1
|
He B, Hu Y, Qin Y, Zhang Y, Luo X, Wang Z, Xue W. Design, synthesis and antiviral activity of indole derivatives containing quinoline moiety. Mol Divers 2025; 29:1091-1107. [PMID: 39046564 DOI: 10.1007/s11030-024-10894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/09/2024] [Indexed: 07/25/2024]
Abstract
A series of indole derivatives containing quinoline structures were designed and synthesized. The synthesized compounds were characterized by NMR and HRMS. And W14 was performed by single crystal X-ray diffraction experiments. The antiviral activity studies showed that some of the target compounds possessed significant activity against tobacco mosaic virus (TMV). In particular, W20 had significant activity. The results of in vivo anti-TMV activity assay showed that W20 possessed the best curative and protective activities with EC50 values of 84.4 and 65.7 μg/mL, which were better than ningnanmycin (NNM) 205.1 and 162.0 μg/mL, respectively. The results of Microscale thermophoresis (MST) showed that W20 had a strong binding affinity for the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) of 0.00519 μmol/L, which was superior to that of NNM (1. 65320 μmol/L). The molecular docking studies were in accordance with the experimental results. In addition, the determination of malondialdehyde (MDA) content in tobacco leaves showed that W20 improved the disease resistance of tobacco. Overall, this study shows that indole derivatives containing quinoline can be used as new antiviral agents for plant viruses for further research.
Collapse
Affiliation(s)
- Bangcan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yuzhi Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yishan Qin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yufang Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Wang Q, Xing L, Zhang Y, Gong C, Zhou Y, Zhang N, He B, Xue W. Antiviral activity evaluation and action mechanism of myricetin derivatives containing thioether quinoline moiety. Mol Divers 2024; 28:1039-1055. [PMID: 36933104 DOI: 10.1007/s11030-023-10631-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
A variety of myricetin derivatives containing thioether quinoline moiety were designed and synthesized. Their structures of title compounds were determined by 1H NMR, 13C NMR, 19F NMR, and HRMS. Single-crystal X-ray diffraction experiments were carried out with B4. Antiviral activity indicated that some of the target compounds exhibited remarkable anti-tobacco mosaic virus (TMV) activity. In particular, compound B6 possessed significant activity. The half maximal effective concentration (EC50) value of the curative activity of compound B6 was 169.0 μg/mL, which was superior to the control agent ningnanmycin (227.2 μg/mL). Meanwhile, the EC50 value of the protective activity of compound B6 was 86.5 μg/mL, which was better than ningnanmycin (179.2 μg/mL). Microscale thermophoresis (MST) indicated that compound B6 had a strong binding capability to the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) value of 0.013 μmol/L, which was superior to that of myricitrin (61.447 μmol/L) and ningnanmycin (3.215 μmol/L). And the molecular docking studies were consistent with the experimental results. Therefore, these novel myricetin derivatives containing thioether quinoline moiety could become potential alternative templates for novel antiviral agents.
Collapse
Affiliation(s)
- Qifan Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Li Xing
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanquan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chenyu Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuanxiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Nian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Bangcan He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
3
|
Gao Q, Cleves AE, Wang X, Liu Y, Bowen S, Williamson RT, Jain AN, Sherer E, Reibarkh M. Solution cis-Proline Conformation of IPCs Inhibitor Aureobasidin A Elucidated via NMR-Based Conformational Analysis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1449-1458. [PMID: 35622967 DOI: 10.1021/acs.jnatprod.1c01071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aureobasidin A (abA) is a natural depsipeptide that inhibits inositol phosphorylceramide (IPC) synthases with significant broad-spectrum antifungal activity. abA is known to have two distinct conformations in solution corresponding to trans- and cis-proline (Pro) amide bond rotamers. While the trans-Pro conformation has been studied extensively, cis-Pro conformers have remained elusive. Conformational properties of cyclic peptides are known to strongly affect both potency and cell permeability, making a comprehensive characterization of abA conformation highly desirable. Here, we report a high-resolution 3D structure of the cis-Pro conformer of aureobasidin A elucidated for the first time using a recently developed NMR-driven computational approach. This approach utilizes ForceGen's advanced conformational sampling of cyclic peptides augmented by sparse distance and torsion angle constraints derived from NMR data. The obtained 3D conformational structure of cis-Pro abA has been validated using anisotropic residual dipolar coupling measurements. Support for the biological relevance of both the cis-Pro and trans-Pro abA configurations was obtained through molecular similarity experiments, which showed a significant 3D similarity between NMR-restrained abA conformational ensembles and another IPC synthase inhibitor, pleofungin A. Such ligand-based comparisons can further our understanding of the important steric and electrostatic characteristics of abA and can be utilized in the design of future therapeutics.
