1
|
Kang DE, An YB, Kim Y, Ahn S, Kim YJ, Lim JS, Ryu SH, Choi H, Yoo J, You WK, Lee DY, Park J, Hong M, Lee GM, Baik JY, Hong JK. Enhanced cell growth, production, and mAb quality produced in Chinese hamster ovary-K1 cells by supplementing polyamine in the media. Appl Microbiol Biotechnol 2023; 107:2855-2870. [PMID: 36947192 DOI: 10.1007/s00253-023-12459-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.
Collapse
Affiliation(s)
- Da Eun Kang
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeong Bin An
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Yeunju Kim
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Seawon Ahn
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Young Jin Kim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Jung Soo Lim
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Soo Hyun Ryu
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Hyoju Choi
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Jiseon Yoo
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Weon-Kyoo You
- R&D Center, ABL Bio Inc, 16 Daewangpangyo-Ro, 712 Beon-Gil, Bundang-GuGyeonggi-Do 13488, 2F, Seongnam-Si, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, South Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, South Korea
| | - Jong Youn Baik
- Department of Biological Engineering, Inha University, Incheon, 22212, South Korea.
| | - Jong Kwang Hong
- Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-Gil, Gangwon-Do, Wonju-Si, 26493, South Korea.
| |
Collapse
|
2
|
Understanding the Polyamine and mTOR Pathway Interaction in Breast Cancer Cell Growth. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030051. [PMID: 36135836 PMCID: PMC9504347 DOI: 10.3390/medsci10030051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
The polyamines putrescine, spermidine and spermine are nutrient-like polycationic molecules involved in metabolic processes and signaling pathways linked to cell growth and cancer. One important pathway is the PI3K/Akt pathway where studies have shown that polyamines mediate downstream growth effects. Downstream of PI3K/Akt is the mTOR signaling pathway, a nutrient-sensing pathway that regulate translation initiation through 4EBP1 and p70S6K phosphorylation and, along with the PI3K/Akt, is frequently dysregulated in breast cancer. In this study, we investigated the effect of intracellular polyamine modulation on mTORC1 downstream protein and general translation state in two breast cancer cell lines, MCF-7 and MDA-MB-231. The effect of mTORC1 pathway inhibition on the growth and intracellular polyamines was also measured. Results showed that polyamine modulation alters 4EBP1 and p70S6K phosphorylation and translation initiation in the breast cancer cells. mTOR siRNA gene knockdown also inhibited cell growth and decreased putrescine and spermidine content. Co-treatment of inhibitors of polyamine biosynthesis and mTORC1 pathway induced greater cytotoxicity and translation inhibition in the breast cancer cells. Taken together, these data suggest that polyamines promote cell growth in part through interaction with mTOR pathway. Similarly intracellular polyamine content appears to be linked to mTOR pathway regulation. Finally, dual inhibition of polyamine and mTOR pathways may provide therapeutic benefits in some breast cancers.
Collapse
|
3
|
Xie S, Li Z, Sun B, Zhang Y. Impact of salt concentration on bacterial diversity and changes in biogenic amines during fermentation of farmhouse soybean paste in Northeast China. Curr Res Food Sci 2022; 5:1225-1234. [PMID: 35996617 PMCID: PMC9391506 DOI: 10.1016/j.crfs.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Farmhouse soybean paste in Northeast China is a traditional fermented product made from soybean, and more than 11% (w/w) salt is usually added during production to control the fermentation process. In this study, the variations in bacterial diversity, biogenic amines(BAs) and physicochemical properties during the natural fermentation of soybean paste with different salt concentrations (8%, 9%, 10%, 11%, and 12%) were studied. The results show that at 0 days (0 d) of fermentation in soybean paste, the dominant genera included Staphylococcus, unidentified Clostridiales, and Sporolactobacillus. During fermentation from 30 d to 90 d, the dominant genera were Tetragenococcus and Staphylococcus. However, the proportions of the dominant genera were different depending on the salt concentration. Putrescine(Put), tryptamine(Try), β-phenethylamine(Phe), cadaverine(Cad), histamine(His), and tyramine(Tyr) showed negative correlations with salt concentration. The amino type nitrogen(ANN), titratable acidity(TTA) and total number of colonies were also negatively correlated with salt concentration. Analysis of the correlation between genera and BAs showed that 12 genera were positively correlated with BAs, and 4 genera were negatively correlated with BAs. The results of this study indicated that salt has a significant impact on bacterial diversity during the fermentation of soybean paste, which in turn affects the changes in bacterial metabolites. From the perspective of food safety, the amount of salt added in the soybean paste can be reduced to 10% under the existing fermentation conditions. The effect of salt concentration on soybean paste was studied. Salt concentration affected the bacterial diversity and BAs in soybean paste. There was a species succession process in the initial 30 days of fermentation. There was correlation between the BAs and some bacteria in soybean paste.
Collapse
|
4
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Fenelon JC, Murphy BD. New functions for old factors: the role of polyamines during the establishment of pregnancy. Reprod Fertil Dev 2020; 31:1228-1239. [PMID: 30418870 DOI: 10.1071/rd18235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
Abstract
Implantation is essential for the establishment of a successful pregnancy, and the preimplantation period plays a significant role in ensuring implantation occurs in a timely and coordinated manner. This requires effective maternal-embryonic signalling, established during the preimplantation period, to synchronise development. Although multiple factors have been identified as present during this time, the exact molecular mechanisms involved are unknown. Polyamines are small cationic molecules that are ubiquitously expressed from prokaryotes to eukaryotes. Despite being first identified over 300 years ago, their essential roles in cell proliferation and growth, including cancer, have only been recently recognised, with new technologies and interest resulting in rapid expansion of the polyamine field. This review provides a summary of our current understanding of polyamine synthesis, regulation and function with a focus on recent developments demonstrating the requirements for polyamines during the establishment of pregnancy up to the implantation stage, in particular the role of polyamines in the control of embryonic diapause and the identification of an alternative pathway for their synthesis in sheep pregnancy. This, along with other novel discoveries, provides new insights into the control of the peri-implantation period in mammals and highlights the complexities that exist in regulating this critical period of pregnancy.
Collapse
Affiliation(s)
- Jane C Fenelon
- School of BioSciences, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Bruce D Murphy
- Centre de recherché en reproduction et fertilité, Faculté de médicine vétérinaire, Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| |
Collapse
|
6
|
Hu J, Lu X, Zhang X, Shao X, Wang Y, Chen J, Zhao B, Li S, Xu C, Wei C. Exogenous spermine attenuates myocardial fibrosis in diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress and the canonical Wnt signaling pathway. Cell Biol Int 2020; 44:1660-1670. [PMID: 32304136 DOI: 10.1002/cbin.11360] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Myocardial fibrosis is one of the main pathological manifestations of diabetic cardiomyopathy (DCM). Spermine (SPM), a product of polyamine metabolism, plays an important role in many cardiac diseases including hypertrophy, ischemia, and infarction, but its role in diabetic myocardial fibrosis has not been clarified. This study aimed to investigate the role of polyamine metabolism, specifically SPM, in diabetic myocardial fibrosis and to explore the related mechanisms. We used intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in Wistar rats and high glucose (HG, 40 mM) stimulated cardiac fibroblasts (CFs) to established a type 1 diabetes (T1D) model in vivo and in vitro, which were pretreated with exogenous SPM (5 mg/kg per day and 5 μM). The results showed that hyperglycemia induced the expression of the key polyamine synthesis enzyme ornithine decarboxylase (ODC) decreased and the key catabolic enzyme spermidine/spermine N1 -acetyltransferase (SSAT) increased compared with those in the control group. The body weight, blood insulin level, and cardiac ejection function were decreased, while blood glucose, heart weight, the ratio of heart weight to body weight, myocardial interstitial collagen deposition, and endoplasmic reticulum stress (ERS)-related protein (glucose-regulated protein-78, glucose-regulated protein-94, activating transcription factor-4, and C/EBP homology protein) expression in the T1D group were all significantly increased. HG also caused an increased expression of Wnt3, β-catenin (in cytoplasm and nucleus), while Axin2 and phosphorylated β-catenin decreased. Exogenous SPM improved the above changes caused by polyamine metabolic disorders. In conclusion, polyamine metabolism disorder occurs in the myocardial tissue of diabetic rats, causing myocardial fibrosis and ERS. Exogenous SPM plays a myocardial protective role via inhibiting of ERS and the canonical Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xiaoxiao Lu
- Department of Physical Diagnostics, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xinying Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xiaoting Shao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Junting Chen
- Department of Anesthesiology, Harbin Medical University Fourth Hospital, Harbin, China
| | - Bingbing Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Siwei Li
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Ben-Zvi T, Pushkarev A, Seri H, Elgrably-Weiss M, Papenfort K, Altuvia S. mRNA dynamics and alternative conformations adopted under low and high arginine concentrations control polyamine biosynthesis in Salmonella. PLoS Genet 2019; 15:e1007646. [PMID: 30742606 PMCID: PMC6386406 DOI: 10.1371/journal.pgen.1007646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 01/21/2023] Open
Abstract
Putrescine belongs to the large group of polyamines, an essential class of metabolites that exists throughout all kingdoms of life. The Salmonella speF gene encodes an inducible ornithine decarboxylase that produces putrescine from ornithine. Putrescine can be also synthesized from arginine in a parallel metabolic pathway. Here, we show that speF expression is controlled at multiple levels through regulatory elements contained in a long leader sequence. At the heart of this regulation is a short open reading frame, orf34, which is required for speF production. Translation of orf34 interferes with Rho-dependent transcription termination and helps to unfold an inhibitory RNA structure sequestering speF ribosome-binding site. Two consecutive arginine codons in the conserved domain of orf34 provide a third level of speF regulation. Uninterrupted translation of orf34 under conditions of high arginine allows the formation of a speF mRNA structure that is degraded by RNase G, whereas ribosome pausing at the consecutive arginine codons in the absence of arginine enables the formation of an alternative structure that is resistant to RNase G. Thus, the rate of ribosome progression during translation of the upstream ORF influences the dynamics of speF mRNA folding and putrescine production. The identification of orf34 and its regulatory functions provides evidence for the evolutionary conservation of ornithine decarboxylase regulatory elements and putrescine production. Polyamines are widely distributed in nature, they bind nucleic acids and proteins and although their exact mechanism of action is not clear, their effect on fundamental cellular functions is well documented. The canonical biosynthesis pathway of polyamines is conserved and begins with speF encoding ornithine decarboxylase, an inducible enzyme that produces putrescine from ornithine. Putrescine can also be produced from arginine in an alternative metabolic pathway. Here, we show that the rate of ribosome progression during translation of a short ORF (ORF34) upstream of speF influences the dynamics of speF mRNA folding and thus putrescine production. Uninterrupted translation of orf34 carrying two consecutive arginine codons, under conditions of high arginine, results in the formation of a speF mRNA structure that is degraded by RNase G, whereas ribosomes slow-down at the consecutive arginine codons in the absence of arginine enables the formation of an alternative structure that is unsusceptible to RNase G and thus results in putrescine production. The study of Salmonella speF regulation provides evidence that, despite variations in the mechanistic details, RNA-based regulation of putrescine biosynthesis and ornithine decarboxylase is conserved from bacteria to mammals.
