1
|
Arimbasseri AG, Shukla A, Pradhan AK, Bhargava P. Increased histone acetylation is the signature of repressed state on the genes transcribed by RNA polymerase III. Gene 2024; 893:147958. [PMID: 37923095 DOI: 10.1016/j.gene.2023.147958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Several covalent modifications are found associated with the transcriptionally active chromatin regions constituted by the genes transcribed by RNA polymerase (pol) II. Pol III-transcribed genes code for the small, stable RNA species, which participate in many cellular processes, essential for survival. Pol III transcription is repressed under most of the stress conditions by its negative regulator Maf1. We found that most of the histone acetylations increase with starvation-induced repression on several genes transcribed by the yeast pol III. On one of these genes, SNR6 (coding for the U6snRNA), a strongly positioned nucleosome in the gene upstream region plays regulatory role under repression. On this nucleosome, the changes in H3K9 and H3K14 acetylations show different dynamics. During repression, acetylation levels on H3K9 show steady increase whereas H3K14 acetylation increases with a peak at 40 min after which levels reduce. Both the levels settle by 2 hr to a level higher than the active state, which revert to normal levels with nutrient repletion. The increase in H3 acetylations is seen in the mutants reported to show reduced SNR6 transcription but not in the maf1Δ cells. This increase on a regulatory nucleosome may be part of the signaling mechanisms, which prepare cells for the stress-related quick repression as well as reactivation. The contrasting association of the histone acetylations with pol II and pol III transcription may be an important consideration to make in research studies focused on drug developments targeting histone modifications.
Collapse
Affiliation(s)
| | - Ashutosh Shukla
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Ashis Kumar Pradhan
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
2
|
WP1234—A Novel Anticancer Agent with Bifunctional Activity in a Glioblastoma Model. Biomedicines 2022; 10:biomedicines10112799. [DOI: 10.3390/biomedicines10112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis. Despite significant progress in drug development, the blood–brain barrier (BBB) continues to limit the use of novel chemotherapeutics. Thus, our attention has been focused on the design, synthesis, and testing of small-molecule anticancer agents that are able to penetrate the BBB. One such compound is the D-glucose analog, 2-deoxy-D-glucose (2-DG), which inhibits glycolysis and induces GBM cell death. 2-DG has already been tested in clinical trials but was not approved as a drug, in part due to inadequate pharmacokinetics. To improve the pharmacokinetic properties of 2-DG, a series of novel derivatives was synthesized. Herein, we report the biological effects of WP1234, a 2-ethylbutyric acid 3,6-diester of 2-DG that can potentially release 2-ethylbutyrate and 2-DG inside the cells when metabolized. Using biochemical assays and examining cell viability, proliferation, protein synthesis, and apoptosis induction, we assessed the cytotoxic potential of WP1234. WP1234 significantly reduced the viability of GBM cells in a dose- and time-dependent manner. The lactate and ATP synthesis assays confirmed the inhibition of glycolysis elicited by released 2-DG. Furthermore, an evaluation of histone deacetylases (HDAC) activity revealed that the 2-ethylbutyrate action resulted in HDAC inhibition. Overall, these results demonstrated that WP1234 is a bifunctional molecule with promising anticancer potential. Further experiments in animal models and toxicology studies are needed to evaluate the efficacy and safety of this new 2-DG derivative.
Collapse
|
3
|
Dushanan R, Weerasinghe S, Dissanayake DP, Senthilinithy R. Implication of Ab Initio, QM/MM, and molecular dynamics calculations on the prediction of the therapeutic potential of some selected HDAC inhibitors. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2097672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ramachandren Dushanan
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| | - Samantha Weerasinghe
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Rajendram Senthilinithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, Nugegoda, Sri Lanka
| |
Collapse
|
4
|
Pająk B. Looking for the Holy Grail—Drug Candidates for Glioblastoma Multiforme Chemotherapy. Biomedicines 2022; 10:biomedicines10051001. [PMID: 35625738 PMCID: PMC9138518 DOI: 10.3390/biomedicines10051001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest and the most heterogeneous brain cancer. The median survival time of GBM patients is approximately 8 to 15 months after initial diagnosis. GBM development is determined by numerous signaling pathways and is considered one of the most challenging and complicated-to-treat cancer types. Standard GBM therapy consist of surgery followed by radiotherapy or chemotherapy, and combined treatment. Current standard of care (SOC) does not offer a significant chance for GBM patients to combat cancer, and the selection of available drugs is limited. For almost 20 years, there has been only one drug, Temozolomide (TMZ), approved as a first-line GBM treatment. Due to the limited efficacy of TMZ and the high rate of resistant patients, the implementation of new chemotherapeutics is highly desired. However, due to the unique properties of GBM, many challenges still need to be overcome before reaching a ‘breakthrough’. This review article describes the most recent compounds introduced into clinical trials as drug candidates for GBM chemotherapy.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Genetics and Molecular Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
5
|
Synergistic Anticancer Effect of Glycolysis and Histone Deacetylases Inhibitors in a Glioblastoma Model. Biomedicines 2021; 9:biomedicines9121749. [PMID: 34944565 PMCID: PMC8698815 DOI: 10.3390/biomedicines9121749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Over the last decade, we have seen tremendous progress in research on 2-deoxy-D-glucose (2-DG) and its analogs. Clinical trials of 2-DG have demonstrated the challenges of using 2-DG as a monotherapy, due to its poor drug-like characteristics, leading researchers to focus on improving its bioavailability to tissue and organs. Novel 2-DG analogs such as WP1122 and others have revived the old concept of glycolysis inhibition as an effective anticancer strategy. Combined with other potent cytotoxic agents, inhibitors of glycolysis could synergistically eliminate cancer cells. We focused our efforts on the development of new combinations of anticancer agents coupled with 2-DG and its derivatives, targeting glioblastoma, which is in desperate need of novel approaches and therapeutic options and is particularly suited to glycolysis inhibition, due to its reliance on aerobic glycolysis. Herein, we present evidence that a combined treatment of 2-DG analogs and modulation of histone deacetylases (HDAC) activity via HDAC inhibitors (sodium butyrate and sodium valproate) exerts synergistic cytotoxic effects in glioblastoma U-87 and U-251 cells and represents a promising therapeutic strategy.
