1
|
Tarbali S, Dadkhah M, Saadati H. Lipophilic fluorescent products as a potential biomarker of oxidative stress: A link between central (brain) and peripheral (blood). JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:38. [PMID: 39239084 PMCID: PMC11376719 DOI: 10.4103/jrms.jrms_671_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/06/2024] [Accepted: 04/22/2024] [Indexed: 09/07/2024]
Abstract
Oxidative stress plays a key role in brain damage because of the sensitivity of brain tissue to oxidative damage. Biomarkers with easy measurement can be a candidate for reflecting the oxidative stress issue in humans. For this reason, we need to focus on specific metabolic products of the brain. End products of free radical reactions such as malondialdehydes form fluorescent products known as lipophilic fluorescent products (LFPs). The distinctive feature of LFPs is their autofluorescent properties. LFPs are detectable in the brain and cerebrospinal fluid. Furthermore, because of the diffusion into the bloodstream, these lipophilic molecules can be detected in the blood. Accumulations of these compounds produce more reactive oxygen species and increase the sensitivity of cells to oxidative damage. Hence, LFPs can be considered a danger signal for neurons and can be introduced as a strong index of oxidative damage both in the central and in the peripheral.
Collapse
Affiliation(s)
- Sepideh Tarbali
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
2
|
Tarbali S, Karami Mehrian S, Khezri S. Toxicity effects evaluation of green synthesized silver nanoparticles on intraperitoneally exposed male Wistar rats. Toxicol Mech Methods 2022; 32:488-500. [DOI: 10.1080/15376516.2022.2049412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sepideh Tarbali
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Saeed Karami Mehrian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
- Department of Biology, Faculty of Sciences, University of Razi, Kermanshah, Iran
| | - Shiva Khezri
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| |
Collapse
|
3
|
Assessment of lipophilic fluorescence products in β-amyloid-induced cognitive decline: A parallel track in hippocampus, CSF, plasma and erythrocytes. Exp Gerontol 2021; 157:111645. [PMID: 34843902 DOI: 10.1016/j.exger.2021.111645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oxidative stress implicates in Alzheimer's disease (AD) pathophysiology, and associates with the creation of end products of free radical reactions, are known as lipophilic fluorescent products (LFPs). This study aimed to evaluate the probable parallel alterations in the spectral properties of the LFPs in the hippocampus tissues, cerebrospinal fluid (CSF), plasma, and erythrocytes during AD model induction by intra-cerebroventricular (ICV) amyloid β-protein fragment 25-35 (Aβ) injection. METHODS Male rats received an intra-ICV injection of Aβ. Hippocampus, CSF, plasma, and erythrocytes were harvested at 5, 14, and 21 days after Aβ injection. The fluorescent intensity of LFPs was assessed by spectrofluorimetry using synchronous fluorescence spectra 25 (SYN 25) and 50 (SYN 50) in the range of 250-500 nm. Hippocampal tissue malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Cognitive alterations were evaluated using Morris water maze (MWM) test. RESULTS The parallel significant rise in the fluorescence intensity of LFPs was detected in the hippocampus, CSF, plasma, and erythrocytes, 14, and 21 days after ICV-Aβ injection. These alterations were found in both types of synchronous spectra 25, and 50, and were coincided with hippocampal cognitive decline, the MDA rise, and decrease of SOD activity. There was a positive correlation between hippocampus homogenate, and plasma or CSF rise in fluorescence intensity. CONCLUSION Data showed that the Aβ increased hippocampal MDA, and decreased SOD activity, led to a higher rate of oxidative products and subsequently resulted in an increase in LFPs fluorescence intensity during the development of cognitive decline. LFPs' alterations reflect a comprehensive view of tissue redox status. The fluorescence properties of LFPs indicate their composition, which may pave the way to trace the different pathological states.
