1
|
Min J, Chen Q, Wu W, Zhao J, Luo X. Identification of mRNA expression biomarkers associated with epilepsy and response to valproate with co-expression analysis. Front Neurol 2022; 13:1019121. [DOI: 10.3389/fneur.2022.1019121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeValproate (VPA) resistance was reported to be an important predictor of intractable epilepsy. We conducted this study to identify candidate biomarkers in peripheral blood correlated with VPA resistance.MethodsThe microarray dataset (GSE143272) was downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was performed to construct co-expression modules and obtain the most prominent module associated with VPA resistance. Differentially expressed genes (DEGs) between VPA-responsive and VPA-resistant patients were obtained using the “Limma” package in R. The intersections between the most prominent module and DEGs were identified as target genes. Metascape was performed to discover the possible involved pathways of the target genes. GeneCards database was used to know the function of each target gene.ResultsAll genes in the GSE143272 were divided into 24 different modules. Among these modules, the darkred module showed a pivotal correlation with VPA resistance. A total of 70 DEGs between VPA-responsive and VPA-resistant patients were identified. After taking the intersection, 25 target genes were obtained. The 25 target genes were significantly enriched in T cell receptor recognition, T cell receptor signaling pathway, regulation of T cell activation, cytokine–cytokine receptor interaction, and in utero embryonic development. Half of the target genes (CD3D, CD3G, CXCR3, CXCR6, GATA3, GZMK, IL7R, LIME1, SIRPG, THEMIS, TRAT1, and ZNF683) were directly involved in the T cell development, migration, and activation signaling pathway.ConclusionWe identified 25 target genes prominently associated with VPA resistance, which could be potential candidate biomarkers for epilepsy resistance in peripheral blood. The peripheral blood T cells may play a crucial role in VPA resistance. Those genes and pathways might become therapeutic targets with clinical usefulness in the future.
Collapse
|
2
|
Yu J, Zhou P, Asenso J, Yang XD, Wang C, Wei W. Advances in plant-based inhibitors of P-glycoprotein. J Enzyme Inhib Med Chem 2016; 31:867-81. [PMID: 26932198 DOI: 10.3109/14756366.2016.1149476] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance (MDR) has emerged as the main problem in anti-cancer therapy. Although MDR involves complex factors and processes, the main pivot is the expression of multidrug efflux pumps. P-glycoprotein (P-gp) belongs to the family of adenosine triphosphate (ATP)-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds out of the cell. An attractive therapeutic strategy for overcoming MDR is to inhibit the transport function of P-gp and thus, increase intracellular concentration of drugs. Recently, various types of P-gp inhibitors have been found and used in experiments. However, none of them has passed clinical trials due to their high side-effects. Hence, the search for alternatives, such as plant-based P-gp inhibitors have gained attention recently. Therefore, we give an overview of the source, function, structure and mechanism of plant-based P-gp inhibitors and give more attention to cancer-related studies. These products could be the future potential drug candidates for further research as P-gp inhibitors.
Collapse
Affiliation(s)
- Jun Yu
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Peng Zhou
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - James Asenso
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Xiao-Dan Yang
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Chun Wang
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| | - Wei Wei
- a Institute of Clinical Pharmacology, Anhui Medical University , Hefei , China .,b Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education , Hefei , China , and.,c Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine , Hefei , China
| |
Collapse
|
3
|
Verlinden BK, Louw A, Birkholtz LM. Resisting resistance: is there a solution for malaria? Expert Opin Drug Discov 2016; 11:395-406. [PMID: 26926843 DOI: 10.1517/17460441.2016.1154037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Currently, widely used antimalarial drugs have a limited clinical lifespan due to parasite resistance development. With resistance continuously rising, antimalarial drug discovery requires strategies to decrease the time of delivering a new antimalarial drug while simultaneously increasing the drug's therapeutic lifespan. Lessons learnt from various chemotherapeutic resistance studies in the fields of antibiotic and cancer research offer potentially useful strategies that can be applied to antimalarial drug discovery. AREAS COVERED In this review the authors discuss current strategies to circumvent resistance in malaria and alternatives that could be employed. EXPERT OPINION Scientists have been 'beating back' the malaria parasite with novel drugs for the past 49 years but the constant rise in antimalarial drug resistance is forcing the drug discovery community to explore alternative strategies. Avant-garde anti-resistance strategies from alternative fields may assist our endeavors to manage, control and prevent antimalarial drug resistance to progress beyond beating the resistant parasite back, to stopping it dead in its tracks.
