1
|
Retrotransposon insertion in the T-cell acute lymphocytic leukemia 1 (Tal1) gene is associated with severe renal disease and patchy alopecia in Hairpatches (Hpt) mice. PLoS One 2013; 8:e53426. [PMID: 23301070 PMCID: PMC3534690 DOI: 10.1371/journal.pone.0053426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022] Open
Abstract
“Hairpatches” (Hpt) is a naturally occurring, autosomal semi-dominant mouse mutation. Hpt/Hpt homozygotes die in utero, while Hpt/+ heterozygotes exhibit progressive renal failure accompanied by patchy alopecia. This mutation is a model for the rare human disorder “glomerulonephritis with sparse hair and telangiectases" (OMIM 137940). Fine mapping localized the Hpt locus to a 6.7 Mb region of Chromosome 4 containing 62 known genes. Quantitative real time PCR revealed differential expression for only one gene in the interval, T-cell acute lymphocytic leukemia 1 (Tal1), which was highly upregulated in the kidney and skin of Hpt/+ mice. Southern blot analysis of Hpt mutant DNA indicated a new EcoRI site in the Tal1 gene. High throughput sequencing identified an endogenous retroviral class II intracisternal A particle insertion in Tal1 intron 4. Our data suggests that the IAP insertion in Tal1 underlies the histopathological changes in the kidney by three weeks of age, and that glomerulosclerosis is a consequence of an initial developmental defect, progressing in severity over time. The Hairpatches mouse model allows an investigation into the effects of Tal1, a transcription factor characterized by complex regulation patterns, and its effects on renal disease.
Collapse
|
2
|
Lausen J, Pless O, Leonard F, Kuvardina ON, Koch B, Leutz A. Targets of the Tal1 transcription factor in erythrocytes: E2 ubiquitin conjugase regulation by Tal1. J Biol Chem 2009; 285:5338-46. [PMID: 20028976 DOI: 10.1074/jbc.m109.030296] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tal1 transcription factor is essential for the development of the hematopoietic system and plays a role during definitive erythropoiesis in the adult. Despite the importance of Tal1 in erythropoiesis, only a small number of erythroid differentiation target genes are known. A chromatin precipitation and cloning approach was established to uncover novel Tal1 target genes in erythropoiesis. The BirA tag/BirA ligase biotinylation system in combination with streptavidin chromatin precipitation (Strep-CP) was used to co-precipitate genomic DNA bound to Tal1. Tal1 was found to bind in the vicinity of 31 genes including the E2-ubiquitin conjugase UBE2H gene. Binding of Tal1 to UBE2H was confirmed by chromatin immunoprecipitation. UBE2H expression is increased during erythroid differentiation of hCD34(+) cells. Tal1 expression activated UBE2H expression, whereas Tal1 knock-down reduced UBE2H expression and ubiquitin transfer activity. This study identifies parts of the ubiquitinylation machinery as a cellular target downstream of the transcription factor Tal1 and provides novel insights into Tal1-regulated erythropoiesis.
Collapse
Affiliation(s)
- Jörn Lausen
- Georg-Speyer-Haus, Institute for Biomedical Research, D-60596 Frankfurt (Main), Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Ishiguro K, Rice AM, Rice KP, Sartorelli AC. Inhibition of all-trans retinoic acid-induced granulocytic differentiation of WEHI-3B D+ cells by forced expression of SCL (TAL1) and GATA-1. Leuk Res 2009; 33:1249-54. [PMID: 19230972 DOI: 10.1016/j.leukres.2009.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 12/05/2008] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
All-trans retinoic acid (ATRA) induces granulocytic maturation of WEHI-3B D+ leukemia cells and LiCl enhances this maturation, while WEHI-3B D- cells are non-responsive to ATRA. Transfection of SCL, expressed in D- but absent in D+ cells, into D+ cells, caused resistance to ATRA, while transfection of GATA-1 into D+ cells produced resistance to the combination of ATRA and LiCl. SCL expression in D+ cells did not induce the expression of c-Kit, a putative target gene for SCL. LiCl, known to inhibit some kinases by displacing Mg2+, did not affect tyrosine kinase activity of the cytoplasmic domain of c-Kit.
