PMCID: PMC2481257 DOI: 10.1186/1742-9994-5-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/10/2008] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In the Lepidoptera it was historically believed that adult butterflies rely primarily on larval-derived nutrients for reproduction and somatic maintenance. However, recent studies highlight the complex interactions between storage reserves and adult income, and that the latter may contribute significantly to reproduction. Effects of adult diet were commonly assessed by determining the number and/or size of the eggs produced, whilst its consequences for egg composition and offspring viability were largely neglected (as is generally true for insects). We here specifically focus on these latter issues by using the fruit-feeding tropical butterfly Bicyclus anynana, which is highly dependent on adult-derived carbohydrates for reproduction. RESULTS Adult diet of female B. anynana had pronounced effects on fecundity, egg composition and egg hatching success, with butterflies feeding on the complex nutrition of banana fruit performing best. Adding vitamins and minerals to a sucrose-based diet increased fecundity, but not offspring viability. All other groups (plain sucrose solution, sucrose solution enriched with lipids or yeast) had a substantially lower fecundity and egg hatching success compared to the banana group. Differences were particularly pronounced later in life, presumably indicating the depletion of essential nutrients in sucrose-fed females. Effects of adult diet on egg composition were not straightforward, indicating complex interactions among specific compounds. There was some evidence that total egg energy and water content were related to hatching success, while egg protein, lipid, glycogen and free carbohydrate content did not seem to limit successful development. CONCLUSION The patterns shown here exemplify the complexity of reproductive resource allocation in B. anynana, and the need to consider egg composition and offspring viability when trying to estimate the effects of adult nutrition on fitness in this butterfly and other insects.
Collapse
Affiliation(s)
- Thorin L Geister
- Department of Animal Ecology I, University of Bayreuth, D-95440, Bayreuth, Germany
| | - Matthias W Lorenz
- Department of Animal Ecology I, University of Bayreuth, D-95440, Bayreuth, Germany
| | - Klaus H Hoffmann
- Department of Animal Ecology I, University of Bayreuth, D-95440, Bayreuth, Germany
| | - Klaus Fischer
- Zoological Institute & Museum, University of Greifswald, D-17489, Greifswald, Germany
| |
Collapse
|
7
|
Medeiros L, Zucoloto FS. Nutritional balancing in fruit flies: performance of wild adult females of Anastrepha obliqua (Diptera: Tephritidae) fed on single-food or food-pair treatments. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:1121-7. [PMID: 17078966 DOI: 10.1016/j.jinsphys.2006.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 05/12/2023]
Abstract
The aim of the present study was to investigate the effects of different artificial diets, in which sucrose and brewer's yeast were offered separately (food-pair treatment) or mixed (single-food treatment), on the regulation of nutrient ingestion and the performance of wild adult females of Anastrepha obliqua. The amount of diet consumed by females of A. obliqua increased as the concentration of yeast in the diet increased, revealing a phagostimulant effect of yeast. The amount of sucrose ingested was constant in all groups, showing that these flies regulate the ingestion of sucrose. Longevity and production of eggs/female were similar in both groups. Our results suggest that A. obliqua females regulate the ingestion of nutrients to obtain an adequate performance. Dietary self-selective behavior was more efficient for the females of A. obliqua than feeding on a single-food, because the self-selecting flies ingested less food and had a similar performance as the ones fed on the single-food treatment.
