1
|
Arnittali M, Rissanou AN, Kefala A, Kokkinidis M, Harmandaris V. Structure of amino acid sequence-reversed wtRop protein: insights from atomistic molecular dynamics simulations. J Biomol Struct Dyn 2023; 42:9842-9856. [PMID: 37671833 DOI: 10.1080/07391102.2023.2252903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
This study aims to the investigation of the advantages of designing new proteins presume upon a 'bias' sequence of amino acids, based on the reversed sequence of parent proteins, such as the retro ones. The structural simplicity of wtRop offers a very attractive model system to study these aspects. The current work is based on all-atom Molecular Dynamics (MD) simulations and corresponding experimental evidence on two different types of reversed wtRop protein, one with a fully reversed sequence of amino acids (rRop) and another with a partially reversed sequence (prRop), where only the five residues of the loop region (30ASP-34GLN) were not reversed. The exploration of the structure of the two retro proteins is performed highlighting the similarities and the differences with their parent protein, by employing various measures. Two models have been studied for both reversed proteins, a dimeric and a monomeric with the former one found to be more stable than the latter. Preferable equilibrium structures that the protein molecule can attain are explored, indicating the equilibration pathway. Simulation findings indicate a disruption of the α-helical structure and the appearance of additional secondary structures for both retro proteins. Reduced structural stability compared to their parent protein (wtRop) is also found. A corruption of the hydrophobic core is observed in the dimeric models. Furthermore, the simulations findings are consistent with the experimental characterization of prRop by circular dichroism spectroscopy (CD) which highlights an unstable, highly α-helical protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maria Arnittali
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Crete, Greece
| | - Anastassia N Rissanou
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, Athens, Greece
| | - Aikaterini Kefala
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (FORTH), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (FORTH), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia, Cyprus
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
2
|
Xie X, Wu P, Huang X, Bai W, Li B, Shi N. Retro-protein XXA is a remarkable solubilizing fusion tag for inclusion bodies. Microb Cell Fact 2022; 21:51. [PMID: 35366873 PMCID: PMC8977028 DOI: 10.1186/s12934-022-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Producing large amounts of soluble proteins from bacteria remains a challenge, despite the help of current various solubilizing fusion tags. Thus, developing novel tags is necessary. Antifreeze protein (AFP) has excellent solubility and hydrophilicity, but there are no current reports on its use as a solubilizing fusion tag. Additionally, there is no precedent for using retro-proteins (reverse sequence) as solubilizing fusion tags. Therefore, we selected the antifreeze protein AXX and obtained its retro-protein XXA by synthesizing the XXA gene for the development of a new solubilizing fusion tag. Results XXA exhibits better stability and ease of expression than AXX; hence, we focused the development of the solubilizing fusion tag on XXA. XXA fused with the tested inclusion bodies, significantly increasing the soluble expression compared with commonly used solubilizing fusion tags such as GST, Trx, Sumo, MBP, and NusA. The tested proteins became soluble after fusion with the XXA tag, and they could be purified. They maintained a soluble form after XXA tag removal. Finally, we used enzymatic digestion reaction and western blot experiments to verify that bdNEDP1 and NbALFA, which were soluble expressed by fusion with XXA, were active. Conclusion We developed the novel solubilizing fusion tag XXA, which could more effectively facilitate the soluble expression of inclusion bodies compared with current commonly used tags. XXA could function at both low and high temperatures, and its moderate molecular weight has a limited impact on the output. These properties make XXA an ideal fusion tag for future research and industrial production. Moreover, for the first time, we highlighted the broad potential of antifreeze protein as a solubilizing fusion tag, bringing retro-protein into practical application. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01776-7.
Collapse
|
3
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Kefala A, Amprazi M, Mylonas E, Kotsifaki D, Providaki M, Pozidis C, Fotiadou M, Kokkinidis M. Probing Protein Folding with Sequence-Reversed α-Helical Bundles. Int J Mol Sci 2021; 22:ijms22041955. [PMID: 33669383 PMCID: PMC7920257 DOI: 10.3390/ijms22041955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
Recurrent protein folding motifs include various types of helical bundles formed by α-helices that supercoil around each other. While specific patterns of amino acid residues (heptad repeats) characterize the highly versatile folding motif of four-α-helical bundles, the significance of the polypeptide chain directionality is not sufficiently understood, although it determines sequence patterns, helical dipoles, and other parameters for the folding and oligomerization processes of bundles. To investigate directionality aspects in sequence-structure relationships, we reversed the amino acid sequences of two well-characterized, highly regular four-α-helical bundle proteins and studied the folding, oligomerization, and structural properties of the retro-proteins, using Circular Dichroism Spectroscopy (CD), Size Exclusion Chromatography combined with Multi-Angle Laser Light Scattering (SEC-MALS), and Small Angle X-ray Scattering (SAXS). The comparison of the parent proteins with their retro-counterparts reveals that while the α-helical character of the parents is affected to varying degrees by sequence reversal, the folding states, oligomerization propensities, structural stabilities, and shapes of the new molecules strongly depend on the characteristics of the heptad repeat patterns. The highest similarities between parent and retro-proteins are associated with the presence of uninterrupted heptad patterns in helical bundles sequences.