Collapse
Affiliation(s)
- Tamar Ben-Zvi
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Alina Pushkarev
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hemda Seri
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kai Papenfort
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
8
|
Polyamine Metabolism as a Therapeutic Target inHedgehog-Driven Basal Cell Carcinomaand Medulloblastoma. Cells 2019; 8:cells8020150. [PMID: 30754726 PMCID: PMC6406590 DOI: 10.3390/cells8020150] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling is a critical developmental regulator and its aberrant activation,due to somatic or germline mutations of genes encoding pathway components, causes Basal CellCarcinoma (BCC) and medulloblastoma (MB). A growing effort has been devoted at theidentification of druggable vulnerabilities of the Hedgehog signaling, leading to the identificationof various compounds with variable efficacy and/or safety. Emerging evidence shows that anaberrant polyamine metabolism is a hallmark of Hh-dependent tumors and that itspharmacological inhibition elicits relevant therapeutic effects in clinical or preclinical models ofBCC and MB. We discuss here the current knowledge of polyamine metabolism, its role in cancerand the available targeting strategies. We review the literature about the connection betweenpolyamines and the Hedgehog signaling, and the potential therapeutic benefit of targetingpolyamine metabolism in two malignancies where Hh pathways play a well-established role: BCCand MB.
Collapse
|
9
|
Abstract
This paper is in recognition of the 100th birthday of Dr. Herbert Tabor, a true pioneer in the polyamine field for over 70 years, who served as the editor-in-chief of the Journal of Biological Chemistry from 1971 to 2010. We review current knowledge of MYC proteins (c-MYC, MYCN, and MYCL) and focus on ornithine decarboxylase 1 (ODC1), an important bona fide gene target of MYC, which encodes the sentinel, rate-limiting enzyme in polyamine biosynthesis. Although notable advances have been made in designing inhibitors against the "undruggable" MYCs, their downstream targets and pathways are currently the main avenue for therapeutic anticancer interventions. To this end, the MYC-ODC axis presents an attractive target for managing cancers such as neuroblastoma, a pediatric malignancy in which MYCN gene amplification correlates with poor prognosis and high-risk disease. ODC and polyamine levels are often up-regulated and contribute to tumor hyperproliferation, especially of MYC-driven cancers. We therefore had proposed to repurpose α-difluoromethylornithine (DFMO), an FDA-approved, orally available ODC inhibitor, for management of neuroblastoma, and this intervention is now being pursued in several clinical trials. We discuss the regulation of ODC and polyamines, which besides their well-known interactions with DNA and tRNA/rRNA, are involved in regulating RNA transcription and translation, ribosome function, proteasomal degradation, the circadian clock, and immunity, events that are also controlled by MYC proteins.
Collapse
Affiliation(s)
- André S Bachmann
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503 and
| | - Dirk Geerts
- the Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Abstract
Polyamines are organic polycations that bind to a variety of cellular molecules, including nucleic acids. Within cells, polyamines contribute to both the efficiency and fidelity of protein synthesis. In addition to directly acting on the translation apparatus to stimulate protein synthesis, the polyamine spermidine serves as a precursor for the essential post-translational modification of the eukaryotic translation factor 5A (eIF5A), which is required for synthesis of proteins containing problematic amino acid sequence motifs, including polyproline tracts, and for termination of translation. The impact of polyamines on translation is highlighted by autoregulation of the translation of mRNAs encoding key metabolic and regulatory proteins in the polyamine biosynthesis pathway, including S-adenosylmethionine decarboxylase (AdoMetDC), antizyme (OAZ), and antizyme inhibitor 1 (AZIN1). Here, we highlight the roles of polyamines in general translation and also in the translational regulation of polyamine biosynthesis.
Collapse
Affiliation(s)
- Thomas E Dever
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Ivaylo P Ivanov
- From the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Schultz CR, Geerts D, Mooney M, El-Khawaja R, Koster J, Bachmann AS. Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma. Biochem J 2018; 475:531-545. [PMID: 29295892 DOI: 10.1042/bcj20170597] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2023]
Abstract
The eukaryotic initiation factor 5A (eIF5A), which contributes to several crucial processes during protein translation, is the only protein that requires activation by a unique post-translational hypusine modification. eIF5A hypusination controls cell proliferation and has been linked to cancer. eIF5A hypusination requires the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase and uniquely depends on the polyamine (PA) spermidine as the sole substrate. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in PA biosynthesis. Both ODC and PAs control cell proliferation and are frequently dysregulated in cancer. Since only spermidine can activate eIF5A, we chose the hypusine-PA nexus as a rational target to identify new drug combinations with synergistic antiproliferative effects. We show that elevated mRNA levels of the two target enzymes DHPS and ODC correlate with poor prognosis in a large cohort of neuroblastoma (NB) tumors. The DHPS inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) and the ODC inhibitor α-difluoromethylornithine (DFMO) are target-specific and in combination induced synergistic effects in NB at concentrations that were not individually cytotoxic. Strikingly, while each drug alone at higher concentrations is known to induce p21/Rb- or p27/Rb-mediated G1 cell cycle arrest, we found that the drug combination induced caspase 3/7/9, but not caspase 8-mediated apoptosis, in NB cells. Hypusinated eIF5A levels and intracellular spermidine levels correlated directly with drug treatments, signifying specific drug targeting effects. This two-pronged GC7/DFMO combination approach specifically inhibits both spermidine biosynthesis and post-translational, spermidine-dependent hypusine-eIF5A activation, offering an exciting clue for improved NB drug therapy.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | - Dirk Geerts
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marie Mooney
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | | | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A.
| |
Collapse
|
12
|
Sairenji S, Akine S, Nabeshima T. Response speed control of helicity inversion based on a "regulatory enzyme"-like strategy. Sci Rep 2018; 8:137. [PMID: 29317654 PMCID: PMC5760571 DOI: 10.1038/s41598-017-16503-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
In biological systems, there are many signal transduction cascades in which a chemical signal is transferred as a series of chemical events. Such successive reaction systems are advantageous because the efficiency of the functions can be finely controlled by regulatory enzymes at an earlier stage. However, most of artificial responsive molecules developed so far rely on single-step conversion, whose response speeds have been difficult to be controlled by external stimuli. In this context, developing artificial conversion systems that have a regulation step similar to the regulatory enzymes has been anticipated. Here we report a novel artificial two-step structural conversion system in which the response speed can be controlled based on a regulatory enzyme-like strategy. In this system, addition of fluoride ion caused desilylation of the siloxycarboxylate ion attached to a helical complex, resulting in the subsequent helicity inversion. The response speeds of the helicity inversion depended on the reactivity of the siloxycarboxylate ions; when a less-reactive siloxycarboxylate ion was used, the helicity inversion rate was governed by the desilylation rate. This is the first artificial responsive molecule in which the overall response speed can be controlled at the regulation step separated from the function step.