Collapse
Affiliation(s)
- L Medeiros
- Department of Biology, FFCLRP, University of São Paulo, Avenida dos Bandeirantes, 3900, 14040 901 Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
8
|
Lee KP, Simpson SJ, Raubenheimer D. A comparison of nutrient regulation between solitarious and gregarious phases of the specialist caterpillar, Spodoptera exempta (Walker). JOURNAL OF INSECT PHYSIOLOGY 2004; 50:1171-1180. [PMID: 15670864 DOI: 10.1016/j.jinsphys.2004.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/20/2004] [Accepted: 10/22/2004] [Indexed: 05/24/2023]
Abstract
Nutritional regulatory responses were compared between solitarious and gregarious phases of the African armyworm, Spodoptera exempta. When allowed to mix between two nutritionally imbalanced but complementary foods, final-instar caterpillars in both phases selected a diet comprising more carbohydrate than protein. This contrasts with other larval lepidopterans studied to date. Only minor differences were found in the position of the intake target for the two phases, despite their different energetic requirements for migration as adults. When restricted to nutritionally imbalanced diets, caterpillars of both phases were less disposed to overeat protein on high-protein diets than carbohydrate on high-carbohydrate diets, relative to the self-composed intake target. However, in both cases gregarious larvae overingested the excess nutrient to a greater degree than did solitarious larvae. Furthermore, gregarious larvae showed higher nitrogen conversion efficiency on an extreme protein-limiting diet, and accumulated more lipid per amount of carbohydrate consumed on carbohydrate-deficient diets. These phase-associated nutritional differences are consistent with the life-history strategies of the two phases.
Collapse
Affiliation(s)
- Kwang Pum Lee
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | |
Collapse
|
9
|
Thompson SN. Dietary fat mediates hyperglycemia and the glucogenic response to increased protein consumption in an insect, Manduca sexta L. Biochim Biophys Acta Gen Subj 2004; 1673:208-16. [PMID: 15279893 DOI: 10.1016/j.bbagen.2004.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 05/04/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Many insects display non-homeostatic regulation over blood sugar level. The concentration of trehalose varies dramatically depending on physiological and nutritional state. In the absence of dietary carbohydrate, blood trehalose in larvae of the lepidopteran insect Manduca sexta is maintained by gluconeogenesis and is dependent on dietary protein consumption. In the present study, the effect of dietary fat on the glucogenic response of insects to increased dietary protein was examined by NMR analysis of (2-13C)pyruvate metabolism. Last instar larvae were maintained on a carbohydrate-free chemically defined artificial diet having variable levels of casein with and without corn oil. Gluconeogenic flux, the ratio of the rate of gluconeogenesis to the rate of glycolysis, was estimated from the 13C distribution in trehalose arising by gluconeogenesis and the 13C enrichment of alanine due to pyruvate cycling. Insects grew well on carbohydrate-free diets and growth increased with increasing dietary protein level. At all dietary protein levels, larvae grew better on diets with fat. Without dietary fat, larvae were glucogenic but displayed low blood trehalose concentrations, <30 mM, regardless of protein consumption. When fat was included in the diet, however, gluconeogenic flux and blood trehalose level increased sharply in response to increased dietary protein level, with trehalose concentrations >50 mM at higher levels of protein consumption. When offered a choice of a high carbohydrate and a high protein diet, larvae maintained on diets with fat displayed a food preference related to blood sugar level. Those with low blood sugar fed on carbohydrate, while those with high blood sugar preferred protein. Trehalose synthesized from (2-13C)pyruvate exhibited asymmetry in the 13C distribution in individual glucose molecules, indicating a disequilibrium at the triose phosphate isomerase-catalyzed step of the gluconeogenic pathway. In trehalose from larvae on diets with fat, the asymmetric 13C distribution was higher than in trehalose from insects on diets lacking fat. This may partially result from isotopic disequilibrium when unenriched glycerol is metabolized to dihydroxyacetone phosphate following fat hydrolysis. The asymmetry in 13C distribution, however, also occurred in insects on diets without fat and decreased with increased gluconeogenic flux suggesting that true disequilibrium between the triose phosphates is the principal reason for the asymmetry.