Collapse
Affiliation(s)
- Bianca K Verlinden
- a Department of Biochemistry, Centre for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| | - Abraham Louw
- a Department of Biochemistry, Centre for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| | - Lyn-Marié Birkholtz
- a Department of Biochemistry, Centre for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences , University of Pretoria , Pretoria , South Africa
| |
Collapse
|
4
|
Chow EKH. JALA Special Issue: High-Throughput Imaging. ACTA ACUST UNITED AC 2016; 21:234-7. [PMID: 26887980 DOI: 10.1177/2211068216629734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
6
|
Luo Y, Li Z, Cui S, Shen C, Zhao J, Wu M, Li Y, Wang M, Chen R, Liu Z, Ri-Li G. Joint detection of ERCC1, TUBB3, and TYMS guidance selection of docetaxel, 5-fluorouracil and cisplatin (DDP) individual chemotherapy in advanced gastric cancer patients. Eur J Med Res 2014; 19:50. [PMID: 25223338 PMCID: PMC4176854 DOI: 10.1186/s40001-014-0050-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/28/2014] [Indexed: 02/01/2023] Open
Abstract
Background To investigate the guidance selection of docetaxel (D), cisplatin (DDP) (C), and 5-fluorouracil (5-FU) (F) as individual chemotherapy agents via joint detection of ERCC1, TUBB3, and TYMS genes in patients with advanced gastric cancer (AGC). Method Clinical data of 120 patients with AGC who enrolled in our hospital between May 2009 and May 2012 were analyzed. These patients were randomly assigned to experimental and control groups. The mRNA expression of ERCC1, TUBB3, and TYMS was measured by DNA chip technology in the experimental group. Different chemotherapies were administered according to the mRNA expression levels of the three genes, while DCF chemotherapy was directly applied to the control group. Correlation between the three genes’ mRNA levels, efficiency rate, the median time to progression (MTP), median survival time (MST) and adverse reactions was evaluated. Results As a result, there was a significant correlation between ERCC1 and TUBB3 mRNA expression (P = 0.005), but no obvious correlation between TUBB3 and TYMS or ERCC1 and TYMS. There was also no significant difference in the efficiency rate of chemotherapy (50% versus 55%; P = 0.357) and the MTP (10 months versus 7 months; P = 0.091) between the two groups. However, there was obvious significance in MST (13.7 months versus 11.6 months; P = 0.004). Additionally, the experimental group provided us with a more effective way for controlling adverse reactions to chemotherapy. Conclusion Combination regimen of D, C, and F in AGC patients according to their ERCC1, TUBB3, and TYMS mRNA expression level may reduce adverse reactions and improve MST.
Collapse
|
7
|
Comparison of selected gene expression profiles in sensitive and resistant cancer cells treated with doxorubicin and Selol. Contemp Oncol (Pozn) 2014; 18:90-4. [PMID: 24966790 PMCID: PMC4068809 DOI: 10.5114/wo.2014.40558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 08/12/2013] [Accepted: 01/13/2014] [Indexed: 01/07/2023] Open
Abstract
AIM OF THE STUDY Cellular resistance is strongly correlated with the risk of failure in doxorubicin (DOX) treatment, and the knowledge of the mechanisms of resistance and its possible modulation is still very limited. MATERIAL AND METHODS In this study, we assessed the effect of 5% Selol and DOX on the expression of genes that affect cell proliferation in the resistant KB-V1 and sensitive HeLa cell lines, using RT2 ProfilerTM PCR Array matrix "Human Cancer Drug Resistance and Metabolism" (SABiosciences). RESULTS We showed that HeLa and KB-V1 cell lines, characterised by varying susceptibility to DOX, have different genetic profiles as regards the studied genes. KB-V1 cells show overexpression of MYC and BCL2 genes, which encode proteins with anti apoptotic properties. Selol, when used in KB-V1 cells, reduced the expression of MYC and BCL2 genes, suggested as a new therapeutic target in the treatment of cancers resistant to cytostatic drugs. CONCLUSIONS The results suggest that Selol could be used as a modulator that enhances the cytotoxic effects of doxorubicin, particularly in cells resistant to this drug.
Collapse
|
8
|
Abstract
Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus is the single most important etiological agent in cervical cancer, contributing to neoplastic progression through the action of viral oncoproteins, mainly E6 and E7, which interfere with critical cell cycle pathways, p53 and retinoblastoma. However, evidence suggests that human papillomavirus infection alone is insufficient to induce malignant changes and that other host genetic variations are important in the development of cervical cancer. This article will discuss the latest molecular profiling techniques available and review the published literature relating to their role in the diagnosis and management of cervical dysplasia and cancer. It is hoped that these techniques will allow the detection of novel biomarkers at DNA, RNA, microRNA and protein levels, which may ultimately play a role in facilitating early disease diagnosis and in predicting response to therapies, thus allowing the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Cara M Martin
- Department of Pathology, Coombe Women's Hospital, Dublin 8, Ireland.