Collapse
|
4
|
Koenig CM, Beevers C, Pant K, Young RR. Assessment of the mutagenic potential of para-chloroaniline and aniline in the liver, spleen, and bone marrow of Big Blue® rats with micronuclei analysis in peripheral blood. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:785-797. [PMID: 30216547 DOI: 10.1002/em.22241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Splenic tumors have been reported in rat cancer bioassays with para-chloroaniline (PCA) and aniline. Development of these tumors is hypothesized to be due to hematotoxicity via the formation of methemoglobin (MetHb) and not direct DNA reactivity. To evaluate the mode of action (MOA) for tumor formation a transgenic rodent (TGR) in vivo gene mutation assay in Big Blue® TgF344 rats was performed with parallel micronuclei analysis in peripheral blood. Male rats were gavaged daily for 28 d to 0.5, 15, and 60 mg/kg PCA and 100 mg/kg aniline, the base molecular structure of PCA. On test day 10, the 60 mg/kg PCA dose was reduced to 30 mg/kg due to toxicity. On test day 4 and 29 peripheral blood micronucleus analysis was performed and on test day 29 clinical chemistry, hematology, and MetHb measurements were taken. At study termination, on test day 31, spleen, bone marrow, and liver (control tissue) were analyzed for cII transgene mutant frequency (MF). Repeat gavage exposure to PCA and aniline for 28 d did not produce an increase in cII transgene MF in analyzed tissues. An increase in micronuclei was seen at both time points at ≥15 mg/kg PCA and 100 mg/kg aniline. At the same dose levels, significant reductions in red blood cells, increases in absolute reticulocytes (ABRET), and increased levels of MetHb were observed. Together these results support that generation of micronuclei and tumorigenicity following exposure to PCA and aniline is due to compensatory mechanisms (e.g. increased cellular turnover) and not direct DNA reactivity. Environ. Mol. Mutagen. 59:785-797, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Kamala Pant
- MilliporeSigma, BioReliance® Toxicology Testing Services, Rockville, Maryland
| | - Robert R Young
- MilliporeSigma, BioReliance® Toxicology Testing Services, Rockville, Maryland
| |
Collapse
|
5
|
Chmatalova Z, Vyhnalek M, Laczo J, Hort J, Pospisilova R, Pechova M, Skoumalova A. Relation of plasma selenium and lipid peroxidation end products in patients with Alzheimer's disease. Physiol Res 2017; 66:1049-1056. [PMID: 28937243 DOI: 10.33549/physiolres.933601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Increased oxidative stress in the brain during the course of Alzheimer's disease (AD) leads to an imbalance of antioxidants and formation of free radical reaction end-products which may be detected in blood as fluorescent lipofuscin-like pigments (LFPs). The aim of this study was to evaluate and compare LFPs with plasma selenium concentrations representing an integral part of the antioxidant system. Plasma samples from subjects with AD dementia (ADD; n=11), mild cognitive impairment (MCI; n=17) and controls (n=12), were collected. The concentration of selenium was measured using atomic absorption spectroscopy. LFPs were analyzed by fluorescence spectroscopy and quantified for different fluorescent maxima and then correlated with plasma selenium. Lower levels of selenium were detected in MCI and ADD patients than in controls (P=0.003 and P=0.049, respectively). Additionally, higher fluorescence intensities of LFPs were observed in MCI patients than in controls in four fluorescence maxima and higher fluorescence intensities were also observed in MCI patients than in ADD patients in three fluorescence maxima, respectively. A negative correlation between selenium concentrations and LFPs fluorescence was observed in the three fluorescence maxima. This is the first study focused on correlation of plasma selenium with specific lipofuscin-like products of oxidative stress in plasma of patients with Alzheimer´s disease and mild cognitive impairment.