Collapse
Affiliation(s)
- Shiho Sairenji
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology / Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|
13
|
Nowotarski SL, Shantz LM. The ODC 3'-Untranslated Region and 5'-Untranslated Region Contain cis-Regulatory Elements: Implications for Carcinogenesis. Med Sci (Basel) 2017; 6:E2. [PMID: 29271923 PMCID: PMC5872159 DOI: 10.3390/medsci6010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022] Open
Abstract
It has been hypothesized that both the 3'-untranslated region (3'UTR) and the 5'-untranslated region (5'UTR) of the ornithine decarboxylase (ODC) mRNA influence the expression of the ODC protein. Here, we use luciferase expression constructs to examine the influence of both UTRs in keratinocyte derived cell lines. The ODC 5'UTR or 3'UTR was cloned into the pGL3 control vector upstream or downstream of the luciferase reporter gene, respectively, and luciferase activity was measured in both non-tumorigenic and tumorigenic mouse keratinocyte cell lines. Further analysis of the influence of the 3'UTR on luciferase activity was accomplished through site-directed mutagenesis and distal deletion analysis within this region. Insertion of either the 5'UTR or 3'UTR into a luciferase vector resulted in a decrease in luciferase activity when compared to the control vector. Deletion analysis of the 3'UTR revealed a region between bases 1969 and 2141 that was inhibitory, and mutating residues within that region increased luciferase activity. These data suggest that both the 5'UTR and 3'UTR of ODC contain cis-acting regulatory elements that control intracellular ODC protein levels.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Division of Science, The Pennsylvania State University Berks Campus, Reading, PA 19610, USA.
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
14
|
Abstract
Polyamines are small, abundant, aliphatic molecules present in all mammalian cells. Within the context of the cell, they play a myriad of roles, from modulating nucleic acid conformation to promoting cellular proliferation and signaling. In addition, polyamines have emerged as important molecules in virus-host interactions. Many viruses have been shown to require polyamines for one or more aspects of their replication cycle, including DNA and RNA polymerization, nucleic acid packaging, and protein synthesis. Understanding the role of polyamines has become easier with the application of small-molecule inhibitors of polyamine synthesis and the use of interferon-induced regulators of polyamines. Here we review the diverse mechanisms in which viruses require polyamines and investigate blocking polyamine synthesis as a potential broad-spectrum antiviral approach.
Collapse
|
15
|
Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes. Infect Immun 2016; 85:IAI.00554-16. [PMID: 27795357 PMCID: PMC5203656 DOI: 10.1128/iai.00554-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani. To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite.
Collapse
|
16
|
Nowotarski SL, Origanti S, Sass-Kuhn S, Shantz LM. Destabilization of the ornithine decarboxylase mRNA transcript by the RNA-binding protein tristetraprolin. Amino Acids 2016; 48:2303-11. [PMID: 27193233 DOI: 10.1007/s00726-016-2261-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/12/2016] [Indexed: 01/25/2023]
Abstract
Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. In a normal physiological state, ODC is tightly regulated. However, during neoplastic transformation, ODC expression becomes upregulated. The studies described here show that the ODC mRNA transcript is destabilized by the RNA-binding protein tristetraprolin (TTP). We show that TTP is able to bind to the ODC mRNA transcript in both non-transformed RIE-1 cells and transformed Ras12V cells. Moreover, using mouse embryonic fibroblast cell lines that are devoid of a functional TTP protein, we demonstrate that in the absence of TTP both ODC mRNA stability and ODC enzyme activity increase when compared to wild-type cells. Finally, we show that the ODC 3' untranslated region contains cis acting destabilizing elements that are affected by, but not solely dependent on, TTP expression. Together, these data support the hypothesis that TTP plays a role in the post-transcriptional regulation of the ODC mRNA transcript.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Division of Science, The Pennsylvania State University Berks Campus, Reading, PA, 19610, USA.
| | - Sofia Origanti
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Suzanne Sass-Kuhn
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
17
|
Wei C, Li HZ, Wang YH, Peng X, Shao HJ, Li HX, Bai SZ, Lu XX, Wu LY, Wang R, Xu CQ. Exogenous spermine inhibits the proliferation of human pulmonary artery smooth muscle cells caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways. Int J Mol Med 2015; 37:39-46. [PMID: 26572277 PMCID: PMC4687431 DOI: 10.3892/ijmm.2015.2408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022] Open
Abstract
Pulmonary vascular remodeling is a significant pathological feature of hypoxia-induced pulmonary hypertension (HPH), while pulmonary artery smooth muscle cell (PASMC) proliferation plays a leading role in pulmonary vascular remodeling. Spermine (Sp), a polyamine, plays a critical role in periodic cell proliferation and apoptosis. The present study was conducted to observe the association between hypoxia-induced PASMC proliferation and polyamine metabolism, and to explore the effects of exogenous Sp on PASMC poliferation and the related mechanisms. In the present study, PASMCs were cultured with cobalt chloride (CoCl2) to establish a hypoxia model, and Sp at various final concentrations (0.1, 1, 10 and 100 µM) was added to the medium of PASMCs 40 min prior to the induction of hypoxia. Cell proliferation was measured by 3-(4,5-dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay, cell counting kit-8 assay and 5-bromo‑2'‑deoxyuridine (BrdU) incorporation assay. Cell cycle progression was determined by flow cytometry, and the protein expression levels of spermidine/spermine N1-acetyltransferase (SSAT; the key enzyme in the terminal degradation of polyamine), ornithine decarboxylase (ODC; the key enzyme of polyamine biosynthesis), cyclin D1 and p27 were measured by western blot analysis. The results revealed that the proliferation of the PASMCs cultured with CoCl2 at 50 µM for 24 h markedly increased. The expression of ODC was decreased and the expression of SSAT was increased in the cells under hypoxic conditions. Exogenous Sp at concentrations of 1 and 10 µM significantly inhibited hypoxia-induced PASMC proliferation, leading to cell cycle arrest at the G1/G0 phase. In addition, Sp decreased cyclin D1 expression, increased p27 expression, and suppressed the phosphorylation of extracellular signal‑regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT); however, the above-metioned parameters were not markedly affected by Sp at concentrations of 0.1 or 100 µM. These results suggest that hypoxia disrupts polyamine metabolism, and Sp at concentrations of 1 and 10 µM inhibits the increase in human PASMC proliferation caused by chemically-induced hypoxia via the suppression of the ERK1/2- and PI3K/AKT-associated pathways. This study thus offer new insight into the prevention and treatment of HPH.
Collapse
Affiliation(s)
- Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hong-Zhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yue-Hong Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xue Peng
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hong-Jiang Shao
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hong-Xia Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shu-Zhi Bai
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiao-Xiao Lu
- Department of Ultrasound, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Ling-Yun Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rui Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chang-Qing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
18
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
19
|
Li WD, Huang M, Lü WG, Chen X, Shen MH, Li XM, Wang RX, Ke CH. Involvement of Antizyme Characterized from the Small Abalone Haliotis diversicolor in Gonadal Development. PLoS One 2015; 10:e0135251. [PMID: 26313647 PMCID: PMC4551804 DOI: 10.1371/journal.pone.0135251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/19/2022] Open
Abstract
The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone.
Collapse
Affiliation(s)
- Wei-Dong Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Min Huang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Wen-Gang Lü
- College of Oceanography and Environmental Science, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao Chen
- Guangxi Key Lab for Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai, Guangxi Province, China
| | - Ming-Hui Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Xiang-Min Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Rong-Xia Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, China
| | - Cai-Huan Ke
- College of Oceanography and Environmental Science, Xiamen University, Xiamen, Fujian Province, China
- * E-mail:
| |
Collapse
|
20
|
Ray RM, Bhattacharya S, Bavaria MN, Viar MJ, Johnson LR. Spermidine, a sensor for antizyme 1 expression regulates intracellular polyamine homeostasis. Amino Acids 2014; 46:2005-13. [PMID: 24824458 DOI: 10.1007/s00726-014-1757-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Although intracellular polyamine levels are highly regulated, it is unclear whether intracellular putrescine (PUT), spermidine (SPD), or spermine (SPM) levels act as a sensor to regulate their synthesis or uptake. Polyamines have been shown to induce AZ1 expression through a unique +1 frameshifting mechanism. However, under physiological conditions which particular polyamine induces AZ1, and thereby ODC activity, is unknown due to their inter-conversion. In this study we demonstrate that SPD regulates AZ1 expression under physiological conditions in IEC-6 cells. PUT and SPD showed potent induction of AZ1 within 4 h in serum-starved confluent cells grown in DMEM (control) medium. Unlike control cells, PUT failed to induce AZ1 in cells grown in DFMO containing medium; however, SPD caused a robust AZ1 induction in these cells. SPM showed very little effect on AZ1 expression in both the control and polyamine-depleted cells. Only SPD induced AZ1 when S-adenosylmethionine decarboxylase (SAMDC) and/or ODC were inhibited. Surprisingly, addition of DENSpm along with DFMO restored AZ1 induction by putrescine in polyamine-depleted cells suggesting that the increased SSAT activity in response to DENSpm converted SPM to SPD, leading to the expression of AZ1. This study shows that intracellular SPD levels controls AZ1 synthesis.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN, 38163, USA,
| | | | | | | | | |
Collapse
|
21
|
Levillain O, Ramos-Molina B, Forcheron F, Peñafiel R. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys. Amino Acids 2012; 43:2153-63. [PMID: 22562773 DOI: 10.1007/s00726-012-1300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/12/2012] [Indexed: 12/16/2022]
Abstract
The role of polyamines in renal physiology is only partially understood. Moreover, most of the data on the enzymes of polyamine metabolism come from studies using whole kidneys. The aim of the present study was to analyze the mRNA abundance of the genes implicated in both the polyamine biosynthetic and catabolic pathways in different renal zones of male and female mice, by means of the quantitative reverse transcription-polymerase chain reaction. Our results indicate that there is an uneven distribution of the different mRNAs studied in the five renal zones: superficial cortex, deep cortex, outer stripe of the outer medulla (OS), inner stripe of the outer medulla (IS), and the inner medulla + papilla (IM). The biosynthetic genes, ornithine decarboxylase (ODC) and spermine synthase, were more expressed in the cortex, whereas the mRNAs of the catabolic genes spermine oxidase (SMO) and diamine oxidase were more abundant in IS and IM. The genes involved in the regulation of polyamine synthesis (AZ1, AZ2 and AZIN1) were expressed in all the renal zones, predominantly in the cortex, while AZIN2 gene was more abundant in the OS. ODC, SMO, spermidine synthase and spermidine/spermine acetyl transferase expression was higher in males than in females. In conclusion, the genes encoding for the polyamine metabolism were specifically and quantitatively distributed along the corticopapillary axis of male and female mouse kidneys, suggesting that their physiological role is essential in defined renal zones and/or nephron segments.