| | | | | |
Collapse
|
9
|
|
10
|
Chen BS, Li CW. Analysing microarray data in drug discovery using systems biology. Expert Opin Drug Discov 2013; 2:755-68. [PMID: 23488963 DOI: 10.1517/17460441.2.5.755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The innovation of present drug design focuses on new targets. However, compound efficacy and safety in human metabolism, including toxicity and pharmacokinetic profiles, but not target selection, are the criteria that determine which drug candidates enter the clinic. Systems biology approaches to disease are developed from the idea that disease-perturbed regulatory networks differ from their normal counterparts. Microarray data analyses reveal global changes in gene or protein expression in response to genetic and environmental changes and, accordingly, are well suited to construct the normal, disease-perturbed and drug-affected networks, which are useful for drug discovery in the pharmaceutical industry. The integration of modelling, microarray data and systems biology approaches will allow for a true breakthrough in in silico absorption, distribution, metabolism, excretion and toxicity assessment in drug design. Therefore, drug discovery through systems biology by means of microarray analyses could significantly reduce the time and cost of new drug development.
Collapse
Affiliation(s)
- Bor-Sen Chen
- National Tsing Hua University, Laboratory of Control and Systems Biology, 101, Sec 2, Kuang Fu Road, Hsinchu, 300, Taiwan
| | | |
Collapse
|
11
|
Tan HT, Lee YH, Chung MCM. Cancer proteomics. MASS SPECTROMETRY REVIEWS 2012; 31:583-605. [PMID: 22422534 DOI: 10.1002/mas.20356] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/16/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Cancer presents high mortality and morbidity globally, largely due to its complex and heterogenous nature, and lack of biomarkers for early diagnosis. A proteomics study of cancer aims to identify and characterize functional proteins that drive the transformation of malignancy, and to discover biomarkers to detect early-stage cancer, predict prognosis, determine therapy efficacy, identify novel drug targets, and ultimately develop personalized medicine. The various sources of human samples such as cell lines, tissues, and plasma/serum are probed by a plethora of proteomics tools to discover novel biomarkers and elucidate mechanisms of tumorigenesis. Innovative proteomics technologies and strategies have been designed for protein identification, quantitation, fractionation, and enrichment to delve deeper into the oncoproteome. In addition, there is the need for high-throughput methods for biomarker validation, and integration of the various platforms of oncoproteome data to fully comprehend cancer biology.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
12
|
|
13
|
Liu R, Blower PE, Pham AN, Fang J, Dai Z, Wise C, Green B, Teitel CH, Ning B, Ling W, Lyn-Cook BD, Kadlubar FF, Sadée W, Huang Y. Cystine-glutamate transporter SLC7A11 mediates resistance to geldanamycin but not to 17-(allylamino)-17-demethoxygeldanamycin. Mol Pharmacol 2007; 72:1637-46. [PMID: 17875604 DOI: 10.1124/mol.107.039644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cystine-glutamate transporter SLC7A11 has been implicated in chemoresistance, by supplying cystine to the cell for glutathione maintenance. In the NCI-60 cell panel, SLC7A11 expression shows negative correlation with growth inhibitory potency of geldanamycin but not with its analog 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), which differs in the C-17 substituent in that the the methoxy moiety of geldanamycin is replaced by an amino group. Structure and potency analysis classified 18 geldanamycin analogs into two subgroups, "17-O/H" (C-17 methoxy or unsubstituted) and "17-N" (C-17 amino), showing distinct SLC7A11 correlation. We used three 17-O/H analogs and four 17-N analogs to test the role of the 17-substituents in susceptibility to SLC7A11-mediated resistance. In A549 cells, which are resistant to geldanamycin and strongly express SLC7A11, inhibition of SLC7A11 by (S)-4-carboxyphenylglycine or small interfering RNA increased sensitivity to 17-O/H, but had no effect on 17-N analogs. Ectopic expression of SLC7A11 in HepG2 cells, which are sensitive to geldanamycin and express low SLC7A11, confers resistance to geldanamycin, but not to 17-AAG. Antioxidant N-acetylcysteine, a precursor for glutathione synthesis, completely suppressed cytotoxic effects of 17-O/H but had no effect on 17-N analogs, whereas the prooxidant ascorbic acid had the opposite effect. Compared with 17-AAG, geldanamycin led to significantly more intracellular reactive oxygen species (ROS) production, which was quenched by addition of N-acetylcysteine. We conclude that SLC7A11 confers resistance selectively to 17-O/H (e.g., geldanamycin) but not to 17-N (e.g., 17-AAG) analogs partly as a result of differential dependence on ROS for cytotoxicity. Distinct mechanisms could significantly affect antitumor response and organ toxicity of these compounds in vivo.