Collapse
Affiliation(s)
- Z Chmatalova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
6
|
Chmátalová Z, Vyhnálek M, Laczó J, Hort J, Skoumalová A. Analysis of lipophilic fluorescent products in blood of Alzheimer's disease patients. J Cell Mol Med 2016; 20:1367-72. [PMID: 26991927 PMCID: PMC4929292 DOI: 10.1111/jcmm.12824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/31/2016] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by cognitive decline. Prodromal stage of AD, also called mild cognitive impairment (MCI), especially its amnestic type (aMCI), precedes dementia stage of AD. There are currently no reliable diagnostic biomarkers of AD in the blood. Alzheimer's disease is accompanied by increased oxidative stress in brain, which leads to oxidative damage and accumulation of free radical reaction end‐products. In our study, specific products of lipid peroxidation in the blood of AD patients were studied. Lipophilic extracts of erythrocytes (AD dementia = 19, aMCI = 27, controls = 16) and plasma (AD dementia = 11, aMCI = 17, controls = 16) were analysed by fluorescence spectroscopy. The level of these products is significantly increased in erythrocytes and plasma of AD dementia and aMCI patients versus controls. We concluded that oxidative stress end‐products are promising new biomarkers of AD, but further detailed characterisation of these products is needed.
Collapse
Affiliation(s)
- Zuzana Chmátalová
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnálek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Memory Disorders Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Memory Disorders Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Memory Disorders Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Alice Skoumalová
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
Kohutiar M, Ivica J, Vytášek R, Skoumalová A, Illner J, Šantorová P, Wilhelm J. Comparison of the effects of tert-butyl hydroperoxide and peroxynitrite on the oxidative damage to isolated beef heart mitochondria. Physiol Res 2016; 65:617-626. [PMID: 26988158 DOI: 10.33549/physiolres.933175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Isolated beef heart mitochondria have been exposed to tert-butyl hydroperoxide (tBHP) and peroxynitrite (PeN) in order to model the effects of reactive oxygen and nitrogen species on mitochondria in vivo. The formation of malondialdehyde (MDA), protein carbonyls, lipofuscin-like pigments (LFP), and nitrotyrosine was studied during incubations with various concentrations of oxidants for up to 24 h. The oxidants differed in their ability to oxidize particular substrates. Fatty acids were more sensitive to the low concentrations of tBHP, whereas higher concentrations of PeN consumed MDA. Oxidation of proteins producing carbonyls had different kinetics and also a probable mechanism with tBHP or PeN. Diverse proteins were affected by tBHP or PeN. In both cases, prolonged incubation led to the appearance of proteins with molecular weights lower than 29 kDa bearing carbonyl groups that might have been caused by protein fragmentation. PeN induced nitration of protein tyrosines that was more intensive in the soluble proteins than in the insoluble ones. LFP, the end products of lipid peroxidation, were formed more readily by PeN. On the other hand, fluorometric and chromatographic techniques have confirmed destruction of LFP by higher PeN concentrations. This is a unique feature that has not been described so far for any oxidant.
Collapse
Affiliation(s)
- M Kohutiar
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
8
|
WILHELM J, IVICA J, VESELSKÁ Z, UHLÍK J, VAJNER L. Changes in the Composition of Fatty Acids and Lipofuscin-Like Pigments During Development of Rat Heart. Physiol Res 2015; 64:643-51. [DOI: 10.33549/physiolres.932917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Postnatal heart development is characterized by critical periods of heart remodeling. In order to characterize the changes in the lipophilic fraction induced by free radicals, fatty acids and their oxidized products, lipofuscin-like pigments (LFP), were investigated. Fatty acids were analyzed by gas chromatography and LFP were studied by fluorescence techniques. A fluorophore characterized by spectral methods was further resolved by HPLC. Major changes in the composition of fatty acids occurred immediately after birth and then during maturation. Fluorescence of LFP changed markedly on postnatal days 1, 4, 8, and 14, and differed from the adult animals. LFP comprise several fluorophores that were present since fetal state till adulthood. No new major fluorophores were formed during development, just the abundances of individual fluorophores have been modulated which produced changes in the shape of the spectral arrays. HPLC resolved the fluorophore with excitation maximum at 360 nm and emission maximum at 410 nm. New chromatographically distinct species appeared immediately on postnatal day 1, and then on days 30 and 60. Consumption of polyunsaturated fatty acids immediately after birth and subsequent formation of LFP suggests that oxidative stress is involved in normal heart development.