Collapse
Affiliation(s)
- Aikaterini Kefala
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
| | - Maria Amprazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
| | - Efstratios Mylonas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Dina Kotsifaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Mary Providaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Charalambos Pozidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
| | - Melina Fotiadou
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
| | - Michael Kokkinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas (IMBB-FORTH), 70013 Heraklion, Greece; (A.K.); (M.A.); (E.M.); (D.K.); (M.P.); (C.P.)
- Department of Biology, University of Crete, 70013 Heraklion, Greece;
- Correspondence: ; Tel.: +30-2810-394350
| |
Collapse
|
5
|
Sequence Reversal Prevents Chain Collapse and Yields Heat-Sensitive Intrinsic Disorder. Biophys J 2019; 115:328-340. [PMID: 30021108 DOI: 10.1016/j.bpj.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Sequence patterns of charge, hydrophobicity, hydrogen bonding, and other amino acid physicochemical properties contribute to mechanisms of protein folding, but how sequence composition and patterns influence the conformational dynamics of the denatured state ensemble is not fully understood. To investigate structure-sequence relationships in the denatured state, we reversed the sequence of staphylococcal nuclease and characterized its structure, thermodynamic character, and hydrodynamic radius using circular dichroism spectroscopy, dynamic light scattering, analytical ultracentrifugation, and size-exclusion chromatography as a function of temperature. The macromolecular size of "Retro-nuclease" is highly expanded in solution with characteristics similar to biological intrinsically disordered proteins. In contradistinction to a disordered state, Retro-nuclease exhibits a broad sigmoid transition of its hydrodynamic dimensions as temperature is increased, indicating a thermodynamically controlled compaction. Counterintuitively, the magnitude of these temperature-induced hydrodynamic changes exceed that observed from thermal denaturation of folded unaltered staphylococcal nuclease. Undetectable by calorimetry and intrinsic tryptophan fluorescence, the lack of heat capacity or fluorescence changes throughout the thermal transition indicate canonical hydrophobic collapse did not drive the Retro-nuclease structural transitions. Temperature-dependent circular dichroism spectroscopy performed on Retro-nuclease and computer simulations correlate to temperature sensitivity in the intrinsic sampling of backbone conformations for polyproline II and α-helix. The experimental results indicate a role for sequence direction in mediating the collapse of the polypeptide chain, whereas the simulation trends illustrate the generality of the observed heat effects on disordered protein structure.
Collapse
|
6
|
Zerze GH, Stillinger FH, Debenedetti PG. Computational investigation of retro-isomer equilibrium structures: Intrinsically disordered, foldable, and cyclic peptides. FEBS Lett 2019; 594:104-113. [PMID: 31356683 DOI: 10.1002/1873-3468.13558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/20/2019] [Accepted: 07/26/2019] [Indexed: 11/08/2022]
Abstract
We use all-atom modeling and advanced-sampling molecular dynamics simulations to investigate quantitatively the effect of peptide bond directionality on the equilibrium structures of four linear (two foldable, two disordered) and two cyclic peptides. We find that the retro forms of cyclic and foldable linear peptides adopt distinctively different conformations compared to their parents. While the retro form of a linear intrinsically disordered peptide with transient secondary structure fails to reproduce a secondary structure content similar to that of its parent, the retro form of a shorter disordered linear peptide shows only minor differences compared to its parent.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
7
|
Kutyshenko VP, Sharapov MG, Uversky VN. Can a retro-polypeptide fold into a globule? J Biomol Struct Dyn 2019; 38:2763-2767. [PMID: 31232183 DOI: 10.1080/07391102.2019.1635045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Victor P Kutyshenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Science, Pushchino, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of Russian Academy of Science, Pushchino, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
8
|
Rai J. Peptide and protein mimetics by retro and retroinverso analogs. Chem Biol Drug Des 2019; 93:724-736. [PMID: 30582286 DOI: 10.1111/cbdd.13472] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
Abstract
Retroinverso analog of a natural polypeptide can sometimes mimic the structure and function of the natural peptide. The additional advantage of using retroinverso analog is that it is resistant to proteolysis. The retroinverso analogs have peptide sequence in reverse direction with respect to natural peptide and also have chirality of amino acid inverted from L to D. The D amino acids cannot be recognized by common proteases of the body; therefore, these peptides will not be degraded easily and have a longer-lasting effect as vaccine and inhibitor drugs. There have been many contested propositions about the geometric relationship between a peptide and its retro, inverso, or retroinverso analog. A retroinverso analog sometimes fails to adopt the structure that can mimic the function of the natural peptide. In such cases, partial retroinverso analog and other modifications can help in achieving the desired structure and function. Here, we review the theory, major experimental attempts, prediction methods, and alternative strategies related to retroinverso peptidomimetics.