Collapse
Affiliation(s)
- Kimiko Ishiguro
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
4
|
Shih ACC, Lee DT, Lin L, Peng CL, Chen SH, Wu YW, Wong CY, Chou MY, Shiao TC, Hsieh MF. SinicView: a visualization environment for comparisons of multiple nucleotide sequence alignment tools. BMC Bioinformatics 2006; 7:103. [PMID: 16509994 PMCID: PMC1434773 DOI: 10.1186/1471-2105-7-103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 03/02/2006] [Indexed: 01/22/2023] Open
Abstract
Background Deluged by the rate and complexity of completed genomic sequences, the need to align longer sequences becomes more urgent, and many more tools have thus been developed. In the initial stage of genomic sequence analysis, a biologist is usually faced with the questions of how to choose the best tool to align sequences of interest and how to analyze and visualize the alignment results, and then with the question of whether poorly aligned regions produced by the tool are indeed not homologous or are just results due to inappropriate alignment tools or scoring systems used. Although several systematic evaluations of multiple sequence alignment (MSA) programs have been proposed, they may not provide a standard-bearer for most biologists because those poorly aligned regions in these evaluations are never discussed. Thus, a tool that allows cross comparison of the alignment results obtained by different tools simultaneously could help a biologist evaluate their correctness and accuracy. Results In this paper, we present a versatile alignment visualization system, called SinicView, (for Sequence-aligning INnovative and Interactive Comparison VIEWer), which allows the user to efficiently compare and evaluate assorted nucleotide alignment results obtained by different tools. SinicView calculates similarity of the alignment outputs under a fixed window using the sum-of-pairs method and provides scoring profiles of each set of aligned sequences. The user can visually compare alignment results either in graphic scoring profiles or in plain text format of the aligned nucleotides along with the annotations information. We illustrate the capabilities of our visualization system by comparing alignment results obtained by MLAGAN, MAVID, and MULTIZ, respectively. Conclusion With SinicView, users can use their own data sequences to compare various alignment tools or scoring systems and select the most suitable one to perform alignment in the initial stage of sequence analysis.
Collapse
Affiliation(s)
| | - DT Lee
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Laurent Lin
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chin-Lin Peng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shiang-Heng Chen
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Wei Wu
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Yi Wong
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Meng-Yuan Chou
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Tze-Chang Shiao
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Mu-Fen Hsieh
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
5
|
Abstract
Transcriptional regulation of T-cell development involves successive interactions between complexes of transcriptional regulators and their binding sites within the regulatory regions of each gene. The regulatory modules that control expression of T-lineage genes frequently include binding sites for a core set of regulators that set the T-cell-specific background for signal-dependent control, including GATA-3, Notch/CSL, c-myb, TCF-1, Ikaros, HEB/E2A, Ets, and Runx factors. Additional regulators in early thymocytes include PU.1, Id-2, SCL, Spi-B, Erg, Gfi-1, and Gli. Many of these factors are involved in simultaneous regulation of non-T-lineage genes, T-lineage genes, and genes involved in cell cycle control, apoptosis, or survival. Potential and known interactions between early thymic transcription factors such as GATA-3, SCL, PU.1, Erg, and Spi-B are explored. Regulatory modules involved in the expression of several critical T-lineage genes are described, and models are presented for shifting occupancy of the DNA-binding sites in the regulatory modules of pre-Talpha, T-cell receptor beta (TCRbeta), recombinase activating genes 1 and 2 (Rag-1/2), and CD4 during T-cell development. Finally, evidence is presented that c-kit, Erg, Hes-1, and HEBAlt are expressed differently in Rag-2(-/-) thymocytes versus normal early thymocytes, which provide insight into potential regulatory interactions that occur during normal T-cell development.
Collapse
Affiliation(s)
- Michele K Anderson
- Sunnybrook and Women's College Health Sciences Center, Division of Molecular and Cell Biology, University of Toronto, Department of Immunology, Toronto, ON, Canada.
| |
Collapse
|
6
|
Abstract
In recent years, numerous cellular and genetic studies have led to a better understanding of the developmental relationship between hematopoietic and endothelial cell lineages. Specifically, tracing cells expressing various genes such as Brachyury, Flk-1, or Scl has delineated the cellular sequence leading to hematopoietic and endothelial cell development from mesoderm. Moreover, in vitro as well as in vivo studies of invertebrate and vertebrate systems have established that hematopoietic and endothelial cells develop from a common progenitor, the hemangioblast. Finally, the presence of the hemangioblast has been confirmed in postnatal mice and humans. Further characterization of the hemangioblast, both embryo and postnatal, will be critical for a better understanding of the molecular events involved in hematopoietic and endothelial cell differentiation as well as for utilizing this cell population for clinical applications.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pathology and Immunology, Developmental Biology Program, Washington University School of Medicine, St. Louis, Mo. 63110, USA
| | | | | |
Collapse
|
7
|
Smith SJ, Kotecha S, Towers N, Latinkic BV, Mohun TJ. XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus. Mech Dev 2002; 117:173-86. [PMID: 12204257 DOI: 10.1016/s0925-4773(02)00200-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phagocytic myeloid cells provide the principle line of immune defence during early embryogenesis in lower vertebrates. They may also have important functions during normal embryo morphogenesis, not least through the phagocytic clearance of cell corpses arising from apoptosis. We have identified two cDNAs that provide sensitive molecular markers of embryonic leukocytes in the early Xenopus embryo. These encode a peroxidase (XPOX2) and a Ly-6/uPAR-related protein (XLURP-1). We show that myeloid progenitors can first be detected at an antero-ventral site in early tailbud stage embryos (a region previously termed the anterior ventral blood island) and transiently express the haematopoetic transcription factors SCL and AML. Phagocytes migrate from this site along consistent routes and proliferate, becoming widely distributed throughout the tadpole long before the circulatory system is established. This migration can be followed in living embryos using a 5 kb portion of the XLURP-1 promoter to drive expression of EGFP specifically in the myeloid cells. Interestingly, whilst much of this migration occurs by movement of individual cells between embryonic germ layers, the rostral-most myeloid cells apparently migrate in an anterior direction along the ventral midline within the mesodermal layer itself. The transient presence of such cells as a strip bisecting the cardiac mesoderm immediately prior to heart tube formation suggests that embryonic myeloid cells may play a role in early cardiac morphogenesis.