Collapse
Affiliation(s)
- Ruqing Liu
- Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Daniel P Walsh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
15
|
Abstract
Chemogenomics involves the combination of a compound's effect on biological targets together with modern genomics technologies. The merger of these two methodologies is creating a new way to screen for compound-target interactions, as well as map chemical and biological space in a parallel fashion. The challenge associated with mining complex databases has initiated the development of many novel in silico tools to profile and analyze data in a systematic way. The ability to analyze the combinatorial effects of chemical libraries on biological systems will aid the discovery of new therapeutic entities. Chemogenomics provides a tool for the rapid validation of novel targeted therapeutics, where a specific molecular target is modulated by a small molecule. Along with targeted therapies comes the ability to discovery pathway nodes where a single molecular target might be an essential component of more than one disease. Several disease areas will benefit directly from the chemogenomics approach, the most advanced being cancer. A genetic loss-of-function screen can be modulated in the presence of a compound to search for genes or pathways involved in the compound's activity. Several recent papers highlight how chemogenomics is changing with RNA interference-based screening and shaping the discovery of new targeted therapies. Together, chemical and RNA interference-based screens open the door for a new way to discovery disease-associated genes and novel targeted therapies.
Collapse
Affiliation(s)
- L Alex Gaither
- Novartis Institutes for Biomedical Research, Developmental & Molecular Pathways, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Abstract
Inter-individual variability in drug response and the emergence of adverse drug reactions are main causes of treatment failure in cancer therapy. Recently, membrane transporters have been recognized as an important determinant of drug disposition, thereby affecting chemosensitivity and -resistance. Genetic factors contribute to inter-individual variability in drug transport and targeting. Therefore, pharmacogenetic studies of membrane transporters can lead to new approaches for optimizing cancer therapy. This review discusses genetic variations in efflux transporters of the ATP-binding cassette (ABC) family such as ABCB1 (MDR1, P-glycoprotein), ABCC1 (MRP1), ABCC2 (MRP2) and ABCG2 (BCRP), and uptake transporters of the solute carrier (SLC) family such as SLC19A1 (RFC1) and SLCO1B1 (SLC21A6), and their relevance to cancer chemotherapy. Furthermore, a pharmacogenomic approach is outlined, which using correlations between the growth inhibitory potency of anticancer drugs and transporter gene expression in multiple human cancer cell lines, has shown promise for determining the relevant transporters for any given drugs and predicting anticancer drug response.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
17
|
Huang Y, Blower PE, Liu R, Dai Z, Pham AN, Moon H, Fang J, Sadée W. Chemogenomic Analysis Identifies Geldanamycins as Substrates and Inhibitors of ABCB1. Pharm Res 2007; 24:1702-12. [PMID: 17457659 DOI: 10.1007/s11095-007-9300-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 03/19/2007] [Indexed: 01/23/2023]
Abstract
PURPOSE A prerequisite for geldanamycin (GA, NSC122750) to targeting heat shock protein 90 and inhibiting tumor growth is sufficient intracellular drug accumulation. We hypothesized that membrane transporters on tumor cells determine at least in part the response to GA analogues. MATERIALS AND METHODS To facilitate a systematic study of chemosensitivity across a group of GA analogues with similar chemical structures, we correlated mRNA expression profiles of most known transporters with growth inhibitory potencies of compounds in 60 tumor cell lines (NCI-60). We subsequently validated the gene-drug correlations using cytotoxicity and transport assays. RESULTS Geldanamycin analogues displayed a range of negative correlations coefficients with ABCB1 (MDR1, or P-glycoprotein) expression. Suppressing ABCB1 in multidrug resistant cells (NCI/ADR-RES and K562/DOX) and ABCB1-transfected cells (BC19) increased sensitivity to GA analogues, as expected for substrates. Moreover, ABCB1-mediated efflux of daunorubicin in K562/DOX cells could be blocked markedly by GA analogues in a dose-dependent fashion. The IC(50) values (half-maximum inhibition of daunorubicin efflux) were 5.5, 7.3 and 12 muM for macbecin II (NSC330500), 17-AAG (NSC330507) and GA, respectively. CONCLUSIONS These observations demonstrate that GA analogues are substrates as well as inhibitors of ABCB1, suggesting that drug interactions between GA analogues and other agents that are ABCB1 substrates may occur via ABCB1 in normal or tumor cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Antibiotics, Antineoplastic/pharmacology
- Benzoquinones/pharmacology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Humans
- K562 Cells
- Lactams, Macrocyclic/pharmacology
- Oligonucleotide Array Sequence Analysis
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hassan Khan MT, Ather A. Potentials of phenolic molecules of natural origin and their derivatives as anti-HIV agents. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:223-64. [PMID: 17875479 DOI: 10.1016/s1387-2656(07)13009-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identification of phenolic compounds and their derivatives interfering the several steps of the viral life cycle of the human immunodeficiency virus type 1 (HIV-1) is focused for the development of novel molecules for the treatment of AIDS. Several phenolic compounds isolated and characterized from natural sources have been studied in detail and found to exhibit inhibitory effects against different steps of the HIV-1 life cycle, including virus-cell fusion and virus absorption, reverse transcription, integration (IN) and proteolytic cleavage. In the review, we are summarizing some strong evidences demonstrating several phenolic molecules and their derivatives from natural sources display promising anti-HIV-1 activities. The anti-HIV compounds have been organized in this review according to their mechanism of action in the life cycle of HIV. We also mentioned some findings using in silico approaches, like virtual screening, docking, neural network, etc., and even the chemogenomics and/or functional genomics approaches could be useful for the quick identifying promising new lead anti-HIV molecules without having any other unwanted pharmacological effects. Plants having large amount of phenolic compounds, can be considered as strong sources of molecules for the treatment of HIV-1. Despite the continuous advances made in antiretroviral combination therapy, AIDS has become the leading cause of death in Africa and the fourth worldwide. Today, many research groups are exploring the bio- and chemo-diversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action.