Collapse
|
6
|
Zhang W, Guan Y, Bayliss G, Zhuang S. Class IIa HDAC inhibitor TMP195 alleviates lipopolysaccharide-induced acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F1015-F1026. [PMID: 33017186 DOI: 10.1152/ajprenal.00405.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is associated with high mortality rates, but clinicians lack effective treatments except supportive care or renal replacement therapies. Recently, histone deacetylase (HDAC) inhibitors have been recognized as potential treatments for acute kidney injury and sepsis in animal models; however, the adverse effect generated by the use of pan inhibitors of HDACs may limit their application in people. In the present study, we explored the possible renoprotective effect of a selective class IIa HDAC inhibitor, TMP195, in a murine model of SA-AKI induced by lipopolysaccharide (LPS). Administration of TMP195 significantly reduced increased serum creatinine and blood urea nitrogen levels and renal damage induced by LPS; this was coincident with reduced expression of HDAC4, a major isoform of class IIa HDACs, and elevated histone H3 acetylation. TMP195 treatment following LPS exposure also reduced renal tubular cell apoptosis and attenuated renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, two biomarkers of tubular injury. Moreover, LPS exposure resulted in increased expression of BAX and cleaved caspase-3 and decreased expression of Bcl-2 and bone morphogenetic protein-7 in vivo and in vitro; TMP195 treatment reversed these responses. Finally, TMP195 inhibited LPS-induced upregulation of multiple proinflammatory cytokines/chemokines, including intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-1β, and accumulation of inflammatory cells in the injured kidney. Collectively, these data indicate that TMP195 has a powerful renoprotective effect in SA-AKI by mitigating renal tubular cell apoptosis and inflammation and suggest that targeting class IIa HDACs might be a novel therapeutic strategy for the treatment of SA-AKI that avoids the unintended adverse effects of a pan-HDAC inhibitor.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yinjie Guan
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Sharma MC, Sharma S. Molecular modeling study of uracil-based hydroxamic acids-containing histone deacetylase inhibitors. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Krishna S, Lakra AD, Shukla N, Khan S, Mishra DP, Ahmed S, Siddiqi MI. Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation. J Biomol Struct Dyn 2019; 38:3280-3295. [DOI: 10.1080/07391102.2019.1654925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shagun Krishna
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amar Deep Lakra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nidhi Shukla
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Khan
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Durga Prasad Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakil Ahmed
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
9
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
10
|
Halaburková A, Jendželovský R, Kovaľ J, Herceg Z, Fedoročko P, Ghantous A. Histone deacetylase inhibitors potentiate photodynamic therapy in colon cancer cells marked by chromatin-mediated epigenetic regulation of CDKN1A. Clin Epigenetics 2017; 9:62. [PMID: 28603560 PMCID: PMC5465463 DOI: 10.1186/s13148-017-0359-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hypericin-mediated photodynamic therapy (HY-PDT) has recently captured increased attention as an alternative minimally invasive anticancer treatment, although cancer cells may acquire resistance. Therefore, combination treatments may be necessary to enhance HY-PDT efficacy. Histone deacetylase inhibitors (HDACis) are often used in combination treatments due to their non-genotoxic properties and epigenetic potential to sensitize cells to external stimuli. Therefore, this study attempts for the first time to investigate the therapeutic effects of HDACis in combination with visible light-mediated PDT against cancer. Specifically, the colorectal cancer cell model was used due to its known resistance to HY-PDT. RESULTS Two chemical groups of HDACis were tested in combination with HY-PDT: the hydroxamic acids Saha and Trichostatin A, and the short-chain fatty acids valproic acid and sodium phenylbutyrate (NaPB), as inhibitors of all-class versus nuclear HDACs, respectively. The selected HDACis manifest a favorable clinical toxicity profile and showed similar potencies and mechanisms in intragroup comparisons but different biological effects in intergroup analyses. HDACi combination with HY-PDT significantly attenuated cancer cell resistance to treatment and caused the two HDACi groups to become similarly potent. However, the short-chain fatty acids, in combination with HY-PDT, showed increased selectivity towards inhibition of HDACs versus other key epigenetic enzymes, and NaPB induced the strongest expression of the otherwise silenced tumor suppressor CDKN1A, a hallmark gene for HDACi-mediated chromatin modulation. Epigenetic regulation of CDKN1A by NaPB was associated with histone acetylation at enhancer and promoter elements rather than histone or DNA methylation at those or other regulatory regions of this gene. Moreover, NaPB, compared to the other HDACis, caused milder effects on global histone acetylation, suggesting a more specific effect on CDKN1A chromatin architecture relative to global chromatin structure. The mechanism of NaPB + HY-PDT was P53-dependent and likely driven by the HY-PDT rather than the NaPB constituent. CONCLUSIONS Our results show that HDACis potentiate the antitumor efficacy of HY-PDT in colorectal cancer cells, overcoming their resistance to this drug and epigenetically reactivating the expression of CDKN1A. Besides their therapeutic potential, hypericin and these HDACis are non-genotoxic constituents of dietary agents, hence, represent interesting targets for investigating mechanisms of dietary-based cancer prevention.
Collapse
Affiliation(s)
- Andrea Halaburková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Ján Kovaľ
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Peter Fedoročko
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| |
Collapse
|
11
|
Abnormal histone acetylation of CD8 + T cells in patients with severe aplastic anemia. Int J Hematol 2016; 104:540-547. [PMID: 27485471 DOI: 10.1007/s12185-016-2061-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/18/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023]
Abstract
Severe aplastic anemia (SAA) is a rare autoimmune disease characterized by severe pancytopenia and bone marrow failure, which is caused by activated T lymphocytes. In the present study, we evaluated histone H3 acetylation levels of bone marrow CD8+ T cells in SAA patients, and analyzed its correlation with clinical condition parameters. We found that the percentages of CD8+ T cell histone H3 acetylation in patients with untreated SAA, recovering SAA (R-SAA) and normal control, were 1.21 ± 0.08, 1.05 ± 0.36, and 1.00 ± 0.41, respectively, with no significant statistical differences. However, the amount of CD8+ T cell histone H3 acetylation from untreated SAA was 176.21 ± 32.22 μg/mg protein, which was significantly higher than that of complete response (CR)-SAA (104.29 ± 62.06 μg/mg protein) and normal control (133.94 ± 56.27 μg/mg protein) (P < 0.05) groups. Moreover, histone H3 acetylation amount of CD8+ T cell was significantly and negatively correlated with absolute neutrophil count, proportion of reticulocytes, ratio of CD4+ to CD8+ T cell in peripheral blood, and percentage of bone marrow erythroid (P < 0.05). To some extent, it also negatively correlated with hemoglobin level, platelet count, percentage of bone marrow granulocyte, and megakaryocyte count. Abnormal histone H3 acetylation of CD8+ T cells may thus play a role in the immune pathogenesis of SAA.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Recent advances in epigenetics indicate the involvement of several epigenetic modifications in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to summarize our understanding of recent advances in the epigenetic regulation of AKI and provide mechanistic insight into the role of acetylation, methylation, and microRNA expression in the pathological processes of AKI. RECENT FINDINGS Enhancement of protein acetylation by pharmacological inhibition of histone deacetylases leads to more severe tubular injury and impairment of renal structural and functional recovery. The changes in promoter DNA methylation occur in the kidney with ischemia/reperfusion. microRNA expression is associated with regulation of both renal injury and regeneration after AKI. SUMMARY Recent studies on epigenetic regulation indicate that acetylation, methylation, and microRNA expression are critically implicated in the pathogenesis of AKI. Strategies targeting epigenetic processes may hold a therapeutic potential for patients with AKI.