Collapse
Affiliation(s)
- Stuart J Smith
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
8
|
Göttgens B, Gilbert JG, Barton LM, Grafham D, Rogers J, Bentley DR, Green AR. Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res 2001; 11:87-97. [PMID: 11156618 PMCID: PMC311011 DOI: 10.1101/gr.153001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2000] [Accepted: 10/12/2000] [Indexed: 11/24/2022]
Abstract
Long-range comparative sequence analysis provides a powerful strategy for identifying conserved regulatory elements. The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis, and it displays a highly conserved expression pattern. We present here a detailed sequence comparison of 193 kb of the human SCL locus to 234 kb of the mouse SCL locus. Four new genes have been identified together with an ancient mitochondrial insertion in the human locus. The SCL gene is flanked upstream by the SIL gene and downstream by the MAP17 gene in both species, but the gene order is not collinear downstream from MAP17. To facilitate rapid identification of candidate regulatory elements, we have developed a new sequence analysis tool (SynPlot) that automates the graphical display of large-scale sequence alignments. Unlike existing programs, SynPlot can display the locus features of more than one sequence, thereby indicating the position of homology peaks relative to the structure of all sequences in the alignment. In addition, high-resolution analysis of the chromatin structure of the mouse SCL gene permitted the accurate positioning of localized zones accessible to restriction endonucleases. Zones known to be associated with functional regulatory regions were found to correspond precisely with peaks of human/mouse homology, thus demonstrating that long-range human/mouse sequence comparisons allow accurate prediction of the extent of accessible DNA associated with active regulatory regions.
Collapse
Affiliation(s)
- B Göttgens
- The Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Addenbrooke's Hospital Site, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liao W, Ho CY, Yan YL, Postlethwait J, Stainier DY. Hhex and scl function in parallel to regulate early endothelial and blood differentiation in zebrafish. Development 2000; 127:4303-13. [PMID: 11003831 DOI: 10.1242/dev.127.20.4303] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During embryogenesis, endothelial and blood precursors are hypothesized to arise from a common progenitor, the hemangioblast. Several genes that affect the differentiation of, or are expressed early in, both the endothelial and blood lineages may in fact function at the level of the hemangioblast. For example, the zebrafish cloche mutation disrupts the differentiation of both endothelial and blood cells. The transcription factor gene scl is expressed in both endothelial and blood lineages from an early stage and can regulate their differentiation. Here we report that in zebrafish the homeobox gene hhex (previously called hex) is also expressed in endothelial and blood lineages from an early stage. We find that hhex expression in these lineages is significantly reduced in cloche mutant embryos, indicating that hhex functions downstream of cloche to regulate endothelial and blood differentiation. Ectopic expression of hhex through injection of a DNA construct leads to the premature and ectopic expression of early endothelial and blood differentiation genes such as fli1, flk1 and gata1, indicating that Hhex can positively regulate endothelial and blood differentiation. However, analysis of a hhex deficiency allele shows that hhex is not essential for early endothelial and blood differentiation, suggesting that another gene, perhaps scl, compensates for the absence of Hhex function. Furthermore, we find that hhex and scl can induce each other's expression, suggesting that these two genes cross-regulate each other during early endothelial and blood differentiation. Together, these data provide the initial framework of a pathway that can be used to further integrate the molecular events regulating hemangioblast differentiation.
Collapse
Affiliation(s)
- W Liao
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California at San Francisco, San Francisco, CA 94143-0448, USA
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- J H Williams
- Department of Biochemistry, University of Western Australia, Royal Perth Hospital, Australia
| | | |
Collapse
|