Collapse
|
9
|
Kutyshenko VP, Mikoulinskaia GV, Molochkov NV, Prokhorov DA, Taran SA, Uversky VN. Structure and dynamics of the retro-form of the bacteriophage T5 endolysin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1281-91. [PMID: 27376687 DOI: 10.1016/j.bbapap.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Using high-resolution NMR spectroscopy we conducted a comparative analysis of the structural and dynamic properties of the bacteriophage T5 endolysin (EndoT5) and its retro-form; i.e., a protein with the reversed direction of the polypeptide chain (R-EndoT5). We show that structurally, retro-form can be described as the molten globule-like polypeptide that is easily able to form large oligomers and aggregates. To avoid complications associated with this high aggregation propensity of the retro protein, we compared EndoT5 and R-EndoT5 in the presence of strong denaturants. This analysis revealed that these two proteins possess different internal dynamics in solutions containing 8M urea, with the retro-form being characterized by larger dimensions and slower internal dynamics. We also show that in the absence of denaturant, both forms of the bacteriophage T5 endolysin are able to interact with micelles formed by the zwitterionic detergent dodecylphosphocholine (DPC), and that the formation of the protein-micelle complexes leads to the significant structural rearrangement of polypeptide chain and to the formation of stable hydrophobic core in the R-Endo T5.
Collapse
Affiliation(s)
- Victor P Kutyshenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Galina V Mikoulinskaia
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Nikolai V Molochkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Dmitry A Prokhorov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Sergei A Taran
- Branch of Shemyakin & Ovchinnikov's Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia.
| |
Collapse
|
10
|
Amyloid-β peptides time-dependent structural modifications: AFM and voltammetric characterization. Anal Chim Acta 2016; 926:36-47. [PMID: 27216391 DOI: 10.1016/j.aca.2016.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
The human amyloid beta (Aβ) peptides, Aβ1-40 and Aβ1-42, structural modifications, from soluble monomers to fully formed fibrils through intermediate structures, were investigated, and the results were compared with those obtained for the inverse Aβ40-1 and Aβ42-1, mutant Aβ1-40Phe(10) and Aβ1-40Nle(35), and rat Aβ1-40Rat peptide sequences. The aggregation was followed at a slow rate, in chloride free media and room temperature, and revealed to be a sequence-structure process, dependent on the physicochemical properties of each Aβ peptide isoforms, and occurring at different rates and by different pathways. The fibrilization process was investigated by atomic force microscopy (AFM), via changes in the adsorption morphology from: (i) initially random coiled structures of ∼0.6 nm height, corresponding to the Aβ peptide monomers in random coil or in α-helix conformations, to (ii) aggregates and protofibrils of 1.5-6.0 nm height and (iii) two types of fibrils, corresponding to the Aβ peptide in a β-sheet configuration. The reactivity of the carbon electrode surface was considered. The hydrophobic surface induced rapid changes of the Aβ peptide conformations, and differences between the adsorbed fibrils, formed at the carbon surface (beaded, thin, <2.0 nm height) or in solution (long, smooth, thick, >2.0 nm height), were detected. Differential pulse voltammetry showed that, according to their primary structure, the Aβ peptides undergo oxidation in one or two steps, the first step corresponding to the tyrosine amino acids oxidation, and the second one to the histidine and methionine amino acids oxidation. The fibrilization process was electrochemically detected via the decrease of the Aβ peptide oxidation peak currents that occurred in a time dependent manner.
Collapse
|
11
|
Vymětal J, Bathula SR, Černý J, Chaloupková R, Žídek L, Sklenář V, Vondrášek J. Retro operation on the Trp-cage miniprotein sequence produces an unstructured molecule capable of folding similar to the original only upon 2,2,2-trifluoroethanol addition. Protein Eng Des Sel 2014; 27:463-72. [DOI: 10.1093/protein/gzu046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Li C, Zhan C, Zhao L, Chen X, Lu WY, Lu W. Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53-MDM2 interaction. Bioorg Med Chem 2013; 21:4045-50. [PMID: 23660015 DOI: 10.1016/j.bmc.2013.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Peptide retro-inverso isomerization is thought to be functionally neutral and has been widely used as a tool for designing proteolytically stable d-isomers to recapitulate biological activities of their parent l-peptides. Despite success in a wide range of applications, exceptions amply exist that clearly defy this rule of thumb when parent l-peptides adopt an α-helical conformation in their bound state. The detrimental energetic effect of retro-inverso isomerization of an α-helical l-peptide on its target protein binding has been estimated to be 3.0-3.4kcal/mol. To better understand how the retro-inverso isomer of a structured protein works at the molecular level, we chemically synthesized and functionally characterized the retro-inverso isomer of a rationally designed miniature protein termed stingin of 18 amino acid residues, which adopts an N-terminal loop and a C-terminal α-helix stabilized by two intra-molecular disulfide bridges. Stingin emulated the transactivation peptide of the p53 tumor suppressor protein and bound with high affinity and via its C-terminal α-helix to MDM2 and MDMX-the two negative regulators of p53. We also prepared the retro isomer and d-enantiomer of stingin for comparative functional studies using fluorescence polarization and surface plasmon resonance techniques. We found that retro-inverso isomerization of l-stingin weakened its MDM2 binding by 720 fold (3.9kcal/mol); while enantiomerization of l-stingin drastically reduced its binding to MDM2 by three orders of magnitude, sequence reversal completely abolished it. Our findings demonstrate the limitation of peptide retro-inverso isomerization in molecular mimicry and reinforce the notion that the strategy works poorly with biologically active α-helical peptides due to inherent differences at the secondary and tertiary structural levels between an l-peptide and its retro-inverso isomer despite their similar side chain topologies at the primary structural level.(1.)