Collapse
Affiliation(s)
- Qi Gao
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ann E Cleves
- Applied Science, BioPharmics LLC, Santa Rosa, California 95404, United States
| | - Xiao Wang
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yizhou Liu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sean Bowen
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Robert Thomas Williamson
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ajay N Jain
- Applied Science, BioPharmics LLC, Santa Rosa, California 95404, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, United States
| | - Edward Sherer
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
4
|
Saleh MA, El-Badry MA, R Ezz Eldin R. Novel 6-hydroxyquinolinone derivatives: Design, synthesis, antimicrobial evaluation, in silico study and toxicity profiling. J Comput Chem 2021; 42:1561-1578. [PMID: 34041765 DOI: 10.1002/jcc.26693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/09/2021] [Indexed: 11/07/2022]
Abstract
Infectious diseases of bacteria and fungi have become a major risk to public health because of antibiotic and antifungal resistance. However, the availability of effective antibacterial and antifungal agents is becoming increasingly limited with growing resistance to existing drugs. In response to that, novel agents are critically needed to overcome such resistance. A new series of 6-hydroxyquinolinone 3, 4, 5a, 5b, 6a and 6b bearing different side chains were synthesized and evaluated as antimicrobials against numbers of bacteria and fungi, using inhibition zone technique. As one of these derivatives, compound 3 was identified as a potent antibacterial and antifungal agent against all tested microorganisms with good minimum inhibitory concentration values comparable to reference drugs. Molecular docking studies were performed on antibacterial and antifungal targets; microbial DNA gyrase B of Staphylococcus aureus (PDB ID: 4URO); N-myristoyltransferase of Candida albicans (PDB ID: 1IYK), respectively, to predict the most probable type of interaction at the active site of the target protein in addition to binding affinities and orientations of docked ligands. Additionally, in silico prediction in terms of detailed physicochemical ADME and toxicity profile relating drug-likeness as well as medicinal chemistry friendliness was performed to all synthesized compounds. The results indicated that a novel 4,6-dihydroxyquinolin-2(1H)-one (3) is likely to be a newly synthesized drug candidate, indicating low toxicity in addition to good in silico absorption. In order to pave the way for more logical production of such compounds, structure-activity and toxicity relationships are also discussed.
Collapse
Affiliation(s)
- Marwa A Saleh
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Badry
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Rogy R Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
5
|
Mehta S, Sharma AK, Singh RK. Ethnobotany, Pharmacological activities and Bioavailability studies of "King of Bitter" (Kalmegh): A Review (2010-2020). Comb Chem High Throughput Screen 2021; 25:788-807. [PMID: 33745423 DOI: 10.2174/1386207324666210310140611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Andrographis paniculata, commonly known as "Kalmegh", is an annual herbaceous plant from family Acanthaceae. The whole plant of A. paniculata has explored for multiple pharmacological activities and is scientifically recognized by in-vivo and in-vitro studies. Various biotechnologically engineered techniques have been explored to enhance the bioavailability of this plant. OBJECTIVE In this review, we aim to present comprehensive recent advances in the ethnopharmacology, phytochemistry, specific pharmacology, safety and toxicology and bioavailability of A. paniculata and its pure compounds. Possible directions for future research are also outlined in brief, which will encourage advance investigations on this plant. METHODS Information on the recent updates of the present review is collected from different electronic scientific databases such as Science Direct, PubMed, Scopus, and Google Scholar. All the composed information is classified into different sections according to the objective of the paper. RESULTS More than hundred research and review papers have been studied and incorporated in the present manuscript. After vast literature search of A. paniculata, we present a noteworthy report of various phytoconstituents present in plant, which are accountable for potential therapeutic properties of the plant. Forty-five of studied articles give general information about introduction, ethnobotany and traditional uses of the plant. Twenty-two papers enclosed information about the phytoconstituents present in different parts of A. paniculata and seventy-two papers briefly outlined the pharmacological activities like antioxidant, anti-dengue, anti-ulcerogenic, antifungal, some miscellaneous activities like activity against SARS-CoV-2, antidiarrhoeal. Nineteen studies highlighted the research work conducted by various researchers to increased bioavailability of A. paniculata and two studies reported the safety and toxicology of the plant. CONCLUSION This review incorporated the scientifically validated research work encompassing the ethnobotanical description of the subjected plant, phytochemical profile, various pharmacological activities, and recent approaches to enhance the bioavailability of active metabolites.