Collapse
Affiliation(s)
- J. WILHELM
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
9
|
Changes in the cornea related to sickle cell disease: a pilot investigation. Eur J Ophthalmol 2015; 25:463-7. [PMID: 25837643 DOI: 10.5301/ejo.5000598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate corneal structural changes (central corneal thickness, endothelial cell count, and cellular morphology) in patients with sickle cell disease (SCD). METHODS This prospective study included 56 patients with SCD and 50 age- and sex-matched healthy subjects without any eye disease aside from refractive errors. Endothelial cell density (ECD), percentage of hexagonality, and the coefficient of variation in cell size (CV) were measured using noncontact specular microscopy, and central corneal thickness (CCT) was measured by pachymetry. RESULTS The mean CCT value was 509.6 ± 20.7 μm in the study group and 520.8 ± 23.6 μm in the control group. The mean ECD, CV, and percentage of hexagonality values in the study group were 2712 ± 335 cells/mm², 34.5 ± 5.3%, and 57.2 ± 6.6%, respectively, and 3030 ± 247 cells/mm², 31.6 ± 5.0%, and 60.4 ± 6.9% in the control group, respectively. Endothelial cell density (p = 0.001), CCT (p = 0.011), CV (p = 0.005), and percentage of hexagonality values (p = 0.018) were significantly different between the study and control groups. CONCLUSIONS The results of the current study indicate that patients with SCD had considerable morphologic changes in the structure of the cornea when compared to healthy subjects.
Collapse
|
10
|
Ivica J, Wilhelm J. Lipophilic fluorescent products of free radicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:365-72. [DOI: 10.5507/bp.2012.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 12/06/2012] [Indexed: 12/26/2022] Open
|
11
|
Rastogi M, Ojha RP, Sagar C, Agrawal A, Dubey GP. Protective effect of curcuminoids on age-related mitochondrial impairment in female Wistar rat brain. Biogerontology 2013; 15:21-31. [PMID: 24048922 DOI: 10.1007/s10522-013-9466-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
The present study demonstrated the neuroprotective effect of curcuminoids, the active polyphenols of Curcuma longa (L.) rhizomes on mitochondrial dysfunctioning in middle aged and aged female Wistar rat brain. Rats were orally treated with curcuminoids (100 mg/kg) for 3 months and their brain was collected for evaluation of mitochondrial enzymes and complexes activity, ultra structural changes in mitochondria, neuronal nitric oxide synthase (nNOS) protein expression, adenosine triphosphate (ATP) and lipofuscin content. Significant alterations were observed in all the tested parameters in highly aged rat brain when compared with young control. Long term curcuminoids administration prevented this age associated loss of mitochondrial enzymes and complexes activity in middle aged rat brain except for malate dehydrogenase, Complex II and IV activity when compared with young control. Among aged rats, curcuminoids treatment specifically elevated isocitrate and NADH dehydrogenase, cytochrome c oxidase, Complex I and total ATP content. A significant down-regulation of nNOS protein expression along with reduced lipofuscin content was also observed in curucminoids treated middle aged and aged rats. Thus, it was suggested that curcuminoids may act as a putative drug candidate for the prevention of deleterious effects of ageing and age associated neurodegenerative disorders through amelioration of aberrant mitochondrial functioning.
Collapse
Affiliation(s)
- Manisha Rastogi
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, Tamil Nadu, India,
| | | | | | | | | |
Collapse
|
12
|
Perrone S, Tataranno ML, Stazzoni G, Del Vecchio A, Buonocore G. Oxidative injury in neonatal erythrocytes. J Matern Fetal Neonatal Med 2013; 25:104-8. [PMID: 23025782 DOI: 10.3109/14767058.2012.715471] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Erythrocytes are continuously exposed to free radicals (FR) injury due to their high cellular oxygen concentration and heme iron. The autoxidation of oxyhaemoglobin to methaemoglobin, generating superoxide anion radical, represents the main source of FR in erythrocytes. The erythrocyte membrane is particularly sensitive to oxidative damage due to its high polyunsaturated fatty acid content, and hence, it represents an important system to evaluate the effect of oxidative stress (OS). Information on how red cells OS is triggered and mechanisms of erythrocytes oxidative pressure from plasma may provide a partial answer to questions about the causes of the anaemia of prematurity and about red cell involvement in hypoxia. The recent insights about the mechanism of oxidative injury of red cells and the evidence of relationships between erythrocyte, OS and hypoxia suggest that increased haemolysis is induced by severe hypoxia and acidosis in the perinatal period.