Collapse
Affiliation(s)
- Mahmud Tareq Hassan Khan
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, University of Science and Technology Chittagong, Chittagong, Bangladesh.
| | | |
Collapse
|
19
|
Jensen EH, Lewis JM, McLoughlin JM, Alvarado MD, Daud A, Messina J, Enkemann S, Yeatman TJ, Sondak VK, Riker AI. Down-regulation of pro-apoptotic genes is an early event in the progression of malignant melanoma. Ann Surg Oncol 2006; 14:1416-23. [PMID: 17195911 DOI: 10.1245/s10434-006-9226-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Down-regulation of apoptosis genes has been implicated in the development and progression of malignant melanoma. We used cDNA microarray to evaluate pro-apoptotic gene expression comparing normal skin to melanoma (thin and thick), nodal disease and distant metastases. METHODS Twenty-eight specimens including skin (n = 1), thin melanoma (n = 6), thick melanoma (n = 7), nodal disease (n = 6), and distant metastases (n = 8), were harvested at the time of resection from 16 individuals. RNA was isolated and microarray analysis utilizing the Affymetrix GeneChip (54,000 genetic elements, U133A+B... levels) was performed. Mean level of expression was calculated for each gene within a sample group. Expression profiles were then compared between tissue groups. Student's t-test was used to determine variance in expression between groups. RESULTS We reviewed the expression of 54,000 genetic elements, of which 2,015 were found to have significantly altered expression. This represents 1,602 genes. Twenty-two pro-apoptotic genes were found to be down-regulated when compared to normal skin. Overall reduction was evaluated comparing normal skin to metastases with a range of 3.31-64.04-fold-decrease. When comparing the tissue types sequentially, the greatest fold-decrease in gene expression occurred when comparing skin to all melanomas (thin and thick) (p = 0.011). Subset analysis comparing normal skin to thin melanoma or thick melanoma, revealed the greatest component of overall reduction at the transition from thin to thick lesions (p = 0.003). CONCLUSION Sequential down-regulation of pro-apoptotic genes is associated with the progression of malignant melanoma. The greatest fold-decrease occurs in the transformation from thin to thick lesions.
Collapse
Affiliation(s)
- Eric H Jensen
- Department of Interdisciplinary Oncology, Cutaneous Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Stabile Research Building, Room 22043, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Huang Y, Sadée W. Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Lett 2006; 239:168-82. [PMID: 16169662 DOI: 10.1016/j.canlet.2005.07.032] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 12/14/2022]
Abstract
Membrane transporters play important roles in mediating chemosensitivity and -resistance of tumor cells. ABC transporters, such as ABCB1/MDR1, ABCC1/MRP1 and ABCG2/BCRP, are frequently associated with decreased cellular accumulation of anticancer drugs and multidrug resistance of tumors. SLC transporters, such as folate, nucleoside, and amino acid transporters, commonly increase chemosensitivity by mediating the cellular uptake of hydrophilic drugs. Ion channels and pumps variably affect sensitivity to anticancer therapy by modulating viability of tumor cells. A pharmacogenomic approach, using correlations between drug potency and transporter gene expression in multiple cancer cell lines, has shown promise for identifying potential drug-transporter relationships and predicting anticancer drug response, in an effort to optimize chemotherapy for individual patients.