Collapse
Affiliation(s)
- Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | | | | | | | | | | |
Collapse
|
14
|
Kutyshenko VP, Prokhorov DA, Molochkov NV, Sharapov MG, Kolesnikov I, Uversky VN. Dancing retro: solution structure and micelle interactions of the retro-SH3-domain, retro-SHH-'Bergerac'. J Biomol Struct Dyn 2013; 32:257-72. [PMID: 23527530 DOI: 10.1080/07391102.2012.762724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A protein with the reversed direction of its polypeptide chain, retro-SHH, was analyzed by several spectroscopic techniques including circular dichroism and high-resolution NMR to understand its solution structure and structural consequences of interaction with the micelles formed by the zwitterionic detergent dodecylphosphocholine (DPC). This analysis revealed that retro-SHH does not contain rigid 3-D structure, but is characterized by the presence of residual secondary structure. Intriguingly, interaction with the DPC micelles affected the structures of SHH and retro-SHH very differently. In fact, micelles induce pronounced folding of retro-SHH, whereas micelle-bound SHH was noticeably disordered. Finally, we performed a disorder prediction with the PONDR-FIT algorithm and discovered that the reversal of the chain direction almost does not affect the propensity of a polypeptide for intrinsic disorder, since the disorder plot for retro-SHH was almost a mirror image of that for the normal SHH.
Collapse
Affiliation(s)
- Victor P Kutyshenko
- a Institute of Theoretical and Experimental Biophysics of Russian Academy of Science , Pushchino , Moscow Region , 142290 , Russia
| | | | | | | | | | | |
Collapse
|
15
|
Prasanth N, Vaishnavi MK, Sekar K. An algorithm to find all palindromic sequences in proteins. J Biosci 2013; 38:173-7. [PMID: 23385825 DOI: 10.1007/s12038-013-9300-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palindrome is a set of characters that reads the same forwards and backwards. Since the discovery of palindromic peptide sequences two decades ago, little effort has been made to understand its structural, functional and evolutionary significance. Therefore, in view of this, an algorithm has been developed to identify all perfect palindromes (excluding the palindromic subset and tandem repeats) in a single protein sequence. The proposed algorithm does not impose any restriction on the number of residues to be given in the input sequence. This avant-garde algorithm will aid in the identification of palindromic peptide sequences of varying lengths in a single protein sequence.
Collapse
Affiliation(s)
- N Prasanth
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012
| | | | | |
Collapse
|
16
|
|
17
|
The Role of Protein Sequence and Amino Acid Composition in Amyloid Formation: Scrambling and Backward Reading of IAPP Amyloid Fibrils. J Mol Biol 2010; 404:337-52. [DOI: 10.1016/j.jmb.2010.09.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/31/2010] [Accepted: 09/22/2010] [Indexed: 11/17/2022]
|
18
|
Xue B, Dunker AK, Uversky VN. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Int J Mol Sci 2010; 11:3725-47. [PMID: 21152297 PMCID: PMC2996789 DOI: 10.3390/ijms11103725] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/10/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022] Open
Abstract
Many cell functions in all living organisms rely on protein-based molecular recognition involving disorder-to-order transitions upon binding by molecular recognition features (MoRFs). A well accepted computational tool for identifying likely protein-protein interactions is sequence alignment. In this paper, we propose the combination of sequence alignment and disorder prediction as a tool to improve the confidence of identifying MoRF-based protein-protein interactions. The method of reverse sequence alignment is also rationalized here as a novel approach for finding additional interaction regions, leading to the concept of a retro-MoRF, which has the reversed sequence of an identified MoRF. The set of retro-MoRF binding partners likely overlap the partner-sets of the originally identified MoRFs. The high abundance of MoRF-containing intrinsically disordered proteins in nature suggests the possibility that the number of retro-MoRFs could likewise be very high. This hypothesis provides new grounds for exploring the mysteries of protein-protein interaction networks at the genome level.
Collapse
Affiliation(s)
- Bin Xue
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; E-Mails: (B.X.); (A.K.D.)
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; E-Mails: (B.X.); (A.K.D.)
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; E-Mails: (B.X.); (A.K.D.)
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- * Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-317-278-6448; Fax: +1-317-278-9217
| |
Collapse
|
19
|
Adenovirus capsid-display of the retro-oriented human complement inhibitor DAF reduces Ad vector-triggered immune responses in vitro and in vivo. Blood 2010; 116:1669-77. [PMID: 20511542 DOI: 10.1182/blood-2010-03-276949] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus (Ad) vectors are widely used in human clinical trials. However, at higher dosages, Ad vector-triggered innate toxicities remain a major obstacle to many applications. Ad interactions with the complement system significantly contribute to innate immune responses in several models of Ad-mediated gene transfer. We constructed a novel class of Ad vectors, genetically engineered to "capsid-display" native and retro-oriented versions of the human complement inhibitor decay-accelerating factor (DAF), as a fusion protein from the C-terminus of the Ad capsid protein IX. In contrast to conventional Ad vectors, DAF-displaying Ads dramatically minimized complement activation in vitro and complement-dependent immune responses in vivo. DAF-displaying Ads did not trigger thrombocytopenia, minimized endothelial cell activation, and had diminished inductions of proinflammatory cytokine and chemokine responses. The retro-oriented display of DAF facilitated the greatest improvements in vivo, with diminished activation of innate immune cells, such as dendritic and natural killer cells. In conclusion, Ad vectors can capsid-display proteins in a manner that not only retains the functionality of the displayed proteins but also potentially can be harnessed to improve the efficacy of this important gene transfer platform for numerous gene transfer applications.