Collapse
Affiliation(s)
- Serafina Perrone
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci 36, Siena, Italy
| | | | | | | | | |
Collapse
|
13
|
Wilhelm J, Ošt'ádalová I. Ontogenetic changes of lipofuscin-like pigments in the rat heart. Physiol Res 2012; 61:S173-9. [PMID: 22827874 DOI: 10.33549/physiolres.932366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased generation of reactive oxygen species results in the formation of fluorescent end-products of lipid peroxidation - lipofuscin-like pigments (LFP). LFP increased up to six-fold from the fetal value in the rat heart immediately after birth. In the experimental design of this study the fetuses were sampled 1 day before birth, and then the samples were collected on postnatal days 1, 4, 7, 10, 15, 30, and 60. Males and females were compared on day 30 and 60 when the difference between right and left ventricle was studied as well. Four LFP fluorophores were analyzed: F355/440, F310/470, F350/450, F315/450 (excitation/emission, nm). All fluorophores decreased on day 4 relative to day 1, subsequent transient increases ended in a significant decrease on day 60. However, the LFP levels on day 60 are still about threefold higher than those in fetuses. Differences between male and female hearts were observed on day 30. The corresponding male ventricles contained by one third higher concentration of LFP than the female counterparts. The increase in LFP concentration in male ventricles on day 30 was only transient, no difference between corresponding male and female ventricles was found on day 60. The most distinguished feature in the male heart was a sharp LFP decrease in the right ventricle on day 60.
Collapse
Affiliation(s)
- J Wilhelm
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | |
Collapse
|
14
|
HODYC D, JOHNSON E, SKOUMALOVÁ A, TKACZYK J, MAXOVÁ H, VÍZEK M, HERGET J. Reactive Oxygen Species Production in the Early and Later Stage of Chronic Ventilatory Hypoxia. Physiol Res 2012; 61:145-51. [DOI: 10.33549/physiolres.932206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary hypertension resulting from chronic hypoxia is at least partly caused by the increased production of reactive oxygen species (ROS). The goal of the presented study was to investigate the dynamics and the site of production of ROS during chronic hypoxia. In our study Wistar rats were kept for 1, 4 and 21 days in an isobaric hypoxic chamber (FiO2=0.1), while controls stayed in normoxia. We compared NO production in expired air, plasma and perfusate drained from isolated rat lungs and measured superoxide concentration in the perfusate. We also detected the presence of superoxide products (hydrogen peroxide and peroxynitrite) and the level of ROS-induced damage expressed as the concentration of lipid peroxydation end products. We found that the production and release of ROS and NO during early phase of chronic hypoxia has specific timing and differs in various compartments, suggesting the crucial role of ROS interaction for development of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- D. HODYC
- Department of Physiology, Second Medical School, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative damage in the brain. ACTA ACUST UNITED AC 2012; 64:51-6. [DOI: 10.1016/j.etp.2010.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 06/02/2010] [Indexed: 11/23/2022]
|
16
|
Skoumalová A, Mádlová P, Topinková E. End products of lipid peroxidation in erythrocyte membranes in Alzheimer's disease. Cell Biochem Funct 2011; 30:205-10. [PMID: 22161584 DOI: 10.1002/cbf.1836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is accompanied by oxidative stress in the brain. Because the brain tissue is rich in polyunsaturated fatty acids, it is prone to the free radical attack resulting in lipid peroxidation. Intermediates of lipid peroxidation may diffuse from the primary site, cross the blood-brain barrier and modify erythrocyte membranes in the bloodstream. We exposed isolated erythrocyte membranes from patients with AD and the control group to in vitro free radical damage and monitored the accumulation of the end products of lipid peroxidation, lipofuscin-like pigments (LFPs), by fluorescence spectroscopy. LFPs were analyzed by means of tridimensional and synchronous fluorescence spectroscopy. The levels of LFP formed during in vitro peroxidation were significantly higher in erythrocyte membranes from patients with AD compared with the control group. Furthermore, the chemical composition of LFP in AD was different from the control group. The analysis of the specific modifications of erythrocyte membranes in AD is of great medical importance regarding the need of a diagnostic blood biomarker.