Collapse
Affiliation(s)
- Ying Huang
- Food and Drug Administration, Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | |
Collapse
|
21
|
Jensen EH, McLoughlin JM, Yeatman TJ. Microarrays in gastrointestinal cancer: is personalized prediction of response to chemotherapy at hand? Curr Opin Oncol 2006; 18:374-80. [PMID: 16721134 DOI: 10.1097/01.cco.0000228745.56918.0f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Molecular profiling has proven to be an invaluable tool in cancer research. Although only in its infancy, microarray technology and gene arrays have led to substantial advances in tumor identification, staging and prediction of response. This review outlines some of the more recent advances in the use of microarrays as a novel means to advance the standard of care for patients with gastrointestinal cancers. RECENT FINDINGS Recent investigations have shown that gene expression profiles can be used to identify, stage, and guide therapeutic intervention in many gastrointestinal cancers. In cases of unknown primary disease, genetic fingerprints can be used to define the origin of the tumor in the majority of cases. Similarly, gene expression has been shown to allow for more accurate staging of patients with a variety of tumor types. Perhaps most exciting is early data that support the potential for microarray to guide therapeutic intervention by providing specific gene fingerprints which correlate with sensitivity to specific chemotherapy, biologic therapy, or other cancer treatments. SUMMARY Gene microarrays have become a powerful resource in cancer investigations. Individualized cancer care based on specific gene profiles is on the horizon for patients with gastrointestinal cancers.
Collapse
Affiliation(s)
- Eric H Jensen
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
22
|
Dreilich M, Lindkvist A, Dhar S, Paulsson-Karlsson Y, Brattström D, Nygren P, Rickardson L, Wagenius G, Bergqvist M. Telomerase activity is not a key determinant of sensitivity to standard cytotoxic drugs in human esophageal carcinoma cell lines. Anticancer Drugs 2006; 17:503-9. [PMID: 16702806 DOI: 10.1097/00001813-200606000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to investigate if basal telomerase activity levels may predict sensitivity to cytotoxic drugs in a panel of human esophageal carcinoma cell lines. The TRAPeze telomerase detection assay was used to investigate telomerase activity in the cell lines. Cytotoxic drug sensitivity for 20 standard cytotoxic agents was assessed using the fluorometric microculture cytotoxicity assay (FMCA). Telomerase activity was detected in all cell lines with a broad range of activity levels. Drug sensitivity also varied considerably between the cell lines. Except for a P value towards a correlation between mitoxantrone and telomerase activity (P=0.054), no statistically significant correlation was found between telomerase activity levels and sensitivity to investigated drugs, including key drugs such as cisplatin (P=0.9), 5-fluorouracil (P=0.8) and doxorubicin (P=0.54). We therefore conclude that basal telomerase activity level is not a key determinant of sensitivity to standard cytotoxic drugs in esophageal carcinoma cell lines.
Collapse
Affiliation(s)
- Martin Dreilich
- Department of Oncology, Radiology and Clinical Immunology, Section of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Over the past four decades, treatment of acute leukemia in children has made remarkable progress, from this disease being lethal to now achieving cure rates of 80% for acute lymphoblastic leukemia and 45% for acute myeloid leukemia. This progress is largely owed to the optimization of existing treatment modalities rather than the discovery of new agents. However, the annual number of patients with leukemia who experience relapse after initial therapy remains greater than that of new cases of most childhood cancers. The aim of pharmacogenetics is to develop strategies to personalize medications and tailor treatment regimens to individual patients, with the goal of enhancing efficacy and safety through better understanding of the person's genetic makeup. In this review, we summarize recent pharmacogenomic studies related to the treatment of pediatric acute leukemia. These include work using candidate-gene approaches, as well as genome-wide studies using haplotype mapping and gene expression profiling. These strategies illustrate the promise of pharmacogenomics to further advance the treatment of human cancers, with childhood leukemia serving as a paradigm.
Collapse
Affiliation(s)
- Meyling H Cheok
- St. Jude Children's Research Hospital, Department of Pharmaceutical Sciences, Memphis, TN 38105, USA.
| | | | | |
Collapse
|
24
|
Chen W, Foran DJ. Advances in cancer tissue microarray technology: Towards improved understanding and diagnostics. Anal Chim Acta 2006; 564:74-81. [PMID: 17723364 PMCID: PMC2583100 DOI: 10.1016/j.aca.2005.11.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Over the past few years, tissue microarray (TMA) technology has been established as a standard method for assessing the expression of proteins or genes across large sets of tissue specimens. It is being adopted increasingly among leading research institutions around the world and utilized in cancer research in parallel with the cDNA microarray technology. This article summarizes various aspects of cancer understanding and diagnostics in which TMA has had great impact. Although tremendous advances continue to be made to facilitate imaging and archiving of TMA specimens, automatic evaluation and quantitative analysis of TMA still remains an important challenge for modern investigators.