Collapse
Affiliation(s)
- S N Thompson
- Analytical Chemistry Instrumentation Facility and Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
10
|
|
11
|
Lee KP, Raubenheimer D, Behmer ST, Simpson SJ. A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker). JOURNAL OF INSECT PHYSIOLOGY 2003; 49:1161-1171. [PMID: 14624888 DOI: 10.1016/j.jinsphys.2003.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In an earlier study, we showed that the ingestive responses of the generalist caterpillar Spodoptera littoralis to foods imbalanced in their protein:carbohydrate content is similar to generalist locusts, but differs from that of specialist-feeding locusts. Here we further pursued the comparison by repeating the experiments using a closely related specialist caterpillar, Spodoptera exempta. First, caterpillars were allowed to self-compose a diet of preferred protein:carbohydrate balance by mixing between nutritionally complementary foods. Then, they were confined to one of five imbalanced foods, in which we measured the trade-off between over- and under-ingesting the two nutrients. On complementary foods, the caterpillars actively regulated their protein and carbohydrate intake. In the no-choice experiment, those fed excess-protein foods ingested small surpluses of protein compared with generalist feeders, thus showing a pattern of nutrient balancing similar to that observed in specialist locusts. Utilisation data indicated that ingested excesses and deficits were to some extent offset by differential utilisation. Evidence also showed that post-ingestive responses of the specialist S. exempta were less flexible than those observed in the generalist S. littoralis, a pattern which is again in accordance with comparisons of acridids differing in their host-plant range.
Collapse
Affiliation(s)
- Kwang Pum Lee
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
12
|
Thompson SN, Borchardt DB. Glucogenic blood sugar formation in an insect Manduca sexta L.: asymmetric synthesis of trehalose from 13C enriched pyruvate. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:461-71. [PMID: 12831766 DOI: 10.1016/s1096-4959(03)00110-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gluconeogenesis and blood sugar formation were examined in Manduca sexta, fed carbohydrate- and fat-free diets with varying levels of casein. De novo carbohydrate synthesis was examined by nuclear magnetic resonance spectroscopy of the 13C enrichment in blood trehalose and alanine derived from (2-(13)C)pyruvate and (2,3-(13)C(2))pyruvate administered to 5th instar larvae. Gluconeogenic flux and blood trehalose concentration were positively correlated with protein consumption. On all diets, the 13C distribution in trehalose was asymmetric, with C6 more highly enriched than C1. The C6/C1 13C enrichment ratio, however, decreased with increased protein consumption and gluconeogenic flux. Although the asymmetric 13C enrichment pattern in trehalose is consistent with pentose cycling via the pentose phosphate pathway following de novo synthesis, experiments employing [2,3-(13)C(2)]pyruvate demonstrated that pentose cycling is not detected in insects under these nutritional conditions. Analysis of the multiplet NMR signal structure in trehalose due to spin-spin coupling between adjacent 13C enriched carbons showed the absence of uncoupling expected by pentose phosphate pathway activity. Here we suggest that the asymmetric 13C distribution in trehalose results from a disequilibrium of the triose phosphate isomerase-catalyzed reaction.
Collapse
Affiliation(s)
- S N Thompson
- Analytical Chemistry Instrumentation Facility and Department of Entomology, University of California, 3401 Watkins Drive, 92521, Riverside, CA, USA.
| | | |
Collapse
|
13
|
Raubenheimer D, Simpson SJ. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J Exp Biol 2003; 206:1669-81. [PMID: 12682099 DOI: 10.1242/jeb.00336] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined correlates of nutrient balancing with dietary range by comparing diet selection and ingestive, post-ingestive and performance-related responses to macronutrient imbalance in two species of grasshopper. One of the two species, Locusta migratoria (the African migratory locust), is a specialist grass-feeder, while the other, Schistocerca gregaria (the desert locust), is a generalist herbivore that includes both grasses and forbs in its diet. In ad libitum conditions, both species composed a balanced intake of the two macronutrients protein and carbohydrate from nutritionally complementary synthetic foods, but the composition of the selected diet differed, with the generalist selecting more protein, but not carbohydrate, than the grass-specialist. The grass-specialist, by contrast, retained ingested nitrogen more efficiently on the ad libitum diets. When confined to nutritionally imbalanced foods, both species regulated ingestion in such a way as to mitigate excesses as well as deficits of the two nutrients. The responses were, however, distinct in the two species, with the generalist feeder ingesting greater excesses of protein than the specialist. The species also differed in their post-ingestive responses to ingested excesses of nutrient, with the generalist but not the specialist using protein-derived carbon as an energy source when fed carbohydrate-deficient foods. The generalist also retained a higher level of body protein when confined to protein-deficient diets. The data suggested one functional reason why the generalist species selected a diet with higher protein content in the ad libitum treatment because, when confined to the nutritionally imbalanced foods, development rate peaked on higher protein foods for the generalist compared with the specialist. Many aspects of these data agree with the prediction that generalist-feeding animals should show greater behavioural and physiological flexibility in their responses to nutrient imbalance than do specialists.