Collapse
|
13
|
Abstract
Lysine acetylation in proteins is one of the most abundant posttranslational modifications in eukaryotic cells. The dynamic homeostasis of lysine acetylation and deacetylation is dictated by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). Important substrates for HATs and HDACs are histones, where lysine acetylation generally leads to an open and transcriptionally active chromatin conformation. Histone deacetylation forces the compaction of the chromatin with subsequent inhibition of transcription and reduced gene expression. Unbalanced HAT and HDAC activity, and therefore aberrant histone acetylation, has been shown to be involved in tumorigenesis and progression of malignancy in different types of cancer. Therefore, the development of HDAC inhibitors (HDIs) as therapeutic agents against cancer is of great interest. However, treatment with HDIs can also affect the acetylation status of many other non-histone proteins which play a role in different pathways including angiogenesis, cell cycle progression, autophagy and apoptosis. These effects have led HDIs to become anticancer agents, which can initiate apoptosis in tumor cells. Hematological malignancies in particular are responsive to HDIs, and four HDIs have already been approved as anticancer agents. There is a strong interest in finding adequate biomarkers to predict the response to HDI treatment. This chapter provides information on how to assess HDAC activity in vitro and determine the potency of HDIs on different HDACs. It also gives information on how to analyze cellular markers following HDI treatment and to analyze tissue biopsies from HDI-treated patients. Finally, a protocol is provided on how to detect HDI sensitivity determinants in human cells, based on a pRetroSuper shRNA screen upon HDI treatment.
Collapse
Affiliation(s)
- Heidi Olzscha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Mina E Bekheet
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Semira Sheikh
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Nicholas B La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
14
|
Andreoli F, Del Rio A. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes. Comput Struct Biotechnol J 2015; 13:358-65. [PMID: 26082827 PMCID: PMC4459771 DOI: 10.1016/j.csbj.2015.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Federico Andreoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti, 101 40129 Bologna, Italy
| |
Collapse
|
15
|
Kwon SJ, Lee SK, Na J, Lee SA, Lee HS, Park JH, Chung JK, Youn H, Kwon J. Targeting BRG1 chromatin remodeler via its bromodomain for enhanced tumor cell radiosensitivity in vitro and in vivo. Mol Cancer Ther 2014; 14:597-607. [PMID: 25504753 DOI: 10.1158/1535-7163.mct-14-0372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy treats cancer by inducing DNA double-strand breaks (DSB) in tumor cells using ionizing radiation. However, DNA repair in tumor cells often leads to radioresistance and unsuccessful outcome. Inhibition of DNA repair by targeting repair proteins can increase radiosensitivity of tumor cells. The BRG1 chromatin remodeling enzyme assists DSB repair by stimulating γ-H2AX formation and BRG1 binding to acetylated histones at DSBs via bromodomain (BRD) is critical for this activity. Here, we show that ectopic expression of BRG1-BRD inhibited γ-H2AX and DSB repair after irradiation and increased the radiosensitivity in various human cancer cells, including HT29 colon cancer. Dimerization of BRG1-BRD, increasing its chromatin binding affinity, aggravated the defects in γ-H2AX and DSB repair and further enhanced the radiosensitivity. While little affecting the upstream ATM activation, BRG1-BRD in irradiated HT29 cells inhibited the recruitment of 53BP1 to damaged chromatin, the downstream event of γ-H2AX, and compromised the G2-M checkpoint and increased apoptosis. Importantly, in a xenograft mouse model, BRG1-BRD increased the radiosensitivity of HT29 tumors, which was further enhanced by dimerization. These data suggest that BRG1-BRD radiosensitizes tumor cells by a dominant negative activity against BRG1, which disrupts γ-H2AX and its downstream 53BP1 pathways, leading to inefficient DNA repair, G2-M checkpoint defect, and increased apoptosis. This work therefore identifies BRG1-BRD as a novel tumor radiosensitizer and its action mechanism, providing the first example of chromatin remodeler as a target for improving cancer radiotherapy.
Collapse
Affiliation(s)
- Su-Jung Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Seul-Ki Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Juri Na
- Department of Nuclear Medicine and Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Shin-Ai Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Han-Sae Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Ji-Hye Park
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine and Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine and Biomedical Sciences, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Tumor Microenvironment Global Core Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Cancer Imaging Center, Seoul National University Hospital, Jongno-Gu, Seoul, Korea.
| | - Jongbum Kwon
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
16
|
Cheng HT, Hung WC. Inhibition of proliferation, sprouting, tube formation and Tie2 signaling of lymphatic endothelial cells by the histone deacetylase inhibitor SAHA. Oncol Rep 2013; 30:961-7. [PMID: 23754070 DOI: 10.3892/or.2013.2523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/27/2013] [Indexed: 11/05/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors exert potent inhibitory effects on various types of human cancer. The pioneer drug suberoylanilide hydroxamic acid (SAHA) is currently used in the clinic for cancer treatment. However, the effect of SAHA on tumor lymphangiogenesis is unclear. We recently showed that SAHA suppresses the expression and production of pro-lymphagenic factor vascular endothelial growth factor‑C (VEGF-C) in breast cancer cells. In the present study, the effect of SAHA on lymphatic endothelial cells (LECs) was examined. We generated a lymphatic-like endothelial cell line (named FP01) by overexpressing the master LEC transcription factor PROX1 in EA.hy926 endothelial cells. This cell line exhibited a gene expression pattern and phenotype similar to primarily cultured LECs. SAHA inhibited cell cycle progression and proliferation of FP01 cells. In addition, SAHA suppressed sprouting and tube formation in these cells. Moreover, SAHA attenuated the angiopoietin (Ang)/Tie signaling pathway which plays important roles in the regulation of LEC function. FP01 cells expressed Ang1, Ang2, Tie1 and Tie2, and SAHA dose-dependently reduced the expression of Tie2 in these cells. Tie2 promoter activity was attenuated by SAHA indicating a transcriptional repression. Importantly, Tie2 protein was significantly reduced by SAHA at the concentration in which no alteration of Tie2 mRNA was detected. We found that SAHA enhanced Tie2 protein degradation via the ubiquitin-proteasome pathway, and the expression of c-Cbl, the E3 ligase for Tie2 ubiquitination, rapidly increased after SAHA treatment. Knockdown of c-Cbl reversed SAHA‑induced Tie2 protein degradation. Taken together, our results demonstrate that SAHA impairs the proliferation, sprouting and tube formation of LECs and attenuates Ang/Tie signaling in LECs by downregulating Tie-2 via transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hsueh-Tsen Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
| | | |
Collapse
|
17
|
New M, Olzscha H, Liu G, Khan O, Stimson L, McGouran J, Kerr D, Coutts A, Kessler B, Middleton M, La Thangue NB. A regulatory circuit that involves HR23B and HDAC6 governs the biological response to HDAC inhibitors. Cell Death Differ 2013; 20:1306-16. [PMID: 23703321 DOI: 10.1038/cdd.2013.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) is an emergent anticancer target, and HR23B is a biomarker for response to HDAC inhibitors. We show here that HR23B has impacts on two documented effects of HDAC inhibitors; HDAC inhibitors cause apoptosis in cells expressing high levels of HR23B, whereas in cells with low level expression, HDAC inhibitor treatment is frequently associated with autophagy. The mechanism responsible involves the interaction of HDAC6 with HR23B, which downregulates HR23B and thereby reduces the level of ubiquitinated substrates targeted to the proteasome, ultimately desensitising cells to apoptosis. Significantly, the ability of HDAC6 to downregulate HR23B occurs independently of its deacetylase activity. An analysis of the HDAC6 interactome identified HSP90 as a key effector of HDAC6 on HR23B levels. Our results define a regulatory mechanism that involves the interplay between HR23B and HDAC6 that influences the biological outcome of HDAC inhibitor treatment.