Collapse
Affiliation(s)
- Wenjin Chen
- The Center for Biomedical Imaging & Informatics, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, United States.
| | | |
Collapse
|
25
|
Cao X, Yu LX, Barbaciru C, Landowski CP, Shin HC, Gibbs S, Miller HA, Amidon GL, Sun D. Permeability Dominates in Vivo Intestinal Absorption of P-gp Substrate with High Solubility and High Permeability. Mol Pharm 2005; 2:329-40. [PMID: 16053336 DOI: 10.1021/mp0499104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three purposes are presented in this study: (1) to study the in vivo regional dependent intestinal absorption of a P-gp substrate with high solubility and high permeability, (2) to study the gene expression difference in the various regions of the intestine, and (3) to study the contributions of P-gp or any other transporters for the absorption of a P-gp substrate. The in vivo permeability of verapamil and propranolol were determined by single-pass in situ intestinal perfusion in rat. The gene expression profiles were measured using Affymetrix GeneChip. Correlation analysis between drug in vivo permeability and expression of 3500 genes was performed with nonparametric bootstrap and ANOVA analysis. The permeability of verapamil and propranolol did not demonstrate regional dependency even though significant differences in gene expression were observed in various regions of the intestine. Verapamil permeability significantly correlates with propranolol permeability in both jejunum and ileum, but did not correlate with the permeability of other hydrophilic compounds (valacyclovir, acyclovir, and phenylalanine). Four different regions (duodenum, jejunum, ileum, and colon) showed distinct gene expression patterns with more than 70-499 genes showing at least 5-fold expression differences. Interestingly, P-gp expression is gradually increased by 6-fold from the duodenum to colon. Despite the distinct gene expression patterns in the various regions of the intestine, verapamil permeability did not correlate with any gene expression from 3500 expressed genes in the intestine. A 2-6-fold P-gp expression difference did not seem to associate verapamil permeability in the various intestinal regions in vivo. These data suggest that P-gp plays a minimal role in the in vivo intestinal absorption process of verapamil with high water solubility and high membrane permeability. The intestinal absorption of verapamil in vivo is primarily dominated by its high permeability. However, it is important to note that the findings in this paper do not undermine the importance of P-gp in oral drug bioavailability, drug disposition from the liver, drug efflux from the blood-brain barrier, and drug-drug interaction.
Collapse
Affiliation(s)
- Xianhua Cao
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wulfkuhle J, Espina V, Liotta L, Petricoin E. Genomic and proteomic technologies for individualisation and improvement of cancer treatment. Eur J Cancer 2005; 40:2623-32. [PMID: 15541963 DOI: 10.1016/j.ejca.2004.05.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 05/20/2004] [Indexed: 01/03/2023]
Abstract
The development of microarray-based technologies for characterising tumours, both at the genomic and proteomic levels, has had a significant impact on the field of oncology. Gene expression profiling of various human tumour tissues has led to the identification of expression patterns related to disease outcome and drug resistance, as well as to the discovery of new therapeutic targets and insights into disease pathogenesis. Protein microarray technologies, such as reverse-phase protein arrays, provide the unique opportunity to profile tissues and assess the activity of signalling pathways within isolated cell populations. This technology can be used to identify patients likely to benefit from specific treatment modalities and also to monitor therapeutic response in samples obtained during and after treatment. Routine application of genomic and proteomic microarray technologies in clinical practice will require significant efforts to standardise the techniques, controls and reference standards, and analytical tools used. Extensive, independent validation using large, statistically-powered datasets will also be necessary. Inclusion of concomitant genomic and proteomic-based molecular profiling techniques into clinical trial protocols will bring us closer to the reality of patient-tailored therapy.