Collapse
Affiliation(s)
- Olivier Levillain
- Institut de Biologie et Chimie des Protéines, FRE 3310, Dysfonctionnements de l'homéostasie tissulaire et ingénierie thérapeutique, (DyHTIT), 7 passage du Vercors, 69367, Lyon, France.
| | | | | | | |
Collapse
|
22
|
Vargas AJ, Wertheim BC, Gerner EW, Thomson CA, Rock CL, Thompson PA. Dietary polyamine intake and risk of colorectal adenomatous polyps. Am J Clin Nutr 2012; 96:133-41. [PMID: 22648715 PMCID: PMC3374737 DOI: 10.3945/ajcn.111.030353] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Putrescine, spermidine, and spermine are the polyamines required for human cell growth. The inhibition of ornithine decarboxylase (ODC), which is the rate-limiting enzyme of polyamine biosynthesis, decreases tumor growth and the development of colorectal adenomas. A database was developed to estimate dietary polyamine exposure and relate exposure to health outcomes. OBJECTIVE We hypothesized that high polyamine intake would increase risk of colorectal adenoma and that the allelic variation at ODC G>A +316 would modify the association. DESIGN Polyamine exposure was estimated in subjects pooled (n = 1164) from the control arms of 2 randomized trials for colorectal adenoma prevention [Wheat Bran Fiber low-fiber diet arm (n = 585) and Ursodeoxycholic Acid placebo arm (n = 579)] by using baseline food-frequency questionnaire data. All subjects had to have a diagnosis of colorectal adenoma to be eligible for the trial. RESULTS A dietary intake of polyamines above the median amount in the study population was associated with 39% increased risk of colorectal adenoma at follow-up (adjusted OR: 1.39; 95% CI: 1.06, 1.83) in the pooled sample. In addition, younger participants (OR: 1.94; 95% CI: 1.23, 3.08), women (OR: 2.43; 95% CI: 1.48, 4.00), and ODC GG genotype carriers (OR: 1.59; 95% CI: 1.00, 2.53) had significantly increased odds of colorectal adenoma if they consumed above-median polyamine amounts. CONCLUSIONS This study showed a role for dietary polyamines in colorectal adenoma risk. Corroboration of these findings would confirm a previously unrecognized, modifiable dietary risk factor for colorectal adenoma.
Collapse
Affiliation(s)
- Ashley J Vargas
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Shi C, Cooper TK, McCloskey DE, Glick AB, Shantz LM, Feith DJ. S-adenosylmethionine decarboxylase overexpression inhibits mouse skin tumor promotion. Carcinogenesis 2012; 33:1310-8. [PMID: 22610166 DOI: 10.1093/carcin/bgs184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neoplastic growth is associated with increased polyamine biosynthetic activity and content. Tumor promoter treatment induces the rate-limiting enzymes in polyamine biosynthesis, ornithine decarboxylase (ODC), and S-adenosylmethionine decarboxylase (AdoMetDC), and targeted ODC overexpression is sufficient for tumor promotion in initiated mouse skin. We generated a mouse model with doxycycline (Dox)-regulated AdoMetDC expression to determine the impact of this second rate-limiting enzyme on epithelial carcinogenesis. TetO-AdoMetDC (TAMD) transgenic founders were crossed with transgenic mice (K5-tTA) that express the tetracycline-regulated transcriptional activator within basal keratinocytes of the skin. Transgene expression in TAMD/K5-tTA mice was restricted to keratin 5 (K5) target tissues and silenced upon Dox treatment. AdoMetDC activity and its product, decarboxylated AdoMet, both increased approximately 8-fold in the skin. This enabled a redistribution of the polyamines that led to reduced putrescine, increased spermine, and an elevated spermine:spermidine ratio. Given the positive association between polyamine biosynthetic capacity and neoplastic growth, it was somewhat surprising to find that TAMD/K5-tTA mice developed significantly fewer tumors than controls in response to 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate chemical carcinogenesis. Importantly, tumor counts in TAMD/K5-tTA mice rebounded to nearly equal the levels in the control group upon Dox-mediated transgene silencing at a late stage of tumor promotion, which indicates that latent viable initiated cells remain in AdoMetDC-expressing skin. These results underscore the complexity of polyamine modulation of tumor development and emphasize the critical role of putrescine in tumor promotion. AdoMetDC-expressing mice will enable more refined spatial and temporal manipulation of polyamine biosynthesis during tumorigenesis and in other models of human disease.
Collapse
Affiliation(s)
- Chenxu Shi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
24
|
Smirnova OA, Isaguliants MG, Hyvonen MT, Keinanen TA, Tunitskaya VL, Vepsalainen J, Alhonen L, Kochetkov SN, Ivanov AV. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 2012; 94:1876-83. [PMID: 22579641 DOI: 10.1016/j.biochi.2012.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 01/23/2023]
Abstract
Biogenic polyamines spermine and spermidine participate in numerous cellular processes including transcription, RNA processing and translation. Specifically, they counteract oxidative stress, an alteration of cell redox balance involved in generation and progression of various pathological states including cancer. Here, we investigated how chemically induced oxidative stress affects polyamine metabolism, specifically the expression and activities of enzymes catalyzing polyamine synthesis (ornithine decarboxylase; ODC) and degradation (spermidine/spermine-N(1)-acetyltransferase; SSAT), in human hepatoma cells. Oxidative stress induced the up-regulation of ODC and SSAT gene transcription mediated by Nrf2, and in case of SSAT, also by NF-κB transcription factors. Activation of transcription led to the elevated intracellular activities of both enzymes. The balance in antagonistic activities of ODC and SSAT in the stressed hepatoma cells was shifted towards polyamine biosynthesis, which resulted in increased intracellular levels of putrescine, spermidine, and spermine. Accumulation of putrescine is indicating for accelerated degradation of polyamines by SSAT - acetylpolyamine oxidase (APAO) pathway generating toxic products that promote carcinogenesis, whereas accelerated polyamine synthesis via activation of ODC is favorable for proliferation of cells including those sub-lethally damaged by oxidative stress.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The arginine attenuator peptide interferes with the ribosome peptidyl transferase center. Mol Cell Biol 2012; 32:2396-406. [PMID: 22508989 DOI: 10.1128/mcb.00136-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal arginine attenuator peptide (AAP) is encoded by a regulatory upstream open reading frame (uORF). The AAP acts as a nascent peptide within the ribosome tunnel to stall translation in response to arginine (Arg). The effect of AAP and Arg on ribosome peptidyl transferase center (PTC) function was analyzed in Neurospora crassa and wheat germ translation extracts using the transfer of nascent AAP to puromycin as an assay. In the presence of a high concentration of Arg, the wild-type AAP inhibited PTC function, but a mutated AAP that lacked stalling activity did not. While AAP of wild-type length was most efficient at stalling ribosomes, based on primer extension inhibition (toeprint) assays and reporter synthesis assays, a window of inhibitory function spanning four residues was observed at the AAP's C terminus. The data indicate that inhibition of PTC function by the AAP in response to Arg is the basis for the AAP's function of stalling ribosomes at the uORF termination codon. Arg could interfere with PTC function by inhibiting peptidyltransferase activity and/or by restricting PTC A-site accessibility. The mode of PTC inhibition appears unusual because neither specific amino acids nor a specific nascent peptide chain length was required for AAP to inhibit PTC function.