Collapse
Affiliation(s)
- Sharuti Mehta
- CT Institute of Pharmaceutical Sciences, Jalandhar, 144020, Punjab. India
| | - Anil Kumar Sharma
- AIMIL Pharmaceuticals India Limited, Ranjeet Nagar, 110008, New Delhi. India
| | - Rajesh Kumar Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, 140126, Punjab. India
| |
Collapse
|
6
|
The critical role of MetR/ MetB/ MetC/ MetX in cysteine and methionine metabolism, fungal development and virulence of Alternaria alternata. Appl Environ Microbiol 2021; 87:AEM.01911-20. [PMID: 33277273 PMCID: PMC7851696 DOI: 10.1128/aem.01911-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Methionine is a unique sulfur-containing amino acid, which plays an important role in biological protein synthesis and various cellular processes. Here, we characterized the biological functions of AaMetB, AaMetC, and AaMetX in the tangerine pathotype of Alternaria alternata Morphological analysis showed that the mutants lacking AaMetB, AaMetC, or AaMetX resulted in less aerial hypha and fewer conidia in artificial media. Pathogenicity analysis showed that AaMetB, AaMetC, and AaMetX are required for full virulence. The defects in vegetative growth, conidiation and virulence of ΔMetB, ΔMetC, and ΔMetX can be restored by exogenous methionine and homocysteine, indicating that AaMetB, AaMetC, and AaMetX are required for methionine biosynthesis. However, exogenous cysteine only restored the growth and virulence defects of ΔMetR but not ΔMetB/C/X, suggesting that AaMetR is essential for cysteine biosynthesis. Oxidant sensitivity assay showed that only ΔMetR is sensitive to H2O2 and many ROS-generating compounds, indicating that AaMetR is essential for oxidative tolerance. Interestingly, fungicides indoor bioassays showed that only the ΔMetR mutants are susceptive to chlorothalonil, a fungicide that could bind to the cysteine of glyceraldehyde-3-phosphate dehydrogenase. Comparative transcriptome analysis showed that the inactivation of MetB, MetC, MetX, or MetR significantly affected the expression of methionine metabolism-related genes. Moreover, the inactivation of AaMetR significantly affected the expression of many genes related to glutathione metabolism, which is essential for ROS tolerance. Taken together, our study provides genetic evidence to define the critical roles of AaMetB, AaMetC, AaMetX, and AaMetR in cysteine and methionine metabolism, fungal development and virulence of Alternaria alternata IMPORTANCE The transcription factor METR regulating methionine metabolism is essential for reactive oxygen species (ROS) tolerance and virulence in many phytopathogenic fungi. However, the underlying regulatory mechanism of METR involved in this process is still unclear. In the present study, we generated AaMetB, AaMetC and AaMetX deletion mutants and compared these mutants with AaMetR disrupted mutants. Interestingly, we found that AaMetB, AaMetC and AaMetX are required for vegetative growth, conidiation, and pathogenicity in Alternaria alternata, but not for ROS tolerance and cysteine metabolism. Furthermore, we found that METR is involved in the biosynthesis of cysteine, which is an essential substrate for the biosynthesis of methionine and glutathione. This study emphasizes the critical roles of MetR, MetB, MetC, MetX in the regulation of cysteine and methionine metabolism, as well as the cross-link with glutathione-mediated ROS tolerance in phytopathogenic fungi, which provides a foundation for future investigations.
Collapse
|
7
|
Liu W, Yuan L, Wang S. Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. J Med Chem 2020; 63:12429-12459. [PMID: 32692166 DOI: 10.1021/acs.jmedchem.0c00748] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Due to the limit of available treatments and the emergence of drug resistance in the clinic, invasive fungal infections are an intractable problem with high morbidity and mortality. The cell wall, as a fungi-specific structure, is an appealing target for the discovery and development of novel and low-toxic antifungal agents. In an attempt to accelerate the discovery of novel cell wall targeted drugs, this Perspective will provide a comprehensive review of the progress made to date on the development of fungal cell wall inhibitors. Specifically, this review will focus on the targets, discovery process, chemical structures, antifungal activities, and structure-activity relationships. Although two types of cell wall antifungal agents are clinically available or in clinical trials, it is still a long way for the other cell wall targeted inhibitors to be translated into clinical applications. Future efforts should be focused on the identification of inhibitors against novel conserved cell wall targets.