Collapse
Affiliation(s)
- Alice Skoumalová
- Department of Medical Chemistry and Biochemistry, Charles Universtity in Prague, Prague, The Czech Republic.
| | | | | |
Collapse
|
17
|
Ivica J, Skoumalová A, Topinková E, Wilhelm J. HPLC Separation of Fluorescent Products of Lipid Peroxidation in Erythrocytes and Mitochondria. Chromatographia 2011. [DOI: 10.1007/s10337-010-1887-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Wilhelm J, Ivica J, Kagan D, Svoboda P. Early postnatal development of rat brain is accompanied by generation of lipofuscin-like pigments. Mol Cell Biochem 2010; 347:157-62. [PMID: 20957411 DOI: 10.1007/s11010-010-0623-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/06/2010] [Indexed: 12/01/2022]
Abstract
The increased generation of free radicals results in the formation of fluorescent end-products of lipid peroxidation, lipofuscin-like pigments (LFPs). The authors observed that LFPs are generated in rat brain after a normal birth during 5 postnatal days. The experimental design of the study comprised 10 groups of animals. The authors measured prenatal values 1 day and 7 days before birth, and then the animals were sampled on postnatal day 1, 2, 5, 10, 15, 25, 35, and 90. Maximum LFP concentration is achieved on the postnatal day 2. Starting from postnatal day 10, LFP concentration returns to prenatal values. A new rise in LFP concentration is observed at 3 months of age. This is associated with the beginning of the aging process. LFPs were characterized by fluorescence spectroscopy using tridimensional excitation spectra, synchronous spectra and their derivatives, and HPLC with fluorescence detection. It was possible to discern several tens of fluorescent compounds of unknown structure that are generated and metabolized during early development. The authors suggest that LFPs are formed after respiratory burst of microglia phagocytosing apoptotic cells.
Collapse
Affiliation(s)
- Jiří Wilhelm
- Department of Medical Chemistry and Biochemistry, 2nd Medical School, Charles University, Plzeňská 221, 150 00, Prague 5, Czech Republic.
| | | | | | | |
Collapse
|
19
|
Wilhelm J, Vytásek R, Ostádalová I, Vajner L. Evaluation of different methods detecting intracellular generation of free radicals. Mol Cell Biochem 2009; 328:167-76. [PMID: 19301099 DOI: 10.1007/s11010-009-0086-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
Abstract
Reactive oxygen species (ROS) play several biological roles. We investigated the applicability of fluorescent probes for their detection (i) in rabbit lens epithelial cells during ageing in culture, and (ii) in thin sections of rat heart. We used dihydroethidium (DHE), dichlorofluorescin (DCFH), and dihydrorhodamine 123 (DHR) together with detection of autofluorescence both in cells and in chloroform extracts. Superoxide production was confirmed by a specific histochemical method using Mn(2+). All methods demonstrated higher production of ROS in older cells. All probes revealed different sites of ROS production in young and old cells and could be used for investigation of ROS generation during cell ageing. In the thin sections of rat heart DCFH was not suitable for intracellular ROS detection. The results indicate that the potential of fluorescent dyes in ROS detection is not usually fully exploited, and that blue autofluorescence is associated with oxidative damage.