Collapse
Affiliation(s)
- M New
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, off Roosevelt Drive, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
HDACs (histone deacetylases) are a group of enzymes that deacetylate histones as well as non-histone proteins. They are known as modulators of gene transcription and are associated with proliferation and differentiation of a variety of cell types and the pathogenesis of some diseases. Recently, HDACs have come to be considered crucial targets in various diseases, including cancer, interstitial fibrosis, autoimmune and inflammatory diseases, and metabolic disorders. Pharmacological inhibitors of HDACs have been used or tested to treat those diseases. In the present review, we will examine the application of HDAC inhibitors in a variety of diseases with the focus on their effects of anti-cancer, fibrosis, anti-inflammatory, immunomodulatory activity and regulating metabolic disorders.
Collapse
|
19
|
Inhibition of PCAF histone acetyltransferase, cytotoxicity and cell permeability of 2-acylamino-1-(3- or 4-carboxy-phenyl)benzamides. Molecules 2012; 17:13116-31. [PMID: 23128090 PMCID: PMC6268785 DOI: 10.3390/molecules171113116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/12/2012] [Accepted: 11/01/2012] [Indexed: 01/30/2023] Open
Abstract
Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyltransferases (HATs) in the cell and they also have relevance in oncology. We synthesized a series of 2-acylamino-1-(3- or 4-carboxyphenyl)benzamides 8–19 bearing C6, C8, C10, C12, C14, and C16 acyl chains at the 2-amino position of 2-aminobenzoic acid. Enzyme inhibition of these compounds was investigated using in vitro PCAF HAT assays. The inhibitory activities of compounds 8–10, 16, and 19 were similar to that of anacardic acid, and 17 was found to be more active than anacardic acid at 100 μM. Compounds 11–15 showed the low inhibitory activity on PCAF HAT. The cytotoxicity of the synthesized compounds was evaluated by SRB (sulforhodamine B) assay against seven human cancer cell lines: HT-29 (colon), HCT-116 (colon), MDA-231 (breast), A549 (lung), Hep3B (hepatoma), HeLa (cervical) and Caki (kidney) and one normal cell line (HSF). Compound 17 was more active than anacardic acid against human colon cancer (HCT 116, IC50: 29.17 μM), human lung cancer (A549, IC50: 32.09 μM) cell lines. 18 was more active than anacardic acid against human colon cancer (HT-29, IC50: 35.49 μM and HCT 116, IC50: 27.56 μM), human lung cancer (A549, IC50: 30.69 μM), and human cervical cancer (HeLa, IC50: 34.41 μM) cell lines. The apparent permeability coefficient (Papp, cm/s) values of two compounds (16 and 17) were evaluated as 68.21 and 71.48 × 10−6 cm/s by Caco-2 cell permeability assay.
Collapse
|
20
|
New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 2012; 6:637-56. [PMID: 23141799 DOI: 10.1016/j.molonc.2012.09.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/30/2012] [Indexed: 12/19/2022] Open
Abstract
Abnormal epigenetic control is a common early event in tumour progression, and aberrant acetylation in particular has been implicated in tumourigenesis. One of the most promising approaches towards drugs that modulate epigenetic processes has been seen in the development of inhibitors of histone deacetylases (HDACs). HDACs regulate the acetylation of histones in nucleosomes, which mediates changes in chromatin conformation, leading to regulation of gene expression. HDACs also regulate the acetylation status of a variety of other non-histone substrates, including key tumour suppressor proteins and oncogenes. Histone deacetylase inhibitors (HDIs) are potent anti-proliferative agents which modulate acetylation by targeting histone deacetylases. Interest is increasing in HDI-based therapies and so far, two HDIs, vorinostat (SAHA) and romidepsin (FK228), have been approved for treating cutaneous T-cell lymphoma (CTCL). Others are undergoing clinical trials. Treatment with HDIs prompts tumour cells to undergo apoptosis, and cell-based studies have shown a number of other outcomes to result from HDI treatment, including cell-cycle arrest, cell differentiation, anti-angiogenesis and autophagy. However, our understanding of the key pathways through which HDAC inhibitors affect tumour cell growth remains incomplete, which has hampered progress in identifying malignancies other than CTCL which are likely to respond to HDI treatment.
Collapse
Affiliation(s)
- Maria New
- Department of Oncology, Laboratory of Cancer Biology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|
21
|
Park WJ, Ma E. Inhibition of PCAF histone acetyltransferase and cytotoxic effect of N-acylanthranilic acids. Arch Pharm Res 2012; 35:1379-86. [PMID: 22941480 DOI: 10.1007/s12272-012-0807-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/04/2012] [Accepted: 02/07/2012] [Indexed: 11/29/2022]
Abstract
Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyltransferases (HATs) in the cell and have relevance for oncology. We synthesized a series of N-acylanthranilic acids (11-16) and of N-acyl-5-hydroxyanthranilic acids (17-22) bearing C6, C8, C10, C12, C14, along with C16 acyl chain at the 2-amino position of anthranilic acid or 5-hydroxyanthranilic acid. Enzyme inhibition of these compounds was investigated, using in vitro PCAF HAT assays. All synthesized compounds (65-76%) showed similar inhibitory activity to anacardic acid (68%) at 100 μM. The cytotoxicity, against one normal cell line (HSF) and eight cancer cell lines (HT-29, HCT-116, MDA-231, A-549, Hep3B, Caski, HeLa and Caki), were evaluated by the SRB method.
Collapse
Affiliation(s)
- Woong Jae Park
- College of Pharmacy, Catholic University of Daegu, Hayang, 712-702, Korea
| | | |
Collapse
|
22
|
Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 2011; 90:85-94. [PMID: 22124371 DOI: 10.1038/icb.2011.100] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reversible acetylation mediated by histone deacetylases (HDACs) influences a broad repertoire of physiological processes, many of which are aberrantly controlled in tumor cells. As HDAC inhibition prompts tumor cells to enter apoptosis, small-molecule HDAC inhibitors have been developed as a new class of mechanism-based anti-cancer agent, many of which have entered clinical trials. Although the clinical picture is evolving and the precise utility of HDAC inhibitors remains to be determined, it is noteworthy that certain tumor types undergo a favorable response, in particular hematological malignancies. Vorinostat and romidepsin have been approved for treating cutaneous T-cell lymphoma in patients with progressive, persistent or recurrent disease. Here, we discuss developments in our understanding of molecular events that underlie the anti-cancer effects of HDAC inhibitors and relate this information to the emerging clinical picture for the application of these inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Omar Khan
- Laboratory of Cancer Biology, Department of Oncology, Oxford, UK
| | | |
Collapse
|
23
|
Park SY, Lee YH, Choi KC, Seong AR, Choi HK, Lee OH, Hwang HJ, Yoon HG. Grape seed extract regulates androgen receptor-mediated transcription in prostate cancer cells through potent anti-histone acetyltransferase activity. J Med Food 2011; 14:9-16. [PMID: 21244239 DOI: 10.1089/jmf.2010.1264] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Histone acetylation, which is regulated by histone acetyltransferases (HATs) and deacetylases, is an epigenetic mechanism that influences eukaryotic transcription. Significant changes in histone acetylation are associated with cancer; therefore, manipulating the acetylation status of key gene targets is likely crucial for effective cancer therapy. Grape seed extract (GSE) has a known protective effect against prostate cancer. Here, we showed that GSE significantly inhibited HAT activity by 30-80% in vitro (P < .05). Furthermore, we demonstrated significant repression of androgen receptor (AR)-mediated transcription by GSE in prostate cancer cells by measuring luciferase activity using a pGL3-PSA construct bearing the AR element in the human prostate cancer cell line LNCaP (P < .05). GSE treatment also decreased the mRNA level of the AR-regulated genes PSA and NKX 3.1. Finally, GSE inhibited growth of LNCaP cells. These results indicate that GSE potently inhibits HAT, leading to decreased AR-mediated transcription and cancer cell growth, and implicate GSE as a novel candidate for therapeutic activity against prostate cancer.