Collapse
|
26
|
Van den Bossche J, Lamers WH, Koehler ES, Geuns JMC, Alhonen L, Uimari A, Pirnes-Karhu S, Van Overmeire E, Morias Y, Brys L, Vereecke L, De Baetselier P, Van Ginderachter JA. Pivotal Advance: Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. J Leukoc Biol 2012; 91:685-99. [PMID: 22416259 DOI: 10.1189/jlb.0911453] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In macrophages, basal polyamine (putrescine, spermidine, and spermine) levels are relatively low but are increased upon IL-4 stimulation. This Th2 cytokine induces Arg1 activity, which converts arginine into ornithine, and ornithine can be decarboxylated by ODC to produce putrescine, which is further converted into spermidine and spermine. Recently, we proposed polyamines as novel agents in IL-4-dependent E-cadherin regulation in AAMs. Here, we demonstrate for the first time that several, but not all, AAM markers depend on polyamines for their IL-4-induced gene and protein expression and that polyamine dependency of genes relies on the macrophage type. Remarkably, Arg1-deficient macrophages display rather enhanced IL-4-induced polyamine production, suggesting that an Arg1-independent polyamine synthesis pathway may operate in macrophages. On the other side of the macrophage activation spectrum, LPS-induced expression of several proinflammatory genes was increased significantly in polyamine-depleted CAMs. Overall, we propose Arg1 independently produced polyamines as novel regulators of the inflammatory status of the macrophage. Indeed, whereas polyamines are needed for IL-4-induced expression of several AAM mediators, they inhibit the LPS-mediated expression of proinflammatory genes in CAMs.
Collapse
Affiliation(s)
- Jan Van den Bossche
- Myeloid Cell Immunology Lab, VIB-Vrije Universiteit Brussel, Building E, Level 8, Pleinlaan 2, B-1050, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fraser AV, Goodwin AC, Hacker-Prietz A, Sugar E, Woster PM, Casero RA. Knockdown of ornithine decarboxylase antizyme 1 causes loss of uptake regulation leading to increased N1, N11-bis(ethyl)norspermine (BENSpm) accumulation and toxicity in NCI H157 lung cancer cells. Amino Acids 2011; 42:529-38. [PMID: 21814790 DOI: 10.1007/s00726-011-1030-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/26/2011] [Indexed: 10/17/2022]
Abstract
Ornithine decarboxylase antizyme 1 (AZ1) is a major regulatory protein responsible for the regulation and degradation of ornithine decarboxylase (ODC). To better understand the role of AZ1 in polyamine metabolism and in modulating the response to anticancer polyamine analogues, a small interfering RNA strategy was used to create a series of stable clones in human H157 non-small cell lung cancer cells that expressed less than 5-10% of basal AZ1 levels. Antizyme 1 knockdown clones accumulated greater amounts of the polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) and were more sensitive to analogue treatment. The possibility of a loss of polyamine uptake regulation in the knockdown clones was confirmed by polyamine uptake analysis. These results are consistent with the hypothesis that AZ1 knockdown leads to dysregulation of polyamine uptake, resulting in increased analogue accumulation and toxicity. Importantly, there appears to be little difference between AZ1 knockdown cells and cells with normal levels of AZ1 with respect to ODC regulation, suggesting that another regulatory protein, potentially AZ2, compensates for the loss of AZ1. The results of these studies are important for the understanding of both the regulation of polyamine homeostasis and in understanding the factors that regulate tumor cell sensitivity to the anti-tumor polyamine analogues.
Collapse
Affiliation(s)
- Alison V Fraser
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Bunting-Blaustein Cancer Research Building 1, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC) and intracellular levels of ODC protein are controlled very tightly. Numerous studies have described ODC regulation at the levels of transcription, translation, and protein degradation in normal cells and dysregulation of these processes in response to oncogenic stimuli. Although posttranscriptional regulation of ODC has been well documented, the RNA binding proteins (RBPs) that interact with ODC mRNA and control synthesis of the ODC protein have not been defined. Using Ras-transformed rat intestinal epithelial cells (Ras12V cells) as a model, we have begun identifying the RBPs that associate with the ODC transcript. Binding of RBPs could potentially regulate ODC synthesis by either changing mRNA stability or rate of mRNA translation. Techniques for measuring RBP binding and translation initiation are described here. Targeting control of ODC translation or mRNA decay could be a valuable method of limiting polyamine accumulation and subsequent tumor development in a variety of cancers.
Collapse
|
29
|
Affiliation(s)
- Rao N. Jaladanki
- University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center
| | - Jian-Ying Wang
- University of Maryland School of Medicine and Baltimore Veterans Affairs Medical Center
| |
Collapse
|
30
|
Nowotarski SL, Shantz LM. Cytoplasmic accumulation of the RNA-binding protein HuR stabilizes the ornithine decarboxylase transcript in a murine nonmelanoma skin cancer model. J Biol Chem 2010; 285:31885-94. [PMID: 20685649 DOI: 10.1074/jbc.m110.148767] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. Under normal physiological conditions, polyamine content and ODC enzyme activity are highly regulated. However, the induction of ODC activity is an early step in neoplastic transformation. The studies described here use normal mouse keratinocytes (C5N cells), and spindle carcinoma cells (A5 cells) to explore the regulation of ODC in nonmelanoma skin cancer development. Previous results have shown that induction of ODC activity is both necessary and sufficient for the promotion of skin tumors. We see a marked increase in ODC enzyme activity in A5 cells compared with C5N keratinocytes, which correlates with a 4-fold stabilization of ODC mRNA. These data suggest that ODC is post-transcriptionally regulated in skin tumor development. Thus, we sought to investigate whether the ODC transcript interacts with the RNA-binding protein HuR, which is known to bind to and stabilize its target mRNAs. We show that HuR is able to bind to the ODC 3'-UTR in A5 cells but not in C5N cells. Immunofluorescence results reveal that HuR is present in both the nucleus and cytoplasm of A5 cells, whereas C5N cells exhibit strictly nuclear localization of HuR. Knockdown experiments in A5 cells showed that when HuR is depleted, ODC RNA becomes less stable, and ODC enzyme activity decreases. Together, these data support the hypothesis that HuR plays a causative role in ODC up-regulation during nonmelanoma skin cancer development by binding to and stabilizing the ODC transcript.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
31
|
Ramot Y, Pietilä M, Giuliani G, Rinaldi F, Alhonen L, Paus R. Polyamines and hair: a couple in search of perfection. Exp Dermatol 2010; 19:784-90. [PMID: 20629736 DOI: 10.1111/j.1600-0625.2010.01111.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyamines (spermidine, putrescine and spermine) are multifunctional cationic amines that are indispensable for cellular proliferation; of key significance in the growth of rapidly regenerating tissues and tumors. Given that the hair follicle (HF) is one of the most highly proliferative organs in mammalian biology, it is not surprising that polyamines are crucial to HF growth. Indeed, growing (anagen) HFs show the highest activity of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, while inhibition of ODC, using eflornithine, results in a decreased rate of excessive facial hair growth in vivo and inhibits human scalp hair growth in organ culture. In sheep, manipulation of dietary intake of polyamines also results in altered wool growth. Polyamine-containing nutraceuticals have therefore been proposed as promoters of human hair growth. Recent progress in polyamine research, coupled with renewed interest in the role of polyamines in skin biology, encourages one to revisit their potential roles in HF biology and highlights the need for a systematic evaluation of their mechanisms of action and clinical applications in the treatment of hair disorders. The present viewpoint essay outlines the key frontiers in polyamine-related hair research and defines the major open questions. Moreover, it argues that a renaissance in polyamine research in hair biology, well beyond the inhibition of ODC activity in hirsutism therapy, is important for the development of novel therapeutic strategies for the manipulation of human hair growth. Such targets could include the manipulation of polyamine biosynthesis and the topical administration of selected polyamines, such as spermidine.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The polyamines are essential for a variety of functions in the mammalian cell. Although their specific effects have not been fully elucidated, it is clear that the cellular polyamines have to be kept within certain levels for normal cell function. Polyamine homoeostasis in mammalian cells is achieved by a complex network of regulatory mechanisms affecting synthesis and degradation, as well as membrane transport of polyamines. The two key enzymes in the polyamine biosynthetic pathway, ODC (ornithine decarboxylase) and AdoMetDC (S-adenosylmethionine decarboxylase), are strongly regulated by feedback mechanisms at several levels, including transcriptional, translational and post-translational. Some of these mechanisms have been shown to be truly unique and include upstream reading frames and ribosomal frameshifting, as well as ubiquitin-independent proteasomal degradation. SSAT (spermidine/spermine N1-acetyltransferase), which is a crucial enzyme for degradation and efflux of polyamines, is also highly regulated by polyamines. A cellular excess of polyamines rapidly induces SSAT, resulting in increased degradation/efflux of the polyamines. The polyamines appear to induce both transcription and translation of the SSAT mRNA. However, the major part of the polyamine-induced increase in SSAT is caused by a marked stabilization of the enzyme against degradation by the 26S proteasome. In addition, active transport of extracellular polyamines into the cell contributes to cellular polyamine homoeostasis. Depletion of cellular polyamines rapidly induces an increased uptake of exogenous polyamines, whereas an excess of polyamines down-regulates the polyamine transporter(s). However, the protein(s) involved in polyamine transport and the exact mechanisms by which the polyamines regulate the transporter(s) are not yet known.