Collapse
Affiliation(s)
- Jirí Wilhelm
- Department of Medical Chemistry and Biochemistry, Centre of Cardiovascular Research, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
20
|
Møller P, Risom L, Lundby C, Mikkelsen L, Loft S. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models. IUBMB Life 2008; 60:707-23. [DOI: 10.1002/iub.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Skoumalová A, Herget J, Wilhelm J. Hypercapnia protects erythrocytes against free radical damage induced by hypoxia in exposed rats. Cell Biochem Funct 2008; 26:801-7. [DOI: 10.1002/cbf.1509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Kolár F, Jezková J, Balková P, Breh J, Neckár J, Novák F, Nováková O, Tomásová H, Srbová M, Ost'ádal B, Wilhelm J, Herget J. Role of oxidative stress in PKC-δ upregulation and cardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol 2007; 292:H224-30. [PMID: 16936002 DOI: 10.1152/ajpheart.00689.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 ± 4.5% of the area at risk in the normoxic controls to 27.7 ± 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 ± 3.4%, but it abolished the protection provided by CIH (to 41.1 ± 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-δ in the particulate fraction; NAC prevented these effects. The expression of PKC-ε was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-δ-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.
Collapse
Affiliation(s)
- Frantisek Kolár
- Inst. of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ostadalova I, Vobecky M, Chvojkova Z, Mikova D, Hampl V, Wilhelm J, Ostadal B. Selenium protects the immature rat heart against ischemia/reperfusion injury. Mol Cell Biochem 2006; 300:259-67. [PMID: 17187170 DOI: 10.1007/s11010-006-9391-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 11/21/2006] [Indexed: 11/27/2022]
Abstract
The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion.The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na(2)SeO(3) in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. The 10 day-old hearts were perfused (Langendorff); recovery of developed force (DF) was measured after 40 min of global ischemia. In acute experiments, 10 day-old hearts were perfused with selenium (75 nmol/l) before or after global ischemia. Sensitivity to isoproterenol (ISO, pD(50)) was assessed as a response of DF to increasing cumulative dose.Se supplementation elevated serum concentration of Se by 16%. Se increased ischemic tolerance (recovery of DF, 32.28 +/- 2.37 vs. 41.82 +/- 2.91%, P < 0.05). Similar results were obtained after acute administration of Se during post-ischemic reperfusion (32.28 +/- 2.37 vs. 49.73 +/- 4.40%, P < 0.01). The pre-ischemic treatment, however, attenuated the recovery (23.08 +/- 3.04 vs. 32.28 +/- 2.37%, P < 0.05). Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO. Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.
Collapse
Affiliation(s)
- Ivana Ostadalova
- Centre of Cardiovascular Research, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4-Krc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
24
|
Moulisová V, Srbová M, Jedlicková O, Sebestian J, Jegorov A. Silybin reduces lipid peroxidation of rat hepatocyte membrane caused by cyclosporin A. BIOCHEMISTRY (MOSCOW) 2006; 71:1110-4. [PMID: 17125459 DOI: 10.1134/s0006297906100087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An effect of cyclosporin A on lipid peroxidation in isolated rat hepatocytes was tested. A significant increase in lipid peroxidation marker (the concentration of lipofuscin-like pigments) was observed in samples incubated with cyclosporin A in comparison with the control. When hepatoprotective flavonoid silybin was added, the production of lipofuscin-like pigments decreased significantly. This result indicates a potential positive role of silybin in lowering of cyclosporin A side effects associated with the production of reactive oxygen species and plasma membrane damage.
Collapse
Affiliation(s)
- V Moulisová
- Department of Plant Physiology, Faculty of Biological Sciences, University of South Bohemia, Ceske Budejovice, 370 05, Czech Republic.
| | | | | | | | | |
Collapse
|
25
|
Wilhelm J, Fuksová H, Schwippelová Z, Vytásek R, Pichová A. The effects of reactive oxygen and nitrogen species during yeast replicative ageing. Biofactors 2006; 27:185-93. [PMID: 17012774 DOI: 10.1002/biof.5520270116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Free radicals are considered the most important cause of cellular ageing. We have investigated ageing process in the yeast Saccharomyces cerevisiae. We have compared the wild type strain with the mutant cells with constitutively active Ras oncogen, which generates increased amounts of free radicals. Increased generation of oxygen-derived free radicals resulted in the Ras mutant cells accumulation of lipofuscin-like pigments during ageing. Ageing wild type cells did not accumulate lipofuscin-like pigments. This is quite unique feature among known biological models. It may be caused by increased concentration of alpha tocopherol (the most prominent lipophilic antioxidant) in the wild type cells. In contrast, the Ras mutant cells contained decreased levels of alpha tocopherol even in the young cells. This observation indicates that the increased free radical generation can overwhelm the endogenous antioxidant system. We have documented the involvement of nitrogen-derived free radicals in the yeast metabolism. Protein nitrotyrosine, a marker of the reactive nitrogen species, has significantly increased in the senescent Ras mutant cells. The wild type cells contained basic level of nitrotyrosine corresponding to its concentration found in non-activated mammalian macrophages.