Collapse
|
20
|
Rai J. Interaction energy analysis of peptide can predict the possibilities of mimetics by its retroinverso isomer. Chem Biol Drug Des 2009; 74:483-7. [PMID: 19811507 DOI: 10.1111/j.1747-0285.2009.00868.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been previously reported that the retroinverso analog of S peptide cannot mimic the S peptide, whereas the retroinverso analog of foot-and-mouth disease virus antigen can mimic the foot-and-mouth disease virus antigen. The structures of S peptide, foot-and-mouth disease virus antigen, and their retroinverso analogs are known. Here, we have attempted to explain the structural basis of mimetics at the level of atomic interactions by elaborating upon the Guptasarma's hypothesis. Using interaction energy analysis of S peptide and foot-and-mouth disease virus antigen, we propose that if the energy of the CO and NH backbone atoms' non-covalent interactions with all other atoms is negligible as compared with the energy of other non-covalent interactions, then the retroinverso isomer can mimic the original peptide/protein. Previous work has established that the structure of the inverso analog of a protein will be the mirror image of the protein, and it will only recognize the respective mirror image substrate/binding partner. The retro peptide conformation that can be superimposed on all side chains in any conformation of the original peptide does not exist in the conformational space of the peptides.
Collapse
Affiliation(s)
- Jagdish Rai
- International Centre For Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
21
|
Sheari A, Kargar M, Katanforoush A, Arab S, Sadeghi M, Pezeshk H, Eslahchi C, Marashi SA. A tale of two symmetrical tails: structural and functional characteristics of palindromes in proteins. BMC Bioinformatics 2008; 9:274. [PMID: 18547401 PMCID: PMC2474621 DOI: 10.1186/1471-2105-9-274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 06/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been previously shown that palindromic sequences are frequently observed in proteins. However, our knowledge about their evolutionary origin and their possible importance is incomplete. RESULTS In this work, we tried to revisit this relatively neglected phenomenon. Several questions are addressed in this work. (1) It is known that there is a large chance of finding a palindrome in low complexity sequences (i.e. sequences with extreme amino acid usage bias). What is the role of sequence complexity in the evolution of palindromic sequences in proteins? (2) Do palindromes coincide with conserved protein sequences? If yes, what are the functions of these conserved segments? (3) In case of conserved palindromes, is it always the case that the whole conserved pattern is also symmetrical? (4) Do palindromic protein sequences form regular secondary structures? (5) Does sequence similarity of the two "sides" of a palindrome imply structural similarity? For the first question, we showed that the complexity of palindromic peptides is significantly lower than randomly generated palindromes. Therefore, one can say that palindromes occur frequently in low complexity protein segments, without necessarily having a defined function or forming a special structure. Nevertheless, this does not rule out the possibility of finding palindromes which play some roles in protein structure and function. In fact, we found several palindromes that overlap with conserved protein Blocks of different functions. However, in many cases we failed to find any symmetry in the conserved regions of corresponding Blocks. Furthermore, to answer the last two questions, the structural characteristics of palindromes were studied. It is shown that palindromes may have a great propensity to form alpha-helical structures. Finally, we demonstrated that the two sides of a palindrome generally do not show significant structural similarities. CONCLUSION We suggest that the puzzling abundance of palindromic sequences in proteins is mainly due to their frequent concurrence with low-complexity protein regions, rather than a global role in the protein function. In addition, palindromic sequences show a relatively high tendency to form helices, which might play an important role in the evolution of proteins that contain palindromes. Moreover, reverse similarity in peptides does not necessarily imply significant structural similarity. This observation rules out the importance of palindromes for forming symmetrical structures. Although palindromes frequently overlap with conserved Blocks, we suggest that palindromes overlap with Blocks only by coincidence, rather than being involved with a certain structural fold or protein domain.