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Middle Road, Xi'an 710021, People's Republic of China
| | - Lin Yuan
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Middle Road, Xi'an 710021, People's Republic of China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, People's Republic of China
| |
Collapse
|
8
|
Ganan M, Lorentzen SB, Agger JW, Heyward CA, Bakke O, Knutsen SH, Aam BB, Eijsink VGH, Gaustad P, Sørlie M. Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. PLoS One 2019; 14:e0210208. [PMID: 30620751 PMCID: PMC6324834 DOI: 10.1371/journal.pone.0210208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Due to their antifungal activity, chitosan and its derivatives have potential to be used for treating yeast infections in humans. However, to be considered for use in human medicine, it is necessary to control and know the chemical composition of the compound, which is not always the case for polymeric chitosans. Here, we analyze the antifungal activity of a soluble and well-defined chito-oligosaccharide (CHOS) with an average polymerization degree (DPn) of 32 and fraction of acetylation (FA) of 0.15 (C32) on 52 medically relevant yeast strains. Minimal inhibitory concentrations (MIC) varied widely among yeast species, strains and isolates (from > 5000 to < 9.77 μg mL-1) and inhibition patterns showed a time- and dose-dependencies. The antifungal activity was predominantly fungicidal and was inversely proportional to the pH, being maximal at pH 4.5, the lowest tested pH. Furthermore, antifungal effects of CHOS fractions with varying average molecular weight indicated that those fractions with an intermediate degree of polymerization, i.e. DP 31 and 54, had the strongest inhibitory effects. Confocal imaging showed that C32 adsorbs to the cell surface, with subsequent cell disruption and accumulation of C32 in the cytoplasm. Thus, C32 has potential to be used as a therapy for fungal infections.
Collapse
Affiliation(s)
- Monica Ganan
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
- Institute of Clinical Medicine, Department of Microbiology, University of Oslo, Blindern, Oslo, Norway
| | - Silje B. Lorentzen
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Jane W. Agger
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
| | - Svein H. Knutsen
- Nofima, Norwegian Institute of Food Fisheries & Aquaculture Research, Aas, Norway
| | - Berit B. Aam
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Peter Gaustad
- Institute of Clinical Medicine, Department of Microbiology, University of Oslo, Blindern, Oslo, Norway
| | - Morten Sørlie
- Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Aas, Norway
- * E-mail:
| |
Collapse
|
9
|
Wani PA, Tolu AM, Wahid S. Antioxidant, antimicrobial and antibiotic resistance modifying effect of Heliotropium indicum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Tetrazolylmethyl quinolines: Design, docking studies, synthesis, anticancer and antifungal analyses. Eur J Med Chem 2017; 128:258-273. [PMID: 28192709 DOI: 10.1016/j.ejmech.2017.01.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/27/2022]
Abstract
A new series of 2,5 and 1,5-regioisomers of the tetrazolyl group viz., 3-[(5-benzyl/benzylthio-2H-tetrazol-2-yl) methyl]-2-chloro-6-substituted quinoline 6h-q and 3-[(5-benzyl/benzylthio-1H-tetrazol-1-yl) methyl]-2-chloro-6-substituted quinolines 7h-q were synthesized. Docking studies of all these compounds with DNA as target using PDB: 1AU5 and 453D revealed that the compounds 6h and 6i act as covalent cross linker on the DNA helix of the former and intercalate the latter both with higher C score values. Another set of docking studies in the active pocket of dihydrofolate reductase and N-myristoyl transferase as targets to assess antifungal activity revealed that compounds 6k, 6l, 6p and 7q (with bromo and fluro substituents) showcases different binding modes and hydrogen bonding. Further, the compounds were screened for anticancer activity (primary cytotoxicity) against NCI-60 Human tumor cell line at a single high dose (10-5 M) concentration assay. Among the tested compounds, 6h has shown 99.28% of GI against Melanoma (SK-MEL-5) and compound 6i has shown 97.56% of GI against Breast Cancer (T-47D). Further, in vitro antifungal assay against A. fumigatus and C. albicans for these compounds 6h-q and 7h-q revealed potential to moderate activities as compared to the standard.
Collapse
|
11
|
Sant DG, Tupe SG, Ramana CV, Deshpande MV. Fungal cell membrane-promising drug target for antifungal therapy. J Appl Microbiol 2016; 121:1498-1510. [PMID: 27667746 DOI: 10.1111/jam.13301] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Increase in invasive fungal infections over the past few years especially in immunocompromised patients prompted the search for new antifungal agents with improved efficacy. Current antifungal armoury includes very few effective drugs like Amphotericin B; new generation azoles, including voriconazole and posaconazole; echinocandins like caspofungin and micafungin to name a few. Azole class of antifungals which target the fungal cell membrane are the first choice of treatment for many years because of their effectiveness. As the fungal cell membrane is predominantly made up of sterols, glycerophospholipids and sphingolipids, the role of lipids in pathogenesis and target identification for improved therapeutics were largely pursued by researchers during the last few years. Present review focuses on cell membrane as an antifungal target with emphasis on membrane biogenesis, structure and function of cell membrane, cell membrane inhibitors, screening assays, recent advances and future prospects.