Collapse
|
33
|
Tang H, Ariki K, Ohkido M, Murakami Y, Matsufuji S, Li Z, Yamamura KI. Role of ornithine decarboxylase antizyme inhibitor in vivo. Genes Cells 2008; 14:79-87. [PMID: 19077035 DOI: 10.1111/j.1365-2443.2008.01249.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ornithine decarboxylase (ODC) antizyme inhibitor (AZI) has been shown to regulate ODC activity in cell cultures. However, its biological functions in an organism remain unknown. An embryonic stem (ES) cell clone was established, in which the Azin1 gene was disrupted by the gene trap technique. To identify the function of Azin1 gene in vivo, a mutant mouse line was generated using these trapped ES cells. Homozygous mutant mice died at P0 with abnormal liver morphology. Further analysis indicated that the deletion of Azin1 in homozygous mice resulted in the degradation of ODC, and reduced the biosynthesis of putrescine and spermidine. Our results thus show that AZI plays an important role in regulating the levels of ODC, putrescine and spermidine in mice, and is essential for the survival of mice.
Collapse
Affiliation(s)
- Hua Tang
- Key Laboratory of Molecular Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Wei LH, Yang Y, Wu G, Ignarro LJ. IL-4 and IL-13 upregulate ornithine decarboxylase expression by PI3K and MAP kinase pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol 2008; 294:C1198-205. [PMID: 18367589 DOI: 10.1152/ajpcell.00325.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-controlling enzyme in the synthesis of polyamines, which are essential for normal cell growth. We have previously demonstrated that IL-4 and IL-13 can stimulate rat aortic smooth muscle cell (RASMC) proliferation. The objective of this study was to determine whether IL-4 and IL-13 induce cell proliferation by upregulating ODC expression in RASMC. The results revealed that incubation of RASMC with IL-4 and IL-13 for 24 h caused four- to fivefold induction of ODC catalytic activity. The increased ODC catalytic activity was attributed to the increased expression of ODC mRNA. Moreover, these observations were paralleled by increased production of polyamines. We further investigated the signal transduction pathways responsible for ODC induction by IL-4 and IL-13. The data illustrated that PD-98059, a MEK (MAPK kinase) inhibitor, LY-294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, and H-89, a protein kinase A (PKA) inhibitor, substantially decreased the induction of ODC catalytic activity and ODC mRNA expression induced by IL-4 and IL-13, suggesting positive regulation of the ODC gene by ERK, PI3K, and PKA pathways. Interestingly, dexamethasone, a known inhibitor of cell proliferation, completely abrogated the response of RASMC to IL-4 and IL-13. Furthermore, the inhibition of ODC by these inhibitors led to the reduced production of polyamines and decreased DNA synthesis as monitored by [(3)H]thymidine incorporation. Our data indicate that upregulation of ODC by IL-4 and IL-13 might play an important role in the pathophysiology of vascular disorders characterized by excessive smooth muscle growth.
Collapse
Affiliation(s)
- Liu Hua Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735, USA
| | | | | | | |
Collapse
|
35
|
Reagan-Shaw S, Mukhtar H, Ahmad N. Resveratrol imparts photoprotection of normal cells and enhances the efficacy of radiation therapy in cancer cells. Photochem Photobiol 2008; 84:415-21. [PMID: 18221451 DOI: 10.1111/j.1751-1097.2007.00279.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solar radiation spans a whole range of electromagnetic spectrum including UV radiation, which are potentially harmful to normal cells as well as ionizing radiations which are therapeutically beneficial towards the killing of cancer cells. UV radiation is an established cause of a majority of skin cancers as well as precancerous conditions such as actinic keratosis. However, despite efforts to educate people about the use of sunscreens and protective clothing as preventive strategies, the incidence of skin cancer and other skin-related disorders are on the rise. This has generated an enormous interest towards finding alternative approaches for management of UV-mediated damages. Chemoprevention via nontoxic agents, especially botanical antioxidants, is one such approach that is being considered as a plausible strategy for prevention of photodamages including photocarcinogenesis. In this review, we have discussed the photoprotective effects of resveratrol, an antioxidant found in grapes and red wine, against UVB exposure-mediated damages in vitro and in vivo. In addition, we have also discussed studies showing that resveratrol can act as a sensitizer to enhance the therapeutic effects of ionizing radiation against cancer cells. Based on available literature, we suggest that resveratrol may be useful for (1) prevention of UVB-mediated damages including skin cancer and (2) enhancing the response of radiation therapies against hyperproliferative, precancerous and neoplastic conditions.
Collapse
|
36
|
Grzelakowska-Sztabert B, Dudkowska M, Manteuffel-Cymborowska M. Nuclear and membrane receptor-mediated signalling pathways modulate polyamine biosynthesis and interconversion. Biochem Soc Trans 2007; 35:386-90. [PMID: 17371283 DOI: 10.1042/bst0350386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamines play an important role in cell growth and differentiation, while their overproduction has potentially oncogenic consequences. Polyamine homoeostasis, a critical determinant of cell fate, is precisely tuned at the level of biosynthesis, degradation and transport. The enzymes ODC (ornithine decarboxylase), AdoMetDC (S-adenosylmethionine decarboxylase) and SSAT (spermidine/spermine N(1)-acetyltransferase) are critical for polyamine pool maintenance. Our experiments were designed to examine the expression of these enzymes in testosterone-induced hypertrophic and antifolate-induced hyperplastic mouse kidney, characterized by activation of AR (androgen receptor) and HGF (hepatocyte growth factor) membrane receptor c-Met respectively. The expression of these key enzymes was up-regulated by antifolate CB 3717 injury-evoked activation of HGF/c-Met signalling. In contrast, activation of the testosterone/AR pathway remarkably induced a selective increase in ODC expression without affecting other enzymes. Studies in catecholamine-depleted kidneys point to a synergistic interaction between the signalling pathways activated via cell membrane catecholamine receptors and AR, as well as c-Met. We found that this cross-talk modulated the expression of ODC and AdoMetDC, enzymes limiting polyamine biosynthesis, but not SSAT. This is in contrast with the antagonistic cross-talk between AR- and c-Met-mediated signalling which negatively regulated the expression of ODC, but affected neither AdoMetDC nor SSAT.
Collapse
|
37
|
Abstract
Owing to their high turnover, the intestinal mucosal cells have a particularly high requirement for polyamines. Therefore, they are an excellent charcol for the study of polyamine function in rapid physiological growth and differentiation. After a cursory introduction to the major aspects of polyamine metabolism, regulation, and mode of action, we discuss the contribution of the polyamines to the maintenance of normal gut function, the maturation of the intestinal mucosa, and its repair after injuries. Repletion of cellular polyamine pools with (D,L)-2-(difluoromethyl)ornithine has considerably improved our understanding of how the polyamines are involved in the regulation of normal and neoplastic growth. Unfortunately, the attempts to exploit polyamine metabolism as a cancer therapeutic target have not yet been successful. However, the selective inactivation of ornithine decarboxylase appears to be a promising chemopreventive method in familial adenomatous polyposis. Presumably, it relies on the fact that ornithine decarboxylase is a critical regulator of the proliferative response of the protooncogene c-myc, but not of its apoptotic response.
Collapse
Affiliation(s)
- Nikolaus Seiler
- INSERM U682, Université Louis Pasteur EA3430, Faculty of Medicine, Laboratory of Nutritional Cancer Prevention, IRCAD, Strasbourg, France
| | | |
Collapse
|
38
|
Miao XP, Li JS, Li HY, Zeng SP, Zhao Y, Zeng JZ. Expression of ornithine decarboxylase in precancerous and cancerous gastric lesions. World J Gastroenterol 2007; 13:2867-71. [PMID: 17569126 PMCID: PMC4395642 DOI: 10.3748/wjg.v13.i20.2867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/05/2007] [Accepted: 02/14/2007] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of ornithine decarboxylase (ODC) in precancerous and cancerous gastric lesions. METHODS We studied the expression of ODC in gastric mucosa from patients with chronic superficial gastritis (CSG, n=32), chronic atrophic gastritis [CAG, n=43; 15 with and 28 without intestinal metaplasia (IM)], gastric dysplasia (DYS, n=11) and gastric cancer (GC, n=48) tissues using immunohistochemical staining. All 134 biopsy specimens of gastric mucosa were collected by gastroscopy. METHODS The positive rate of ODC expression was 34.4%, 42.9%, 73.3%, 81.8% and 91.7% in cases with CSG, CAG without IM, CAG with IM, DYS and GC, respectively (P<0.01), The positive rate of ODC expression increased in the order of CSG < CAG (without IM) < CAG (with IM) < DYS and finally, GC. In addition, ODC positive immunostaining rate was lower in well-differentiated GC than in poorly-differentiated GC (P<0.05). CONCLUSION The expression of ODC is positively correlated with the degree of malignity of gastric mucosa and development of gastric lesions. This finding indicates that ODC may be used as a good biomarker in the screening and diagnosis of precancerous lesions.