Collapse
Affiliation(s)
- D Raubenheimer
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | |
Collapse
|
14
|
Thompson SN, Borchardt DB, Wang LW. Dietary nutrient levels regulate protein and carbohydrate intake, gluconeogenic/glycolytic flux and blood trehalose level in the insect Manduca sexta L. J Comp Physiol B 2003; 173:149-63. [PMID: 12624653 DOI: 10.1007/s00360-002-0322-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2002] [Indexed: 10/25/2022]
Abstract
This study examined the effects of dietary casein and sucrose levels on nutrient intake, and distinguished the effects of carbohydrate and protein consumption on growth, fat content, pyruvate metabolism and blood trehalose level of 5th instar Manduca sexta larvae. Growth increased with increasing casein consumption but was unaffected by carbohydrate intake. Fat content also increased with carbohydrate consumption, but on carbohydrate-free diets fat content increased with increased protein consumption. Blood trehalose level and pyruvate metabolism were examined by nuclear magnetic resonance spectroscopy analysis of blood following administration of (3-(13)C)pyruvate. On diets containing sucrose, blood trehalose increased with increasing carbohydrate intake, and on most diets trehalose was synthesized entirely from dietary sucrose. Pyruvate cycling, indicated by the alanine C2/C3 (13)C enrichment ratio, increased with carbohydrate consumption reflecting increased glycolysis, and pyruvate decarboxylation exceeded carboxylation on all sucrose diets. Larvae that consumed <75 mg/day sucrose were gluconeogenic, based on the [2 (trehalose C6)(Glx C3/C2)]/alanine C2] (13)C enrichment ratio. On carbohydrate-free diets, blood trehalose levels were low and maintained entirely by gluconeogenesis. Blood trehalose level increased with increasing protein intake. Pyruvate cycling was very low, although many insects displayed higher levels of pyruvate decarboxylation than carboxylation. All gluconeogenic larvae displayed alanine (13)C enrichment ratios <0.35 and had blood trehalose levels <50 mM.
Collapse
Affiliation(s)
- S N Thompson
- Analytical Chemistry Instrumentation Facility, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
15
|
Behmer ST, Simpson SJ, Raubenheimer D. HERBIVORE FORAGING IN CHEMICALLY HETEROGENEOUS ENVIRONMENTS: NUTRIENTS AND SECONDARY METABOLITES. Ecology 2002. [DOI: 10.1890/0012-9658(2002)083[2489:hfiche]2.0.co;2] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
|
17
|
Lee KP, Behmer ST, Simpson SJ, Raubenheimer D. A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). JOURNAL OF INSECT PHYSIOLOGY 2002; 48:655-665. [PMID: 12770076 DOI: 10.1016/s0022-1910(02)00088-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nutritional regulatory responses of the generalist caterpillar Spodoptera littoralis (Boisduval) were explored, in choice and no-choice experiments, using the Geometric Framework. In the choice experiment, newly moulted final instar larvae were provided with one of three protein-biased foods (PB-food: p35:c7, p28:c5.6 or p21:c4.2) and one of three equal protein-carbohydrate ratio foods (ER-food: p21:c21, p16.8:c16.8 or p12.6:c12.6). On five of the nine treatments, caterpillars independently regulated protein and carbohydrate intake to a mixture of 57 and 43%, respectively. However, when the concentration of the ER-food decreased and that of the paired PB-food increased, caterpillars progressively abandoned regulation and ate more of the PB-food. Despite these regulatory differences, performance (survivorship, growth and development) was similar across all nine treatments. In the no-choice experiment, caterpillars were given one of five foods (p35:c7, p28:c14, p21:c21, p14:c28 and p7:c35). Results indicated that caterpillars moved to a point in protein-carbohydrate space that was consistent with the Equal Distance Rule of compromise, a pattern previously predicted for generalist feeders. The insects on the two extreme foods, p35:c7 and p7:c35, showed reduced pupal mass and longer development, respectively. There was also strong evidence for post-ingestive regulation of nutrient utilisation, notably for protein.