Collapse
Affiliation(s)
- Si Yong Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Montes de Oca A, Madueño JA, Martinez-Moreno JM, Guerrero F, Muñoz-Castañeda J, Rodriguez-Ortiz ME, Mendoza FJ, Almaden Y, Lopez I, Rodriguez M, Aguilera-Tejero E. High-phosphate-induced calcification is related to SM22α promoter methylation in vascular smooth muscle cells. J Bone Miner Res 2010; 25:1996-2005. [PMID: 20499380 DOI: 10.1002/jbmr.93] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hyperphosphatemia is closely related to vascular calcification in patients with chronic kidney disease. Vascular smooth muscle cells (VSMCs) exposed to high phosphate concentrations in vitro undergo phenotypic transition to osteoblast-like cells. Mechanisms underlying this transdifferentiation are not clear. In this study we used two in vitro models, human aortic smooth muscle cells and rat aortic rings, to investigate the phenotypic transition of VSMCs induced by high phosphate. We found that high phosphate concentration (3.3 mmol/L) in the medium was associated with increased DNA methyltransferase activity and methylation of the promoter region of SM22α. This was accompanied by loss of the smooth muscle cell-specific protein SM22α, gain of the osteoblast transcription factor Cbfa1, and increased alkaline phosphatase activity with the subsequent in vitro calcification. The addition of a demethylating agent (procaine) to the high-phosphate medium reduced DNA methyltransferase activity and prevented methylation of the SM22α promoter, which was accompanied by an increase in SM22α expression and less calcification. Additionally, downregulation of SM22α, either by siRNA or by a methyl group donor (S-adenosyl methionine), resulted in overexpression of Cbfa1. In conclusion, we demonstrate that methylation of SM22α promoter is an important event in vascular smooth muscle cell calcification and that high phosphate induces this epigenetic modification. These findings uncover a new insight into mechanisms by which high phosphate concentration promotes vascular calcification.
Collapse
Affiliation(s)
- Addy Montes de Oca
- Department of Medicina y Cirugia Animal, Universidad de Cordoba, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chemogenomic profiling of the cellular effects associated with histone H3 acetylation impairment by a quinoline-derived compound. Genomics 2010; 96:272-80. [PMID: 20732410 DOI: 10.1016/j.ygeno.2010.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/05/2010] [Accepted: 08/14/2010] [Indexed: 11/23/2022]
Abstract
We report the results of a chemogenomic profiling aimed to explore the mode of action of a quinolic analogue of the p300 histone acetyltransferase (HAT) inhibitor anacardic acid, named MC1626. This compound reduced histone H3 acetylation in a dose-dependent manner and the HATs Gcn5 and Rtt109, which specifically target H3 lysines, were the only ones that caused chemical-genetic synthetic sickness with MC1626 when mutated. Deletion of specific Gcn5 (e.g., Ada1) and Rtt109 (e.g., Asf1) multiprotein complex components also enhanced MC1626 sensitivity. In addition to N-terminal H3 lysines, MC1626 inhibits H3-K56 acetylation, a histone modification that, in yeast, is exclusively supported by Rtt109 and indirectly influences DNA integrity. Several DNA repair mutants were found to be sensitive to MC1626. Functional links between histone acetylation impairment by MC1626 and mitochondrion as well as cytoskeleton functionality were also revealed, thus extending the range of non-nuclear processes that are influenced by histone acetylation.
Collapse
|
26
|
Souto J, Benedetti R, Otto K, Miceli M, Álvarez R, Altucci L, de Lera A. New Anacardic Acid-Inspired Benzamides: Histone Lysine Acetyltransferase Activators. ChemMedChem 2010; 5:1530-40. [DOI: 10.1002/cmdc.201000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Identification of type-specific anticancer histone deacetylase inhibitors: road to success. Cancer Chemother Pharmacol 2010; 66:625-33. [DOI: 10.1007/s00280-010-1324-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
28
|
HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc Natl Acad Sci U S A 2010; 107:6532-7. [PMID: 20308564 DOI: 10.1073/pnas.0913912107] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are emergent cancer drugs. HR23B is a candidate cancer biomarker identified in a genome-wide loss-of-function screen which influences sensitivity to HDAC inhibitors. Because HDAC inhibitors have found clinical utility in cutaneous T-cell lymphoma (CTCL), we evaluated the role of HR23B in CTCL cells. Our results show that HR23B governs the sensitivity of CTCL cells to HDAC inhibitors. Furthermore, proteasome activity is deregulated in HDAC inhibitor-treated CTCL cells through a mechanism dependent upon HR23B, and HDAC inhibitors sensitize CTCL cells to the effects of proteasome inhibitors. The predictive power of HR23B for clinical response to HDAC inhibitors was investigated through an analysis of a unique collection of CTCL biopsies taken from a phase II clinical trial, where there was a frequent coincidence between HR23B expression and clinical response to HDAC inhibitor. Our study supports the personalized medicine approach for treating cancer and the increasing drive to translate laboratory-based findings into clinical utility.
Collapse
|
29
|
Stimson L, Wood V, Khan O, Fotheringham S, La Thangue NB. HDAC inhibitor-based therapies and haematological malignancy. Ann Oncol 2009; 20:1293-302. [PMID: 19515748 DOI: 10.1093/annonc/mdn792] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reversible acetylation mediated by histone deacetylase (HDAC) influences a broad repertoire of physiological processes, many of which are aberrantly controlled in tumour cells. Since HDAC inhibition prompts tumour cells to enter apoptosis, small-molecule HDAC inhibitors have been developed as a new class of mechanism-based anticancer agent, many of which have entered clinical trials. While the clinical picture is evolving and the precise utility of HDAC inhibitors remains to be determined, it is noteworthy that certain tumour types undergo a favourable response, in particular haematological malignancies. Vorinostat (suberoylanilide hydroxamic acid) has been approved for treating cutaneous T-cell lymphoma in patients with progressive, persistent or recurrent disease. Here, we discuss developments in our understanding of molecular events that underlie the anticancer effects of HDAC inhibitors and relate this information to the emerging clinical picture for the application of HDAC inhibitors in haematological malignancies.