Collapse
Affiliation(s)
- Jirí Wilhelm
- Department of Medical Chemistry and Biochemistry, 2nd Medical Faculty, Charles University, Plzenská 221, 150 00 Prague 5, Czech Republic.
| | | | | | | | | |
Collapse
|
26
|
Bracci R, Perrone S, Buonocore G. Oxidant injury in neonatal erythrocytes during the perinatal period. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 2003; 91:130-4. [PMID: 12477277 DOI: 10.1111/j.1651-2227.2002.tb02918.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED It has been known for many decades that oxidative stress leads to oxidation of hemoglobin and damage to the erythrocyte membrane. More recently, the factors involved in denaturating of membrane proteins and lipid peroxidation have been investigated in detail, as well as the mechanism of reactive oxygen species formation in red cells. Oxidative stress depletes adenosine triphosphate (ATP) and adenine nucleotides, whereas adenosine monophosphate (AMP) deaminase seems to depress energy metabolism by blocking the salvage pathway of purine nucleotides. Depletion of ATP and activation of AMP deaminase are related to calcium ion concentrations. Denaturating of membrane proteins generally precedes lipid peroxidation and consequent phagocytosis due to caspase activation. Extensive investigations demonstrated the key role of oxidative stress and iron release in a reactive form causing membrane protein damage via the Fenton reaction and hydroxyl radical production. In the absence of efficient protection by antioxidant factors and other molecules such as flavonoids, oxidative stress is responsible for the release of iron in reactive form, predisposing red cells to hemolysis through the formation of senescence antigen. Other well-known sources of oxidative stress in red cells are free radical production outside the red cell by activated phagocytes, endothelial metabolism, hyperoxia, ischemia-reperfusion and the arachidonic acid cascade. CONCLUSION The recent insight into the mechanism of oxidative injury of red cells and evidence of relationships between erythrocyte oxidative stress and hypoxia suggest that increased hemolysis is induced by severe hypoxia and acidosis in the fetus as well as the newborn.
Collapse
Affiliation(s)
- R Bracci
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | |
Collapse
|
27
|
Minko T, Stefanov A, Pozharov V. Selected contribution: Lung hypoxia: antioxidant and antiapoptotic effects of liposomal alpha-tocopherol. J Appl Physiol (1985) 2002; 93:1550-60; discussion 1549. [PMID: 12235059 DOI: 10.1152/japplphysiol.00007.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study is to examine the antioxidant and antiapoptotic activity of liposomal alpha-tocopherol (LAT) in anesthetized rats exposed to severe hypoxia. It was shown that intratracheal application of LAT normalized lung phospholipid composition and inhibited lipid peroxidation in lung tissues, which in turn decreased lung edema and damage and improved breathing pattern, oxygen diffusion, and lung gas exchange. LAT also limited the overexpression of genes encoding hypoxia inducible factor-1alpha and both studied forms of phospholipase A(2), and it increased the power of cellular antioxidant and antiapoptotic defense by overexpressing genes encoding Mn- and Cu-Zn-cofactored superoxide dismutases, Bcl-2, and heat shock 70 proteins. The overexpression of studied caspases and their activity were downregulated, which significantly (1.6-2 times) limited apoptosis in lung cells. Finally, all these positive changes decreased mortality during hypoxia from approximately 60% in untreated animals to approximately 30% in the group of rats treated with LAT. The data obtained indicate that LAT may be useful for the correction of hypoxic lung injury.
Collapse
Affiliation(s)
- T Minko
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|