Collapse
Affiliation(s)
- K P. Lee
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, UK
| | | | | | | |
Collapse
|
18
|
Simpson SJ, Raubenheimer D, Behmer ST, Whitworth A, Wright GA. A comparison of nutritional regulation in solitarious- and gregarious-phase nymphs of the desert locust Schistocerca gregaria. J Exp Biol 2002; 205:121-9. [PMID: 11818418 DOI: 10.1242/jeb.205.1.121] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Nutritional regulatory responses were compared for the cryptic ‘solitarious’ and the conspicuously coloured, aggregating ‘gregarious’ phases of the desert locust Schistocerca gregaria. The desert locust has the genetic potential to exist in either phase, changing between them within a lifetime and epigenetically across generations. Our aim was to compare final-instar nymphs of the two phases with respect to key nutritional variables, including (i) points of regulated intake (the ‘intake target’) for protein and carbohydrate, (ii) the nature of trade-offs between over-eating nutrients in excess and under-eating those in deficit when fed nutritionally unbalanced foods, (iii) diet-related patterns of nutrient utilisation, and (iv) the performance consequences of eating nutritionally unbalanced diets. When provided with pairs of nutritionally unbalanced but complementary foods, both phases regulated their intake of protein and carbohydrate to a similar point. However, when confined to foods that were of unbalanced protein to carbohydrate ratio, gregarious nymphs ate more than solitarious insects. Both phases regulated protein growth, but gregarious insects did so to a lower adult body protein content and converted ingested protein to growth less efficiently. When fed a food high in carbohydrate and low in protein, gregarious nymphs deposited more body lipid and survived less well than did solitarious insects. Solitarious nymphs developed more quickly than gregarious nymphs except on the two most extremely unbalanced diets, on which development time was similar. The results are discussed with respect to the different nutritional ecologies of the two phases and used to develop the hypothesis that animals have evolved to trade-off the cost of eating excess of a nutritionally unbalanced diet against the probability of encountering foods of complementary composition in the future.
Collapse
Affiliation(s)
- S J Simpson
- Department of Zoology and University Museum of Natural History, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | | | |
Collapse
|
19
|
Thompson SN. Parasitism enhances the induction of glucogenesis by the insect, Manduca sexta L. Int J Biochem Cell Biol 2001; 33:163-73. [PMID: 11240373 DOI: 10.1016/s1357-2725(00)00079-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metabolic alterations that accompany parasitism of invertebrate animals can play an important role in parasite development. Employing 13C NMR, this study examined pyruvate cycling from (2-(13)C)pyruvate in the lepidopteran insect Manduca sexta, and the effects of parasitism by the hymenopteran Cotesia congregata on the gluconeogenic formation of trehalose, the haemolymph or blood sugar of insects. Larvae were maintained on a semi-synthetic sucrose-free diet, or on the same diet with sucrose at 8.5 g/l. Pyruvate cycling was evident from the 13C enrichment in C3 of alanine, derived following carboxylation to oxaloacetate, and was similar in parasitized and normal insects regardless of diet. Trehalose was formed following de novo synthesis of glucose, and net synthesis was estimated from the 13C distribution in trehalose and alanine. The 13C-enrichment ratio [2trehalose C6/alanine C3] is an indicator of the level of gluconeogenesis relative to glycolysis, both enrichments were derived from (2-(13)C)pyruvate in the same manner. The ratio was greater than unity in all insects, regardless of diet, but was significantly greater in parasitized larvae, demonstrating an enhanced level of gluconeogenesis. This was confirmed by analysis of the 13C distribution in trehalose and glutamine derived from (3-(13)C)alanine. Despite enhanced de novo trehalose formation in parasitized insects, the haemolymph sugar level was similar to that of normal larvae. Because haemolymph trehalose regulates dietary carbohydrate intake, but not gluconeogenesis, the results suggest that accelerated induction of gluconeogenesis is an adaptive response to parasitism that provides increased carbohydrate for parasite growth and simultaneously maintains nutrient intake.