Collapse
Affiliation(s)
- L Stimson
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
30
|
Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009; 8:1409-20. [PMID: 19509247 DOI: 10.1158/1535-7163.mct-08-0860] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Posttranslational modifications to histones affect chromatin structure and function resulting in altered gene expression and changes in cell behavior. Aberrant gene expression and altered epigenomic patterns are major features of cancer. Epigenetic changes including histone acetylation, histone methylation, and DNA methylation are now thought to play important roles in the onset and progression of cancer in numerous tumor types. Indeed dysregulated epigenetic modifications, especially in early neoplastic development, may be just as significant as genetic mutations in driving cancer development and growth. The reversal of aberrant epigenetic changes has therefore emerged as a potential strategy for the treatment of cancer. A number of compounds targeting enzymes that regulate histone acetylation, histone methylation, and DNA methylation have been developed as epigenetic therapies, with some demonstrating efficacy in hematological malignancies and solid tumors. This review highlights the roles of epigenetic modifications to histones and DNA in tumorigenesis and emerging epigenetic therapies being developed for the treatment of cancer.
Collapse
Affiliation(s)
- Leigh Ellis
- Peter MacCallum Cancer Center, St. Andrews Place, East Melbourne 3002, Australia
| | | | | |
Collapse
|
31
|
Stimson L, La Thangue NB. Biomarkers for predicting clinical responses to HDAC inhibitors. Cancer Lett 2009; 280:177-83. [PMID: 19362413 DOI: 10.1016/j.canlet.2009.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 12/18/2022]
Abstract
Post-translational modifications of histone and non-histone proteins by acetylation are known to play a key role in tumourigenesis. Pharmacological manipulation of acetylation has been possible with the identification of small molecule inhibitors of histone deacetylases (HDAC), the enzymes responsible for deacetylating lysine residues. An explosion of drug discovery efforts in recent years has led to the development of an extensive group of HDAC inhibitors, many of which have been shown pre-clinically to have potent anti-tumour activity. Clinical trials using these agents are now underway, with Vorinostat (suberoylanilide hydroxamic acid) having been approved by the FDA for treating cutaneous T-cell lymphoma (CTCL) in patients with progressive, persistent or recurrent disease. This review discusses how biomarkers are being identified and used to expand our knowledge of the mechanisms by which HDAC inhibitors exhibit their anti-cancer effects. In the longer term, biomarkers will provide a means towards achieving patient stratification in tumour types that will respond favourably to HDAC inhibitors.
Collapse
Affiliation(s)
- Lindsay Stimson
- Dept of Clinical Pharmacology, Laboratory of Cancer Biology, Oxford, United Kingdom
| | | |
Collapse
|
32
|
Chimenti F, Bizzarri B, Maccioni E, Secci D, Bolasco A, Chimenti P, Fioravanti R, Granese A, Carradori S, Tosi F, Ballario P, Vernarecci S, Filetici P. A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone. J Med Chem 2009; 52:530-6. [PMID: 19099397 DOI: 10.1021/jm800885d] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetylation is a key modulator of genome accessibility through decondensation of the chromatin structure. The balance between acetylation and opposite deacetylation is, in fact, a prerequisite for several cell functions and differentiation. To find modulators of the histone acetyltransferase Gcn5p, we performed a phenotypic screening on a set of newly synthesized molecules derived from thiazole in budding yeast Saccharomyces cerevisiae. We selected compounds that induce growth inhibition in yeast strains deleted in genes encoding known histone acetyltransferases. A novel molecule CPTH2, cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone, was selected based on its inhibitory effect on the growth of a gcn5Delta strain. We demonstrated a specific chemical-genetic interaction between CPTH2 and HAT Gcn5p, indicating that CPTH2 inhibits the Gcn5p dependent functional network. CPTH2 inhibited an in vitro HAT reaction, which is reverted by increasing concentration of histone H3. In vivo, it decreased acetylation of bulk histone H3 at the specific H3-AcK14 site. On the whole, our results demonstrate that CPTH2 is a novel HAT inhibitor modulating Gcn5p network in vitro and in vivo.
Collapse
Affiliation(s)
- Franco Chimenti
- Dipartimento di Chimica e Tecnologie del Farmaco, Universita degli Studi di Roma La Sapienza, P. le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F, Bernards R, La Thangue NB. Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell 2009; 15:57-66. [PMID: 19111881 DOI: 10.1016/j.ccr.2008.12.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 10/08/2008] [Accepted: 12/02/2008] [Indexed: 11/30/2022]
Abstract
Aberrant acetylation has been strongly linked to tumorigenesis, and the modulation of acetylation through targeting histone deacetylases (HDACs) is gathering increasing pace as a viable therapeutic strategy. A genome-wide loss-of-function screen identified HR23B, which shuttles ubiquitinated cargo proteins to the proteasome, as a sensitivity determinant for HDAC inhibitor-induced apoptosis. HR23B also governs tumor cell sensitivity to drugs that act directly on the proteasome. The level of HR23B influences the response of tumor cells to HDAC inhibitors, and HR23B is found at high levels in cutaneous T cell lymphoma in situ, a malignancy that responds favorably to HDAC inhibitor-based therapy. These results suggest that deregulated proteasome activity contributes to the anticancer activity of HDAC inhibitors.
Collapse
Affiliation(s)
- Susan Fotheringham
- Laboratory of Cancer Biology, Department of Clinical Pharmacology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Souto JA, Conte M, Alvarez R, Nebbioso A, Carafa V, Altucci L, de Lera AR. Synthesis of benzamides related to anacardic acid and their histone acetyltransferase (HAT) inhibitory activities. ChemMedChem 2008; 3:1435-42. [PMID: 18537201 DOI: 10.1002/cmdc.200800096] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A group of benzamides related to anacardic acid amide CTPB with alkyl chains of defined length were prepared by a five-step sequence starting from 2,6-dihydroxybenzoic acid, and their activities were compared with those reported for the HAT inhibitor anacardic acid (AA). The subset of 4-cyano-3-trifluoromethylphenylbenzamides with shorter chains exhibited activities similar to that of AA, as they behaved as human p300 inhibitors, induced a decrease in histone acetylation levels in immortalized HEK cells, and counteracted the action of the HDAC inhibitor SAHA in MCF7 breast cancer cells. Moreover, an analogue with the shortest alkyl chain induced significant apoptosis at 50 microM in U937 leukemia cells.