Collapse
Affiliation(s)
- Xin-Pu Miao
- Department of Gastroenterology, West China Hospital of Sichuan University, 17 Renmin Avenue, Chengdu 610041, Sichuan Province, China.
| | | | | | | | | | | |
Collapse
|
39
|
Shantz LM, Levin VA. Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 2007; 33:213-23. [PMID: 17443268 DOI: 10.1007/s00726-007-0531-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 02/01/2007] [Indexed: 01/10/2023]
Abstract
The activity of ornithine decarboxylase (ODC(1)), the first enzyme in polyamine biosynthesis, is induced during carcinogenesis by a variety of oncogenic stimuli. Intracellular levels of ODC and the polyamines are tightly controlled during normal cell growth, and regulation occurs at the levels of transcription, translation and protein degradation. Several known proto-oncogenic pathways appear to control ODC transcription and translation, and dysregulation of pathways downstream of ras and myc result in the constitutive elevation of ODC activity that occurs with oncogenesis. Inhibition of ODC activity reverts the transformation of cells in vitro and reduces tumor growth in several animal models, suggesting high levels of ODC are necessary for the maintenance of the transformed phenotype. The ODC irreversible inactivator DFMO has proven to be not only a valuable tool in the study of ODC in cancer, but also shows promise as a chemopreventive and chemotherapeutic agent in certain types of malignancies.
Collapse
Affiliation(s)
- L M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
40
|
Bastida CM, Cremades A, Castells MT, López-Contreras AJ, López-García C, Sánchez-Mas J, Peñafiel R. Sexual dimorphism of ornithine decarboxylase in the mouse adrenal: influence of polyamine deprivation on catecholamine and corticoid levels. Am J Physiol Endocrinol Metab 2007; 292:E1010-7. [PMID: 17148758 DOI: 10.1152/ajpendo.00316.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenal sexual dimorphism is thought to be important in explaining sex-related differences regarding prevalent diseases and the responses to stress and drugs. We report here that in CD1 mice there is marked sexual dimorphism affecting not only gland size and corticoid hormone secretion but also adrenal ornithine decarboxylase (ODC), polyamine, and catecholamine levels in which testosterone appears to be a major determinant. Our results show that adrenal weight, ODC activity, and corticosterone and aldosterone secretion were higher in female than in male mice and that orchidectomy brought these male parameters closer to the values found in females. mRNA levels of steroidogenic proteins SF-1, Dax-1, steroid 21-hydroxylase, and aldosterone synthase appeared to be slightly higher in female than in male adrenals. Immunocytochemical analysis of adrenal ODC revealed that immunoreactivity was higher in females than in males and was located mainly in the cortical cells, and especially in zona glomerulosa, whereas no sex differences in ODC mRNA levels were observed. These results suggest that sex-associated differences in the expression of ODC in the mouse adrenal gland appear to be related mainly to posttranscriptional mechanisms. Combination treatment of mice with alpha-difluoromethylornithine (a suicide inhibitor of ODC) and a polyamine-deficient diet produced a marked decrease in adrenal polyamine and catecholamine levels and a significant reduction in plasma corticosterone and aldosterone concentrations that were not associated with a decrease in the mRNA levels of steroidogenic proteins. All of these data suggest a relevant role for testosterone, ODC, and polyamines in the mouse adrenal function.
Collapse
Affiliation(s)
- Carmen M Bastida
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Ishii T, Sootome H, Shan L, Yamashita K. Validation of universal conditions for duplex quantitative reverse transcription polymerase chain reaction assays. Anal Biochem 2006; 362:201-12. [PMID: 17257573 DOI: 10.1016/j.ab.2006.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 11/30/2006] [Accepted: 12/04/2006] [Indexed: 11/28/2022]
Abstract
Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for measuring mRNA in biological materials. Multiplex qRT-PCR provides advantages for gene expression analysis by reducing sample requirements, saving time, and lowering experimental cost. However, there are currently no universal qRT-PCR experimental conditions validated as applicable to a large set of genes. We report here on the standardized condition for two-color real-time qRT-PCR with the Quantitect Multiplex PCR kit. We first verified lack of interferential effects of gene abundance on the efficiency of PCR amplification by an 8x8 checkerboard validation method, in which combinations of the plasmids encoding either fibronectin1 or cyclophilin mixed at 64 different ratios were amplified with the Quantitect Multiplex PCR kit. Then, a duplex analysis for 69 genes was performed to verify the universality of the reaction condition. The results were consistent with corresponding data obtained from the singleplex format, and their intra- and interassay coefficients of variance were sufficient for performing reliable quantitative analysis. This duplex format was also applicable to samples from animal experiments, with a good correlation between singleplex and duplex-assay (R(2)>0.92) observed. This duplex assay system is ready for use in high-throughput gene expression analysis without any gene-pair compatibility restrictions limiting its use.
Collapse
Affiliation(s)
- Tsuyoshi Ishii
- GlaxoSmithKline KK, 43 Wadai, Tsukuba-Shi, Ibaraki, Japan.
| | | | | | | |
Collapse
|
42
|
Roberts SC, Jiang Y, Gasteier J, Frydman B, Marton LJ, Heby O, Ullman B. Leishmania donovani polyamine biosynthetic enzyme overproducers as tools to investigate the mode of action of cytotoxic polyamine analogs. Antimicrob Agents Chemother 2006; 51:438-45. [PMID: 17116678 PMCID: PMC1797743 DOI: 10.1128/aac.01193-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of anticancer and antiparasitic drugs are postulated to target the polyamine biosynthetic pathway and polyamine function, but the exact mode of action of these compounds is still being elucidated. To establish whether polyamine analogs specifically target enzymes of the polyamine pathway, a model was developed using strains of the protozoan parasite Leishmania donovani that overproduce each of the polyamine biosynthetic enzymes. Promastigotes overexpressing episomal constructs encoding ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (ADOMETDC), or spermidine synthase (SPDSYN) revealed robust overproduction of the corresponding polyamine biosynthetic enzyme. Polyamine pools, however, were either unchanged or only marginally affected, implying that regulatory mechanisms must exist. The ODC, ADOMETDC, and SPDSYN overproducer strains exhibited a high level of resistance to difluoromethylornithine, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine, and n-butylamine, respectively, confirming previous observations that these agents specifically target polyamine enzymes. Conversely, augmented levels of polyamine biosynthetic enzymes did not affect the sensitivity of L. donovani promastigotes to pentamidine, berenil, and mitoguazone, drugs that were postulated to target the polyamine pathway, implying alternative and/or additional targets for these agents. The sensitivities of wild-type and overproducing parasites to a variety of polyamine analogs were also tested. The polyamine enzyme-overproducing lines offer a rapid cell-based screen for assessing whether synthetic polyamine analogs exert their mechanism of action predominantly on the polyamine biosynthetic pathway in L. donovani. Furthermore, the drug resistance engendered by the amplification of target genes and the overproduction of the encoded protein offers a general strategy for evaluating and developing therapeutic agents that target specific proteins in Leishmania.
Collapse
Affiliation(s)
- Sigrid C Roberts
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Beswick TC, Willert EK, Phillips MA. Mechanisms of allosteric regulation of Trypanosoma cruzi S-adenosylmethionine decarboxylase. Biochemistry 2006; 45:7797-807. [PMID: 16784231 DOI: 10.1021/bi0603975] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that catalyzes an essential step in polyamine biosynthesis. The polyamines are required for cell growth, and the biosynthetic enzymes are targets for antiproliferative drugs. The function of AdoMetDC is regulated by the polyamine-precursor putrescine in a species-specific manner. AdoMetDC from the protozoal parasite Trypanosoma cruzi requires putrescine for maximal enzyme activity, but not for processing to generate the pyruvoyl cofactor. The putrescine-binding site is distant from the active site, suggesting a mechanism of allosteric regulation. To probe the structural basis by which putrescine stimulates T. cruzi AdoMetDC we generated mutations in both the putrescine-binding site and the enzyme active site. The catalytic efficiency of the mutant enzymes, and the binding of the diamidine inhibitors, CGP 48664A and CGP 40215, were analyzed. Putrescine stimulates the k(cat)/K(m) for wild-type T. cruzi AdoMetDC by 27-fold, and it stimulates the binding of both inhibitors (IC(50)s decrease 10-20-fold with putrescine). Unexpectedly CGP 48664A activated the T. cruzi enzyme at low concentrations (0.1-10 microM), while at higher concentrations (>100 microM), or in the presence of putrescine, inhibition was observed. Analysis of the mutant data suggests that this inhibitor binds both the putrescine-binding site and the active site, providing evidence that the putrescine-binding site of the T. cruzi enzyme has broad ligand specificity. Mutagenesis of the active site identified residues that are important for putrescine stimulation of activity (F7 and T245), while none of the active site mutations altered the apparent putrescine-binding constant. Mutations of residues in the putrescine-binding site that resulted in reduced (S111R) and enhanced (F285H) catalytic efficiency were both identified. These data provide evidence for coupling between residues in the putrescine-binding site and the active site, consistent with a mechanism of allosteric regulation.