Collapse
Affiliation(s)
- Julia Wulfkuhle
- NCI/FDA Clinical Proteomics Program, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
27
|
Huang Y, Blower PE, Yang C, Barbacioru C, Dai Z, Zhang Y, Xiao JJ, Chan KK, Sadée W. Correlating gene expression with chemical scaffolds of cytotoxic agents: ellipticines as substrates and inhibitors of MDR1. THE PHARMACOGENOMICS JOURNAL 2005; 5:112-25. [PMID: 15668728 DOI: 10.1038/sj.tpj.6500297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To facilitate a systematic study of chemoresistance across diverse classes of anticancer drug candidates, we performed correlation analyses between cytotoxic drug potency and gene expression in 60 tumor cell lines (NCI-60; NCI-National Cancer Institute). Ellipticine analogs displayed a range of correlation coefficients (r) with MDR1 (ABCB1, encoding multidrug resistance (MDR) protein MDR1 or P-glycoprotein). To determine MDR1 interactions of five ellipticines with diverse MDR1-r values, we employed MDR1-transport and cytotoxicity assays, using MDR1 inhibitors and siRNA-mediated MDR1 downregulation, in MDR1-overexpressing cells. Ellipticines with negative correlations-indicative of MDR1-mediated resistance-were shown to be MDR1 substrates, whereas those with neutral or positive correlations served as MDR1 inhibitors, which escape MDR1-mediated chemoresistance. Correlation with additional genes in the NCI-60 confirmed topoisomerases as ellipticine targets, but suggested distinct mechanisms of action and chemoresistance among them, providing a guide for selecting optimal drug candidates.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Algorithms
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Survival/drug effects
- Cluster Analysis
- DNA Probes
- Databases, Factual
- Down-Regulation/drug effects
- Ellipticines/metabolism
- Ellipticines/pharmacology
- Flow Cytometry
- Fluorescent Dyes
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, MDR/genetics
- Humans
- Medical Informatics
- Paclitaxel/toxicity
- Principal Component Analysis
- RNA, Small Interfering/genetics
- Reproducibility of Results
- Structure-Activity Relationship
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Huang
- Department of Pharmacology, Comprehensive Cancer Center, College of Medicine and Public Health, The Ohio State University, Columbus, OH 4321-1239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Proteomics, the global analysis of expressed cellular proteins, provides powerful tools for the detailed comparison of proteins from normal and neoplastic tissue. In particular, cancer cell culture models are suited for applying proteomics techniques, such as two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry, to identify specific protein expression profiles and/or proteins that may be associated with a defined phenotype of the cancer cells. As an instance of such an application of proteomics techniques, the detailed proteome analyses of different drug-resistant and thermoresistant cancer cell lines will be discussed. Finally, the potential roles of newly identified factors in a distinct biological mechanism have to be proven by functional studies. This experimental validation strategy will be discussed for two different factors identified by 2D-PAGE analyses of drug-resistant carcinoma cell lines, the "transporter associated with antigen presentation 1" (TAP1) and 14-3-3sigma.
Collapse
Affiliation(s)
- Hermann Lage
- Humboldt University Berlin, Charité Campus Mitte, Institute of Pathology, Schumannstr. 20121, D-10117 Berlin, Germany.
| |
Collapse
|
29
|
Huang Y, Anderle P, Bussey KJ, Barbacioru C, Shankavaram U, Dai Z, Reinhold WC, Papp A, Weinstein JN, Sadée W. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 2004; 64:4294-301. [PMID: 15205344 DOI: 10.1158/0008-5472.can-03-3884] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane transporters and channels (collectively the transportome) govern cellular influx and efflux of ions, nutrients, and drugs. We used oligonucleotide arrays to analyze gene expression of the transportome in 60 human cancer cell lines used by the National Cancer Institute for drug screening. Correlating gene expression with the potencies of 119 standard anticancer drugs identified known drug-transporter interactions and suggested novel ones. Folate, nucleoside, and amino acid transporters positively correlated with chemosensitivity to their respective drug substrates. We validated the positive correlation between SLC29A1 (nucleoside transporter ENT1) expression and potency of nucleoside analogues, azacytidine and inosine-glycodialdehyde. Application of an inhibitor of SLC29A1, nitrobenzylmercaptopurine ribonucleoside, significantly reduced the potency of these two drugs, indicating that SLC29A1 plays a role in cellular uptake. Three ABC efflux transporters (ABCB1, ABCC3, and ABCB5) showed significant negative correlations with multiple drugs, suggesting a mechanism of drug resistance. ABCB1 expression correlated negatively with potencies of 19 known ABCB1 substrates and with Baker's antifol and geldanamycin. Use of RNA interference reduced ABCB1 mRNA levels and concomitantly increased sensitivity to these two drugs, as expected for ABCB1 substrates. Similarly, specific silencing of ABCB5 by small interfering RNA increased sensitivity to several drugs in melanoma cells, implicating ABCB5 as a novel chemoresistance factor. Ion exchangers, ion channels, and subunits of proton and sodium pumps variably correlated with drug potency. This study identifies numerous potential drug-transporter relationships and supports a prominent role for membrane transport in determining chemosensitivity. Measurement of transporter gene expression may prove useful in predicting anticancer drug response.
Collapse
Affiliation(s)
- Ying Huang
- Program of Pharmacogenomics, Department of Pharmacology, College of Medicine and Public Health, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003; 4. [PMCID: PMC2447311 DOI: 10.1002/cfg.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Clynes M, O'Connor R, O'Driscoll L, Daly C, Meleady P. Challenges in molecular analysis for individualized cancer therapy. Drug Discov Today 2003; 8:531. [PMID: 12821298 DOI: 10.1016/s1359-6446(03)02730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Ireland
| | | | | | | | | |
Collapse
|