Collapse
Affiliation(s)
- José A Souto
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Zheng YG, Wu J, Chen Z, Goodman M. Chemical regulation of epigenetic modifications: opportunities for new cancer therapy. Med Res Rev 2008; 28:645-87. [PMID: 18271058 DOI: 10.1002/med.20120] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is concerned about heritable changes in gene expression without alteration of the coding sequence. Epigenetic modification of chromatin includes methylation of genomic DNA as well as post-translational modification of chromatin-associated proteins, in particular, histones. The spectrum of histone and non-histone modifications ranges from the addition of relatively small groups such as methyl, acetyl and phosphoryl groups to the attachment of larger moieties such as poly(ADP-ribose) and small proteins ubiquitin or small ubiquitin-like modifier (SUMO). The combinatorial nature of DNA methylation and histone modifications constitutes a significant pathway of epigenetic regulation and considerably extends the information potential of the genetic code. Chromatin modification has emerged as a new fundamental mechanism for gene transcriptional activity control associated with many cellular processes like proliferation, growth, and differentiation. Also it is increasingly recognized that epigenetic modifications constitute important regulatory mechanisms for the pathogenesis of malignant transformations. We review here the recent progress in the development of chemical inhibitors/activators that target different chromatin modifying enzymes. Such potent natural or synthetic modulators can be utilized to establish the quantitative contributions of epigenetic modifications in DNA regulated pathways including transcription, replication, recombination and repair, as well as provide leads for developing new cancer therapeutics.
Collapse
Affiliation(s)
- Yujun George Zheng
- Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, Georgia 30302-4098, USA.
| | | | | | | |
Collapse
|
36
|
Drug Insight: histone deacetylase inhibitor-based therapies for cutaneous T-cell lymphomas. ACTA ACUST UNITED AC 2008; 5:714-26. [DOI: 10.1038/ncponc1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/07/2008] [Indexed: 01/16/2023]
|
37
|
Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 2008; 41:199-213. [PMID: 18790076 DOI: 10.1016/j.biocel.2008.08.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 12/16/2022]
Abstract
In addition to genetic events, a variety of epigenetic events have been widely reported to contribute to the onset of many diseases including cancer. DNA methylation and histone modifications (such as acetylation, methylation, sumoylation, and phosphorylation) involving chromatin remodelling are among the most studied epigenetic mechanisms for regulation of gene expression leading, when altered, to some diseases. Epigenetic therapy tries to reverse the aberrations followed to the disruption of the balance of the epigenetic signalling ways through the use of both natural compounds and synthetic molecules, active on specific epi-targets. Such epi-drugs are, for example, inhibitors of DNA methyltransferases, histone deacetylases, histone acetyltransferases, histone methyltransferases, and histone demethylases. In this review we will focus on the chemical aspects of such molecules, joined to their effective (or potential) application in cancer therapy.
Collapse
|
38
|
Lee YH, Jung MG, Kang HB, Choi KC, Haam S, Jun W, Kim YJ, Cho HY, Yoon HG. Effect of anti-histone acetyltransferase activity from Rosa rugosa Thunb. (Rosaceae) extracts on androgen receptor-mediated transcriptional regulation. JOURNAL OF ETHNOPHARMACOLOGY 2008; 118:412-417. [PMID: 18562138 DOI: 10.1016/j.jep.2008.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosa rugosa Thunb. (Rosaceae) has been traditionally used for treatments of diabetes, chronic inflammatory diseases, pain, and anticancer in Korea. AIM OF STUDY We investigate the inhibitory effect of histone acetyltransferase activity from the methanol extract of stems of Rosa rugosa on androgen receptor-mediated transcriptional regulation. MATERIALS AND METHODS For the present study, Rosa rugosa methanol extract (RRME) was obtained from stem part of Rosa rugosa using methanol extraction. Histone acetyltransferase assay were performed to measure the inhibitory effect on acetylation, reporter assay, real-time PCR and ChIP assay were performed to measure androgen receptor-mediated transcriptional regulation, and MTT test were performed to measure cell viability. RESULTS RRME inhibited both p300 and CBP (60-70% at 100 microg/ml) activity. We show RRME mediates agonist-dependent androgen receptor (AR) activation and suppresses antagonist-dependent inhibition. RRME treatment also decreased transcription of AR regulated genes and also reduced histone H3 and AR acetylation in the promoters of prostate-specific antigen (PSA) and beta-2-microglobulin (B2M). Finally, RRME treatment reduced the growth of LNCaP, a human prostate cancer cell line. CONCLUSION These results demonstrate RRME is a potent HAT inhibitor, which reduced AR and histone acetylation leading to decreased AR-mediated transcription and reduced LNCaP cell growth.
Collapse
Affiliation(s)
- Yoo-Hyun Lee
- Department of Food Science and Nutrition, The University of Suwon, Kyunggi-do, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mai A, Cheng D, Bedford MT, Valente S, Nebbioso A, Perrone A, Brosch G, Sbardella G, De Bellis F, Miceli M, Altucci L. epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. J Med Chem 2008; 51:2279-90. [PMID: 18348515 DOI: 10.1021/jm701595q] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A number of new compounds bearing two ortho-bromo- and ortho, ortho-dibromophenol moieties linked through a saturated/unsaturated, linear/(poly)cyclic spacer (compounds 1- 9) were prepared as simplified analogues of AMI-5 (eosin), a recently reported inhibitor of both protein arginine and histone lysine methyltransferases (PRMTs and HKMTs). Such compounds were tested against a panel of PRMTs (RmtA, PRMT1, and CARM1) and against human SET7 (a HKMT), using histone and nonhistone proteins as a substrate. They were also screened against HAT and SIRTs, because they are structurally related to some HAT and/or SIRT modulators. From the inhibitory data, some of tested compounds ( 1b, 1c, 4b, 4f, 4j, 4l, 7b, and 7f) were able to inhibit PRMTs, HKMT, HAT, and SIRTs with similar potency, thus behaving as multiple ligands for these epigenetic targets (epi-MLs). When tested on the human leukemia U937 cell line, the epi-MLs induced high apoptosis levels [i.e., 40.7% ( 4l) and 42.6% ( 7b)] and/or massive, dose-dependent cytodifferentiation [i.e., 95.2% ( 1c) and 96.1% ( 4j)], whereas the single-target inhibitors eosin, curcumin, and sirtinol were ineffective or showed a weak effect.
Collapse
Affiliation(s)
- Antonello Mai
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Studi Farmaceutici, Università degli Studi di Roma La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dessalew N. QSAR study on aminophenylbenzamides and acrylamides as histone deacetylase inhibitors: An insight into the structural basis of antiproliferative activity. Med Chem Res 2008. [DOI: 10.1007/s00044-007-9085-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Engh R. Protein Kinase Inhibitors Highlight the Complexities of Drug-Target Non-Covalent Interactions. BIOTECHNOL BIOTEC EQ 2008. [DOI: 10.1080/13102818.2008.10817551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
42
|
Schuetz A, Bernstein G, Dong A, Antoshenko T, Wu H, Loppnau P, Bochkarev A, Plotnikov AN. Crystal structure of a binary complex between human GCN5 histone acetyltransferase domain and acetyl coenzyme A. Proteins 2007; 68:403-7. [PMID: 17410582 DOI: 10.1002/prot.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anja Schuetz
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L5
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Eliseeva ED, Valkov V, Jung M, Jung MO. Characterization of novel inhibitors of histone acetyltransferases. Mol Cancer Ther 2007; 6:2391-8. [PMID: 17876038 DOI: 10.1158/1535-7163.mct-07-0159] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modification of proteins by histone acetyltransferases (HAT) or histone deacetylases plays an important role in the control of gene expression, and its dysregulation has been linked to malignant transformation and other diseases. Although histone deacetylase inhibitors have been extensively studied and several are currently in clinical trials, there is little information available on inhibitors of HATs (HATi). Starting from the natural product lead HATi anacardic acid, a series of 28 analogues was synthesized and investigated for HAT-inhibitory properties and effects on cancer cell growth. The compounds inhibited up to 95% HAT activity in vitro, and there was a clear correlation between their inhibitory potency and cytotoxicity toward a broad panel of cancer cells. Interestingly, all tested compounds were relatively nontoxic to nonmalignant human cell lines. Western blot analysis of MCF7 breast carcinoma cells treated with HATi showed significant reduction in acetylation levels of histone H4. To directly show effect of the new compounds on HAT activity in vivo, MCF7 cells were cotransfected with the p21 promoter fused to firefly luciferase and a full-length p300 acetyltransferase, and luciferase activity was determined following treatment with HATi. Significant inhibition of p300 activity was detected after treatment with all tested compounds except one. Effects of the new HATi on protein acetylation and HAT activity in vivo make them a suitable tool for discovery of molecular targets of HATs and, potentially, for development of new anticancer therapeutics.