Collapse
Affiliation(s)
- S N Thompson
- Analytical Chemistry Instrumentation Facility and Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
|
21
|
Thompson SN, Redak RA. Interactions of dietary protein and carbohydrate determine blood sugar level and regulate nutrient selection in the insect Manduca sexta L. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:91-102. [PMID: 11099862 DOI: 10.1016/s0304-4165(00)00102-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The non-homeostatic regulation of blood sugar concentration in the insect Manduca sexta L. was affected by nutritional status. Larvae maintained on diets lacking sucrose displayed low concentrations of trehalose, the blood sugar of insects, which varied from 5 to 15 mM with increasing dietary casein level between 12.5 and 75 g/l. These insects were glucogenic, as demonstrated by the selective 13C enrichment of trehalose synthesized from [3-13C]alanine, and de novo synthesis was the sole source of blood sugar. The distribution of 13C in glutamine established that following transamination of the 13C substituted substrate, [3-13C]pyruvate carboxylation rather than decarboxylation was the principal pathway of Pyr metabolism. The mean blood trehalose level was higher in insects maintained on diets with sucrose. At the lowest dietary casein level blood trehalose was approximately 50 mM, and declined to 20 mM at the highest casein level. Gluconeogenesis was detected in insects maintained on sucrose-free diets at the higher protein levels examined, but [3-13C]pyruvate decarboxylation and TCA cycle metabolism was the principal fate of [3-13C]alanine following transamination, and dietary carbohydrate was the principal source of glucose for trehalose synthesis. Feeding studies established a relationship between nutritional status, blood sugar level and dietary self-selection. Insects preconditioned by feeding on diets without sucrose had low blood sugar levels regardless of dietary casein level, and when subsequently given a choice between a sucrose diet or a casein diet, selected the former. Larvae preconditioned on a diet containing sucrose and the lowest level of casein had high blood sugar levels and subsequently selected the casein diet. Larvae maintained on the sucrose diet with the highest casein level had low blood sugar and self-selected the sucrose diet. When preconditioned on diets with sucrose and intermediate levels of casein, insects selected more equally between the sucrose and the casein diets. It is concluded that blood sugar level may be intimately involved in dietary self-selection by M. sexta larvae, and that in the absence of dietary carbohydrate, gluconeogenesis provides sufficient blood sugar to ensure that larvae choose a diet or diets that produce an optimal intake of dietary protein and carbohydrate.
Collapse
Affiliation(s)
- S N Thompson
- Analytical Chemistry Instrumentation Facility and Department of Entomology, University of California, Riverside 92521, USA.