Collapse
Affiliation(s)
- Tracy Clyne Beswick
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Boulevard, Dallas, Texas 75390-9041, USA
| | | | | |
Collapse
|
44
|
López-Contreras AJ, López-Garcia C, Jiménez-Cervantes C, Cremades A, Peñafiel R. Mouse ornithine decarboxylase-like gene encodes an antizyme inhibitor devoid of ornithine and arginine decarboxylating activity. J Biol Chem 2006; 281:30896-906. [PMID: 16916800 DOI: 10.1074/jbc.m602840200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a labile protein that is regulated by interacting with antizymes (AZs), a family of polyamine-induced proteins. Recently, a novel human gene highly homologous to ODC, termed ODC-like or ODC-paralogue (ODCp), was cloned, but the studies aimed to determine its function rendered contradictory results. We have cloned the mouse orthologue of human ODCp and studied its expression and possible function. mRNA of mouse Odcp was found in the brain and testes, showing a conserved expression pattern with regard to the human gene. Transfection of mouse Odcp in HEK 293T cells elicited an increase in ODC activity, but no signs of arginine decarboxylase activity were evident. On the other hand, whereas the ODCp protein was mainly localized in the mitochondrial/membrane fraction, ODC activity was found in the cytosolic fraction and was markedly decreased by small interfering RNA against human ODC. Co-transfection experiments with combinations of Odc, Az1, Az2, Az3, antizyme inhibitor (Azi), and Odcp genes showed that ODCp mimics the action of AZI, rescuing ODC from the effects of AZs and prevented ODC degradation by the proteasome. A direct interaction between ODCp and AZs was detected by immunoprecipitation experiments. We conclude that mouse ODCp has no intrinsic decarboxylase activity, but it acts as a novel antizyme inhibitory protein (AZI2).
Collapse
Affiliation(s)
- Andrés J López-Contreras
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
45
|
Nilsson T, Malkiewicz K, Gabrielsson M, Folkesson R, Winblad B, Benedikz E. Antibody-bound amyloid precursor protein upregulates ornithine decarboxylase expression. Biochem Biophys Res Commun 2006; 341:1294-9. [PMID: 16469300 DOI: 10.1016/j.bbrc.2006.01.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 01/22/2006] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterised by extracellular accumulation of the Abeta peptide, derived from the amyloid precursor protein (APP). The function of APP as a cell surface receptor was examined by ligand-mimicking using an antibody against the APP extracellular domain. Alterations in gene expression evoked by antibody-bound APP were analysed using human pathway-finder gene arrays and the largest change in expression levels was found for ornithine decarboxylase (ODC). These results were confirmed by Western blotting which showed even higher upregulation on the protein level. APP knockdown by RNAi verified that upregulation of ODC was APP-mediated. This APP signalling event did not require gamma-secretase cleavage, as it was independent of the presence of presenilin-1 or -2. The induced ODC expression was rapid and biphasic, resembling growth-factor stimulated signalling events. This study shows that antibody-bound APP leads to altered gene expression that may be relevant to AD.
Collapse
Affiliation(s)
- Tatjana Nilsson
- Karolinska Institutet, Neurotec, Section of Experimental Geriatrics, Novum floor 5, 141 86 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
46
|
Alexander SPH, Mathie A, Peters JA. Decarboxylases (E.C. 4.1.1.−). Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
47
|
Abstract
Ornithine decarboxylase (ODC) initiates the polyamine biosynthetic pathway. The amount of ODC is altered in response to many growth factors, oncogenes, and tumor promoters and to changes in polyamine levels. Susceptibility to tumor development is increased in transgenic mice expressing high levels of ODC and is decreased in mice with reduced ODC due to loss of one ODC allele or elevated expression of antizyme, a protein that stimulates ODC degradation. This review describes key factors that contribute to the regulation of ODC levels, which can occur at the levels of transcription, translation, and protein turnover.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
48
|
Persson K, Hamby K, Ugozzoli LA. Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations. Anal Biochem 2005; 344:33-42. [PMID: 16039598 DOI: 10.1016/j.ab.2005.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 06/04/2005] [Accepted: 06/09/2005] [Indexed: 11/21/2022]
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) conducted in real time is a powerful tool for measuring messenger RNA (mRNA) levels in biological samples. Multiplex PCR is defined as the simultaneous amplification of two or more DNA (cDNA) targets in a single reaction vessel and may be carried out only using uniquely labeled probes for each target. Up to four genes can be detected in a multiplex 5' nuclease assay when using the appropriate instrument and the right combination of fluorophores. One of the more important advantages of multiplexing is a reduced sample requirement, which is especially important when sample material is scarce. Additional benefits are saving time on reaction setup and lower cost compared to singleplex reactions. Although multiplexing has several advantages over singleplex qRT-PCR, limited work has been done to show its feasibility. Few publications on four-color multiplex qRT-PCR have been reported, and to our knowledge no work has been done to explore the assay's limitations. In this paper, we report the first in-depth analysis of a four-gene multiplex qRT-PCR. To achieve a better understanding of the potential limitations of the qRT-PCR assay, we used in vitro transcribed RNA derived from four human genes. To emulate gene expression experiments, we developed a model system in which the in vitro transcripts were spiked with plant total RNA. This model allowed us to develop an artificial system closely resembling differential gene expression levels varying up to a million fold. We identified a single "universal" reaction condition that enabled optimal amplification in real time of up to four genes over a wide range of template concentrations. This study shows that multiplexing is a feasible approach applicable to most qRT-PCR assays performed with total RNA, independent of the expression levels of the genes under scrutiny.
Collapse
Affiliation(s)
- Kent Persson
- Gene Expression Division, Bio-Rad Laboratories, Hercules, CA 94547, USA
| | | | | |
Collapse
|
49
|
Kingsbury JM, Yang Z, Ganous TM, Cox GM, McCusker JH. Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans. EUKARYOTIC CELL 2005; 3:752-63. [PMID: 15189996 PMCID: PMC420128 DOI: 10.1128/ec.3.3.752-763.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Cryptococcus neoformans LYS9 gene (encoding saccharopine dehydrogenase) was cloned and found to be part of an evolutionarily conserved chimera with SPE3 (encoding spermidine synthase). spe3-lys9, spe3-LYS9, and SPE3-lys9 mutants were constructed, and these were auxotrophic for lysine and spermidine, spermidine, and lysine, respectively. Thus, SPE3-LYS9 encodes functional spermidine synthase and saccharopine dehydrogenase gene products. In contrast to Saccharomyces cerevisiae spe3 mutants, the polyamine auxotrophy of C. neoformans spe3-LYS9 mutants was not satisfied by spermine. In vitro phenotypes of spe3-LYS9 mutants included reduced capsule and melanin production and growth rate, while SPE3-lys9 mutants grew slowly at 30 degrees C, were temperature sensitive in rich medium, and died upon lysine starvation. Consistent with the importance of saccharopine dehydrogenase and spermidine synthase in vitro, spe3-lys9 mutants were avirulent and unable to survive in vivo and both functions individually contributed to virulence. SPE3-LYS9 mRNA levels showed little evidence of being influenced by exogenous spermidine or lysine or starvation for spermidine or lysine; thus, any regulation is likely to be posttranscriptional. Expression in S. cerevisiae of the full-length C. neoformans SPE3-LYS9 cDNA complemented a lys9 mutant but not a spe3 mutant. However, expression in S. cerevisiae of a truncated gene product, consisting of only C. neoformans SPE3, complemented a spe3 mutant, suggesting possible modes of regulation. Therefore, we identified and describe a novel chimeric SPE3-LYS9 gene, which may link spermidine and lysine biosynthesis in C. neoformans.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
50
|
Mangold U, Leberer E. Regulation of all members of the antizyme family by antizyme inhibitor. Biochem J 2005; 385:21-8. [PMID: 15355308 PMCID: PMC1134669 DOI: 10.1042/bj20040547] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ODC (ornithine decarboxylase) is the rate-limiting enzyme in polyamine biosynthesis. Polyamines are essential for cellular growth and differentiation but enhanced ODC activity is associated with cell transformation. Post-translationally, ODC is negatively regulated through members of the antizyme family. Antizymes inhibit ODC activity, promote ODC degradation through the 26 S proteasome and regulate polyamine transport. Besides the ubiquitously expressed antizymes 1 and 2, there is the tissue-specific antizyme 3 and an yet uncharacterized antizyme 4. Antizyme 1 has been shown to be negatively regulated through the AZI (antizyme inhibitor) that binds antizyme 1 with higher affinity compared with ODC. In the present study, we show by yeast two- and three-hybrid protein-protein interaction studies that AZI interacts with all members of the antizyme family and is capable of disrupting the interaction between each antizyme and ODC. In a yeast-based ODC complementation assay, we show that human ODC is able to complement fully the function of the yeast homologue of ODC. Co-expression of antizymes resulted in ODC inhibition and cessation of yeast growth. The antizyme-induced growth inhibition could be reversed by addition of putrescine or by the co-expression of AZI. The protein interactions could be confirmed by immunoprecipitation of the human ODC-antizyme 2-AZI complexes. In summary, we conclude that human AZI is capable of acting as a general inhibitor for all members of the antizyme family and that the previously not yet characterized antizyme 4 is capable of binding ODC and inhibiting its enzymic activity similar to the other members of the antizyme family.
Collapse
Affiliation(s)
- Ursula Mangold
- Center for Functional Genomics, Aventis Pharma GmbH, 82152 Martinsried, Germany.
| | | |
Collapse
|