Collapse
Affiliation(s)
- Elena D Eliseeva
- Division of Radiation Research, Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
44
|
Anti-histone acetyltransferase activity from allspice extracts inhibits androgen receptor-dependent prostate cancer cell growth. Biosci Biotechnol Biochem 2007; 71:2712-9. [PMID: 17986787 DOI: 10.1271/bbb.70306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histone acetylation depends on the activity of two enzyme families, histone acetyltransferase (HAT) and deacetylase (HDAC). In this study, we screened various plant extracts to find potent HAT inhibitors. Hot water extracts of allspice inhibited HAT activity, especially p300 and CBP (40% at 100 microg/ml). The mRNA levels of two androgen receptor (AR) regulated genes, PSA and TSC22, decreased with allspice treatment (100 microg/ml). Importantly, in IP western analysis, AR acetylation was dramatically decreased by allspice treatment.Furthermore, chromatin immunoprecipitation indicated that the acetylation of histone H3 in the PSA and B2M promoter regions was also repressed. Finally, allspice treatment reduced the growth of human prostate cancer cells, LNCaP (50% growth inhibition at 200 microg/ml). Taken together, our data indicate that the potent HAT inhibitory activity of allspice reduced AR and histone acetylation and led to decreased transcription of AR target genes, resulting in inhibition of prostate cancer cell growth.
Collapse
|
45
|
|
46
|
Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res 2007; 618:163-74. [PMID: 17306846 PMCID: PMC1892579 DOI: 10.1016/j.mrfmmm.2006.05.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 04/15/2023]
Abstract
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.
Collapse
Affiliation(s)
- Timothy J Moss
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
47
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Epigenomics in respiratory epithelium carcinogenesis: prevention and therapeutic challenges. Cancer Treat Rev 2007; 33:284-8. [PMID: 17367937 DOI: 10.1016/j.ctrv.2007.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 11/19/2022]
Abstract
Respiratory epithelium carcinogenesis is currently considered as the phenotypic aspect of serial genetic and epigenetic aberrations resulting in deregulation of cellular homeostasis. Recent data indicate that DNA demethylating agents and histone deacetylase inhibitors might act synergistically for the prevention of cancer development throughout the carcinogen-exposed epithelium. Preliminary clinical trials have shown encouraging results using these new molecules in lung carcinomas therapeutics. However, the caveats that should be overtaken for efficacious antitumour activity have also emerged. Setting the context in which epigenetic modifications contribute to carcinogenesis evolution is of paramount importance in order to optimize the potency of the current and future epigenome targeting agents.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, Athens, Greece
| | | | | |
Collapse
|
48
|
Majumder P, Pradhan SK, Devi PG, Pal S, Dasgupta D. Chromatin as a target for the DNA-binding anticancer drugs. Subcell Biochem 2007; 41:145-89. [PMID: 17484128 PMCID: PMC7121056 DOI: 10.1007/1-4020-5466-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chemotherapy has been a major approach to treat cancer. Both constituents of chromatin, chromosomal DNA and the associated chromosomal histone proteins are the molecular targets of the anticancer drugs. Small DNA binding ligands, which inhibit enzymatic processes with DNA substrate, are well known in cancer chemotherapy. These drugs inhibit the polymerase and topoisomerase activity. With the advent in the knowledge of chromatin chemistry and biology, attempts have shifted from studies of the structural basis of the association of these drugs or small ligands (with the potential of drugs) with DNA to their association with chromatin and nucleosome. These drugs often inhibit the expression of specific genes leading to a series of biochemical events. An overview will be given about the latest understanding of the molecular basis of their action. We shall restrict to those drugs, synthetic or natural, whose prime cellular targets are so far known to be chromosomal DNA.
Collapse
Affiliation(s)
- Parijat Majumder
- Biophysics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-I, Bidhannagar, Kolkata-700 064, India
| | | | | | | | | |
Collapse
|
49
|
Price S, Bordogna W, Braganza R, Bull RJ, Dyke HJ, Gardan S, Gill M, Harris NV, Heald RA, van den Heuvel M, Lockey PM, Lloyd J, Molina AG, Roach AG, Roussel F, Sutton JM, White AB. Identification and optimisation of a series of substituted 5-pyridin-2-yl-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 2007; 17:363-9. [PMID: 17107790 DOI: 10.1016/j.bmcl.2006.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 02/06/2023]
Abstract
Further investigation of a series of thienyl-based hydroxamic acids that included ADS100380 and ADS102550 led to the identification of the 5-pyridin-2-yl-thiophene-2-hydroxamic acid 3c, which possessed modest HDAC inhibitory activity. Substitution at the 5- and 6-positions of the pyridyl ring of compound 3c provided compounds 5a-g, 7a, b, 9, and 13a. Compound 5b demonstrated improved potency, in vitro DMPK profile, and rat oral bioavailability, compared to ADS102550. Functionalisation of the pendent phenyl group of compounds 5b, 5e and 13a provided analogues that possessed excellent enzyme inhibition and anti-proliferative activity.
Collapse
Affiliation(s)
- Steve Price
- Argenta Discovery Ltd, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Price S, Bordogna W, Bull RJ, Clark DE, Crackett PH, Dyke HJ, Gill M, Harris NV, Gorski J, Lloyd J, Lockey PM, Mullett J, Roach AG, Roussel F, White AB. Identification and optimisation of a series of substituted 5-(1H-pyrazol-3-yl)-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 2007; 17:370-5. [PMID: 17095213 DOI: 10.1016/j.bmcl.2006.10.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 10/24/2022]
Abstract
Optimisation of ADS100380, a sub-micromolar HDAC inhibitor identified using a virtual screening approach, led to a series of substituted 5-(1H-pyrazol-3-yl)-thiophene-2-hydroxamic acids (6a-i), that possessed significant HDAC inhibitory activity. Subsequent functionalisation of the pendent phenyl group of compounds 6f and 6g provided analogues 6j-w with further enhanced enzyme and anti-proliferative activity. Compound 6j demonstrated efficacy in a mouse xenograft experiment.
Collapse
Affiliation(s)
- Steve Price
- Argenta Discovery Ltd, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex CM19 5TR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|