Collapse
Affiliation(s)
- Armita Sheari
- Bioinformatics Group, School of Computer Science, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ahmed S, Shukla A, Guptasarma P. Folding behavior of a backbone-reversed protein: reversible polyproline type II to beta-sheet thermal transitions in retro-GroES multimers with GroES-like features. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:916-23. [PMID: 18359305 DOI: 10.1016/j.bbapap.2008.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/19/2008] [Accepted: 02/19/2008] [Indexed: 11/17/2022]
Abstract
The structural consequences of the reversal of polypeptide backbone direction (retro modification) remain insufficiently explored. Here, we describe the behavior of an engineered, backbone-reversed form of the 97 residues-long GroES co-chaperonin of Escherichia coli. FTIR and far-UV CD spectroscopy suggest that retro-GroES adopts a mixed polyproline type II (PPII)-beta-strand structure with a beta(II) type CD spectrum similar to that of GroES. Gel-filtration chromatography reveals that the protein adopts trimeric and/or pentameric quaternary structures, with solubility retained up to concentrations of 5.0-5.5 mg/ml in aqueous solutions. Mutations inserting a single tryptophan residue as a spectroscopic probe at three different sites cause no perturbation in the protein's CD spectral characteristics, or in its quaternary structural status. The protein is cooperatively dissociated, and non-cooperatively unfolded, by both guanidine hydrochloride and urea. Intriguingly, unlike with GroES, retro-GroES is not unfolded by heat. Instead, there is a reversible structural transition involving conversion of PPII structure to beta sheet structure, upon heating, with no attendant aggregation even at 90 degrees C. Retro-GroES does not bind GroEL. In summary, some structure-forming characteristics of GroES appear to be conserved through the backbone reversal process, although the differential conformational behavior upon heating also indicates differences.
Collapse
Affiliation(s)
- Shubbir Ahmed
- Protein Science and Engineering Division, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | |
Collapse
|
23
|
Pal-Bhowmick I, Pandey RP, Jarori GK, Kar S, Sahal D. Structural and functional studies on Ribonuclease S, retro S and retro-inverso S peptides. Biochem Biophys Res Commun 2007; 364:608-13. [PMID: 17963728 DOI: 10.1016/j.bbrc.2007.10.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/10/2007] [Indexed: 11/30/2022]
Abstract
Ribonuclease S peptide and S protein offer a unique complementation system to understand the finer features of molecular recognition. In the present study the S peptide (1-16), and its retro and retro-inverso analogs have been analyzed for their structural and biological attributes. RPHPLC, CD, and NMR analyses have revealed that the physicochemical and conformational properties of the S peptide are distinct from those of its retro and retro-inverso analogs. On the functional side, while the S peptide complemented the S protein to give RNase activity, was recognized by anti-S peptide antibodies and induced T cell proliferation, neither the retro nor the retro-inverso S peptides could do so.
Collapse
|
24
|
Abstract
A protein model that is simple enough to be used in protein-folding simulations but accurate enough to identify a protein native fold is described. Its geometry consists of describing the residues by one, two, or three pseudoatoms, depending on the residue size. Its energy is given by a pairwise, knowledge-based potential obtained for all the pseudoatoms as a function of their relative distance. The pseudoatomic potential is also a function of the primary chain separation and residue order. The model is tested by gapless threading on a large, representative set of known protein and decoy structures obtained from the "Decoys 'R' Us" database. It is also tested by threading on gapped decoys generated for proteins with many homologs. The gapless threading tests show near 98% native-structure recognition as the lowest energy structure and almost 100% as one of the three lowest energy structures for over 2200 test proteins. In decoy threading tests, the model recognized the majority of the native structures. It is also able to recognize native structures among gapped decoys, in spite of close structural similarities. The results indicate that the pseudoatomic model has native recognition ability similar to comparable atomic-based models but much better than equivalent residue-based models.
Collapse
Affiliation(s)
- Marcos R Betancourt
- University at Buffalo Center of Excellence in Bioinformatics, Buffalo, New York 14203, USA
| |
Collapse
|
25
|
Shukla A, Raje M, Guptasarma P. A backbone-reversed form of an all-beta alpha-crystallin domain from a small heat-shock protein (retro-HSP12.6) folds and assembles into structured multimers. J Biol Chem 2003; 278:26505-10. [PMID: 12716883 DOI: 10.1074/jbc.m303123200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural consequences of polypeptide backbone reversal ("retro" modification) remain largely unexplored, in particular, for the retro forms of globular all-beta-sheet proteins. To examine whether the backbone-reversed form of a model all-beta-sheet protein can fold and adopt secondary and tertiary structure, we created and examined the recombinant retro form of a 110-residue-long polypeptide, an alpha-crystallin-like small heat-shock protein, HSP12.6, from C. elegans. Following intracellular overexpression in fusion with a histidine affinity tag in Escherichia coli, purification under denaturing conditions, and removal of denaturant through dialysis, retro-HSP12.6 was found to fold to a soluble state. The folded protein was examined using fluorescence and CD spectroscopy, gel filtration chromatography, non-denaturing electrophoresis, differential scanning calorimetry, and electron microscopy and confirmed to have adopted secondary structure and assembled into a multimer. Interestingly, like its parent polypeptide, retro-HSP12.6 did not aggregate upon heating; rather, heating led to a dramatic increase in structural content and the adoption of what would appear to be a very well folded state at high temperatures. However, this was essentially reversed upon cooling with some hysteresis being observed resulting in greater structural content in the heated-cooled protein than in the unheated protein. The heated-cooled samples displayed CD spectra indicative of structural content comparable to that of any naturally occurring globular protein. Attempts are being made to refine crystallization conditions for the folded protein.