| | | |
Collapse
|
22
|
Thompson SN. Pyruvate cycling and implications for regulation of gluconeogenesis in the insect, Manduca sexta L. Biochem Biophys Res Commun 2000; 274:787-93. [PMID: 10924355 DOI: 10.1006/bbrc.2000.3238] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyruvate cycling was examined in the insect Manduca sexta L. (2-(13)C)pyruvate was injected into 5th instar larvae maintained on a semisynthetic high sucrose, low sucrose, or sucrose-free diet. Pyruvate cycling and gluconeogenesis were determined from the distribution of (13)C in blood metabolites, including trehalose, the blood sugar of insects, and alanine. Pyruvate cycling was evident from the (13)C enrichment of alanine C3, synthesized by transamination of pyruvate following carboxylation to oxaloacetate and cycling through phosphoenolpyruvate. Based on the relative (13)C enrichments of alanine C2 and C3, insects maintained on the high sucrose diet displayed higher levels of cycling than insects on the other diets. Insects on all the diets, when subsequently starved, displayed low levels of cycling. Gluconeogenesis was evident in insects on sucrose-free or low sucrose diets from the selective (13)C enrichment in trehalose. The level of gluconeogenesis relative to glycolysis was indicated by the (13)C enrichment of trehalose C6 and alanine C3, both enrichments metabolically derived in the same manner. Insects starved after maintenance on the sucrose-free or low sucrose diets remained glucogenic. Insects on the high sucrose diet were not glucogenic, and subsequent starvation did not induce gluconeogenesis. The results indicate that pyruvate kinase plays a critical role in regulating the gluconeogenic/glycolytic balance, and that inhibition of pyruvate kinase is a principal regulatory event during induction of de novo trehalose synthesis. Gluconeogenesis failed to maintain homeostatic levels of blood trehalose, supporting the conclusion that blood sugar level may be important for mediating nutrient intake. Possible factors involved in the regulation of gluconeogenesis in insects are discussed.
Collapse
Affiliation(s)
- S N Thompson
- Analytical Chemistry Instrumentation Facility, University of California, Riverside, California, 92521, USA
| |
Collapse
|
23
|
Thompson SN. Blood sugar formation from dietary carbohydrate is facilitated by the pentose phosphate pathway in an insect Manduca sexta Linnaeus. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1472:565-75. [PMID: 10564771 DOI: 10.1016/s0304-4165(99)00163-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dietary carbohydrate, the principal energy source for insects, also determines the level of the blood sugar trehalose. This disaccharide, a byproduct of glycolysis, occurs at highly variable concentrations that play a key role in regulating feeding behavior and growth. Little is known of how developing insects partition the metabolism of dietary carbohydrate to meet the needs for blood trehalose, ribose sugars and NADPH, as well as energy production. This study examined the effects of varying dietary sucrose levels between 3.4 and 34 g/l in an artificial diet on growth rate, depot fat content and blood sugar formation from (13)C-enriched glucose in Manduca sexta. (2-(13)C)Glucose or (1,2-(13)C(2))glucose were administered to larvae by injection and after 6 h blood was analyzed by nuclear magnetic resonance spectroscopy. [2-(13)C]Trehalose was the principal product of [2-(13)C]glucose, but trehalose was also (13)C-enriched at C1 and C3, demonstrating activity of the pentose phosphate pathway. The trehalose C1/C2 (13)C-enrichment ratio, a measure of the substrate cycled through the pentose pathway, significantly increased with increasing dietary sugar, and reached a mean of 0.22 at the highest level. Blood trehalose concentration increased from approximately 38 mM at the lowest dietary carbohydrate level to 75 mM at the highest. Moreover, blood trehalose, growth rate and depot fat all increased in precisely the same way in relation to the level of pentose cycling. Based on the multiplet (13)C-NMR signal structure of trehalose synthesized from [1,2-(13)C(2)]glucose by insects maintained on a high carbohydrate diet, it was established that the formation of trehalose from glucose phosphate derived directly from the administered substrate, with no involvement of the pentose pathway, was greater than that from glucose phosphate metabolized through the pentose pathway prior to trehalose synthesis. On the other hand, glucose phosphate first metabolized through the pentose pathway contributed more to pyruvate formation than did glucose phosphate formed from the labeled substrate metabolized directly to pyruvate via glycolysis; this finding based on the multiplet (13)C-NMR signal structure in alanine derived from pyruvate. The results suggest that as dietary carbohydrate increases blood sugar synthesis from glucose phosphate derived directly from dietary sugar is facilitated by the pentose pathway which provides an increasing amount of substrate to pyruvate formation.
Collapse
Affiliation(s)
- S N Thompson
- Department of Entomology and Analytical Chemistry Instrumentation Facility, University of California, Riverside, CA 92521, USA.
| |
Collapse
|