Collapse
Affiliation(s)
- Anshuman Shukla
- Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | |
Collapse
|
26
|
Lorenzen S, Gille C, Preissner R, Frömmel C. Inverse sequence similarity of proteins does not imply structural similarity. FEBS Lett 2003; 545:105-9. [PMID: 12804758 DOI: 10.1016/s0014-5793(03)00450-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is a debate on the folding of proteins with inverted sequences. Theoretical approaches and experiments give contradictory results. Many proteins in the Protein Data Bank (PDB) show conspicuous inverse sequence similarity (ISS) to each other. Here we analyze whether this ISS is related to structural similarity. For the first time, we performed a large scale three-dimensional (3-D) superposition of corresponding Calpha atoms of forwardly and inversely aligned proteins and tested the degree of secondary structure identity between them. Comparing proteins of less than 50% pairwise sequence identity, only 0.5% of the inversely aligned pairs had similar folds (99 out of 19073), whereas about 9% of forwardly aligned proteins in the same score and length range show similar 3-D structures (1731 out of 19248). This observation strongly supports the view that the inversion of sequences in almost all cases leads to a different folding property of the protein. Inverted sequences are thus suitable as protein-like sequences for control purposes without relations to existing proteins.
Collapse
Affiliation(s)
- Stephan Lorenzen
- Institute of Biochemistry, Charité Humboldt University, Monbijoustr. 2a, 10117, Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Giel-Pietraszuk M, Hoffmann M, Dolecka S, Rychlewski J, Barciszewski J. Palindromes in proteins. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:109-13. [PMID: 12760415 DOI: 10.1023/a:1023454111924] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Palindromes in DNA consist of nucleotides sequences that read the same from the 5'-end to the 3'-end, and its double helix is related by twofold axis. They occur in genomes of all organisms and have various functions. For example, restriction enzymes often recognize palindromic sequences of DNA. Palindromes in telomeres are crucial for initiation of replication. One can ask the questions, Do palindromes occur in protein, and if so, what function they play? We have searched the protein SWISSPROT database for palindromic sequences. A great number (26%) of different protein palindromes were found. One example of such protein is systemin, an 18-amino-acid-long peptide. It contains palindrome in its beta-sheet domain that interacts with palindromic fragment of DNA. The other palindrome containing protein is cellular human tumor suppressor p53. Oligonucleotide LTI-ITL has been observed in the crystal structure and is located close to a DNA recognizing domain. As the number of possible palindromic sequences of a given length is far much greater for proteins (20N) than for nucleic acids (4N), the study on their role seems to be an exciting challenge. Our results have clearly showed that palindromes are frequently occurring motives in proteins. Moreover, even very few examples that we have examined so far indicate the importance of further studies on protein palindromes.
Collapse
Affiliation(s)
- Malgorzata Giel-Pietraszuk
- Institute for Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Marcos R. Betancourt
- Laboratory of Computational Genomics, The Donald Danforth Plant Science Center, 893 North Warson Road, Creve Coeur, Missouri 63141
| | - D. Thirumalai
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
29
|
Kresse HP, Czubayko M, Nyakatura G, Vriend G, Sander C, Bloecker H. Four-helix bundle topology re-engineered: monomeric Rop protein variants with different loop arrangements. PROTEIN ENGINEERING 2001; 14:897-901. [PMID: 11742109 DOI: 10.1093/protein/14.11.897] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We converted the small homodimeric four-helix bundle repressor of primer protein (Rop) into a monomeric four-helix bundle by introduction of connecting loops. Both left- and right-handed four-helix bundles were produced. The left-handed bundles were more stable and were used to introduce biologically interesting peptides in one of the loops.
Collapse
Affiliation(s)
- H P Kresse
- Experimentelle Kinderkardiologie, Deutsches Herzzentrum, Lazarettstrasse 36, D-80636 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Mittl PR, Deillon C, Sargent D, Liu N, Klauser S, Thomas RM, Gutte B, Grütter MG. The retro-GCN4 leucine zipper sequence forms a stable three-dimensional structure. Proc Natl Acad Sci U S A 2000; 97:2562-6. [PMID: 10716989 PMCID: PMC15968 DOI: 10.1073/pnas.97.6.2562] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The question of whether a protein whose natural sequence is inverted adopts a stable fold is still under debate. We have determined the 2. 1-A crystal structure of the retro-GCN4 leucine zipper. In contrast to the two-stranded helical coiled-coil GCN4 leucine zipper, the retro-leucine zipper formed a very stable, parallel four-helix bundle, which now lends itself to further structural and functional studies.
Collapse
Affiliation(s)
- P R Mittl
- Biochemisches Institut der Universität Zürich, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pan PK, Zheng ZF, Lyu PC, Huang PC. Why reversing the sequence of the alpha domain of human metallothionein-2 does not change its metal-binding and folding characteristics. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:33-9. [PMID: 10542048 DOI: 10.1046/j.1432-1327.1999.00811.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel peptide, the backward reading sequence of human metallothionein-2 alpha domain, was synthesized and its chemical and spectroscopic properties analyzed. This folded retro-alpha domain was able to bind Cd(II) in identical stoichiometries with the chemically synthesized alpha domain of metallothionein-2. Nearly identical to the alpha domain, Cd-binding retro-alpha domain showed a characteristic ultraviolet absorption spectrum with a shoulder at 245-250 nm (due to cadmium-thiolate charge transfer), and the absorption shoulder was abolished by acidification [suggesting mercaptide bonding between Cd(II) and the cysteine residues]. Similar metal-binding capabilities between alpha domain and retro-alpha domain were observed also by pH titration and in the reaction with the sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid). A two-state cooperativity of the metal-cluster formation was observed spectroscopically in the titration of the retro-alpha domain, indicating that the retro-protein is foldable. In contrast to other proteins, our results indicate that the reversion of the amino acid sequence for the alpha domain does not change its foldability and metal-binding capacity, suggesting that the order of its sequence is not critical to the formation of a critical metal-tetrathiolate nucleus. However, CD spectra of the Cd-binding alpha domain and retro-alpha domain showed that the reversal direction of the domain sequence backbone significantly affects the formation of structure even when it is foldable.
Collapse
Affiliation(s)
- P K Pan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, China
| | | | | | | |
Collapse
|
32
|
Cregut D, Civera C, Macias MJ, Wallon G, Serrano L. A tale of two secondary structure elements: when a beta-hairpin becomes an alpha-helix. J Mol Biol 1999; 292:389-401. [PMID: 10493883 DOI: 10.1006/jmbi.1999.2966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, we have analyzed the relative importance of secondary versus tertiary interactions in stabilizing and guiding protein folding. For this purpose, we have designed four different mutants to replace the alpha-helix of the GB1 domain by a sequence with strong beta-hairpin propensity in isolation. In particular, we have chosen the sequence of the second beta-hairpin of the GB1 domain, which populates the native conformation in aqueous solution to a significant extent. The resulting protein has roughly 30 % of its sequence duplicated and maintains the 3D-structure of the wild-type protein, but with lower stability (up to -5 kcal/mol). The loss of intrinsic helix stability accounts for about 80 % of the decrease in free energy, illustrating the importance of local interactions in protein stability. Interestingly enough, all the mutant proteins, included the one with the duplicated beta-hairpin sequence, fold with similar rates as the GB1 domain. Essentially, it is the nature of the rate-limiting step in the folding reaction that determines whether a particular interaction will speed up, or not, the folding rates. While local contacts are important in determining protein stability, residues involved in tertiary contacts in combination with the topology of the native fold, seem to be responsible for the specificity of protein structures. Proteins with non-native secondary structure tendencies can adopt stable folds and be as efficient in folding as those proteins with native-like propensities.
Collapse
Affiliation(s)
- D Cregut
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg, D-69117, Germany.
| | | | | | | | | |
Collapse
|
33
|
Cheley S, Braha O, Lu X, Conlan S, Bayley H. A functional protein pore with a "retro" transmembrane domain. Protein Sci 1999; 8:1257-67. [PMID: 10386875 PMCID: PMC2144353 DOI: 10.1110/ps.8.6.1257] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Extended retro (reversed) peptide sequences have not previously been accommodated within functional proteins. Here, we show that the entire transmembrane portion of the beta-barrel of the pore-forming protein alpha-hemolysin can be formed by retrosequences comprising a total of 175 amino acid residues, 25 contributed by the central sequence of each subunit of the heptameric pore. The properties of wild-type and retro heptamers in planar bilayers are similar. The single-channel conductance of the retro pore is 15% less than that of the wild-type heptamer and its current-voltage relationship denotes close to ohmic behavior, while the wild-type pore is weakly rectifying. Both wild-type and retro pores are very weakly anion selective. These results and the examination of molecular models suggest that beta-barrels may be especially accepting of retro sequences compared to other protein folds. Indeed, the ability to form a retro domain could be diagnostic of a beta-barrel, explaining, for example, the activity of the retro forms of many membrane-permeabilizing peptides. By contrast with the wild-type subunits, monomeric retro subunits undergo premature assembly in the absence of membranes, most likely because the altered central sequence fails to interact with the remainder of the subunit, thereby initiating assembly. Despite this difficulty, a technique was devised for obtaining heteromeric pores containing both wild-type and retro subunits. Most probably as a consequence of unfavorable interstrand side-chain interactions, the heteromeric pores are less stable than either the wild-type or retro homoheptamers, as judged by the presence of subconductance states in single-channel recordings. Knowledge about the extraordinary plasticity of the transmembrane beta-barrel of alpha-hemolysin will be very useful in the de novo design of functional membrane proteins based on the beta-barrel motif.
Collapse
Affiliation(s)
- S Cheley
- Department of Medical Biochemistry and Genetics, Texas A&M Health Science Center, College Station 77843-1114, USA
| | | | | | | | | |
Collapse
|
34
|
Witte K, Skolnick J, Wong CH. A Synthetic Retrotransition (Backward Reading) Sequence of the Right-Handed Three-Helix Bundle Domain (10-53) of Protein A Shows Similarity in Confomation as Predicted by Computation. J Am Chem Soc 1998. [DOI: 10.1021/ja982203h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krista Witte
- Contribution from the Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Jeff Skolnick
- Contribution from the Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Chi-Huey Wong
- Contribution from the Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|