Collapse
Affiliation(s)
- D G Sant
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - S G Tupe
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - C V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
| | - M V Deshpande
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
12
|
Prasad R, Shah AH, Rawal MK. Antifungals: Mechanism of Action and Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:327-349. [PMID: 26721281 DOI: 10.1007/978-3-319-25304-6_14] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. .,AMITY Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Manesar, Gurgaon, Haryana, India.
| | - Abdul Haseeb Shah
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manpreet Kaur Rawal
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
13
|
Aliyu RM, Abubakar MB, Kasarawa AB, Dabai YU, Lawal N, Bello MB, Fardami AY. Efficacy and phytochemical analysis of latex of Calotropis procera against selected dermatophytes. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:314-7. [PMID: 26649237 PMCID: PMC4665027 DOI: 10.5455/jice.20151012012909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/04/2015] [Indexed: 11/15/2022]
Abstract
Background: Since ancient time, increased interest has been witnessed in the use of an alternative herbal medicine for managing, and the treatment of fungal diseases worldwide. This may be connected to the cost and relative toxicities of the available antifungal drugs. It has been a known tradition practiced in the northern part of Nigeria that parents and teachers use the white latex of Calotropis procera to treat Tinea capitis in children attending the local religious school in the area. This study was conducted in 2009 to ascertain the above claim. Materials and Methods: Fresh latex of C. procera was screened for their antifungal activity against species of dermatophytes: Trichophyton spp., Microsporum spp. and Epidermophyton spp. using the agar incorporation method. Results: The result shows that the latex inhibits the in vitro growth of these pathogenic fungi to varying extents with Trichophyton spp. being the most susceptible (P < 0.05) and thus highly inhibited by the latex followed by the Microsporum spp. and Epidermopyton spp. was least inhibited. These inhibitions followed a dose-dependent trend as undiluted latex (100%) gave the highest inhibitory impacts (P < 0.05) when compared to serially diluted latex. The phytochemical analysis of the fresh latex indicated the presence of alkaloids, saponin, tannins, steroids, flavonoids, anthraquinone, and triterpenoids. Conclusion: The findings of this study confirmed the perceived usefulness of the latex in the treatment of T. capitis (ringworm) practiced in our society and therefore, its use topically in the treatment of dermatomycotic infection is encouraged.
Collapse
Affiliation(s)
- Rabiu Muhammad Aliyu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mikaeel Bala Abubakar
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | | | - Yakubu Umar Dabai
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nafiu Lawal
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aminu Yusuf Fardami
- Department of Microbiology, Faculty of Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
14
|
Huang H, Zheng G, Jiang W, Hu H, Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin (Shanghai) 2015; 47:231-43. [PMID: 25739462 DOI: 10.1093/abbs/gmv007] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RNA-guided DNA editing technology CRISPRs (clustered regularly interspaced short palindromic repeats)/Cas9 had been used to introduce double-stranded breaks into genomes and to direct subsequent site-specific insertions/deletions or the replacement of genetic material in bacteria, such as Escherichia coli, Streptococcus pneumonia, and Lactobacillus reuteri. In this study, we established a high-efficiency CRISPR/Cas9 genome editing plasmid pKCcas9dO for use in Streptomyces genetic manipulation, which comprises a target-specific guide RNA, a codon-optimized cas9, and two homology-directed repair templates. By delivering pKCcas9dO series editing plasmids into the model strain Streptomyces coelicolor M145, through one-step intergeneric transfer, we achieved the genome editing at different levels with high efficiencies of 60%-100%, including single gene deletion, such as actII-orf4, redD, and glnR, and single large-size gene cluster deletion, such as the antibiotic biosynthetic clusters of actinorhodin (ACT) (21.3 kb), undecylprodigiosin (RED) (31.6 kb), and Ca(2+)-dependent antibiotic (82.8 kb). Furthermore, we also realized simultaneous deletions of actII-orf4 and redD, and of the ACT and RED biosynthetic gene clusters with high efficiencies of 54% and 45%, respectively. Finally, we applied this system to introduce nucleotide point mutations into the rpsL gene, which conferred the mutants with resistance to streptomycin. Notably, using this system, the time required for one round of genome modification is reduced by one-third or one-half of those for conventional methods. These results clearly indicate that the established CRISPR/Cas9 genome editing system substantially improves the genome editing efficiency compared with the currently existing methods in Streptomyces, and it has promise for application to genome modification in other Actinomyces species.
Collapse
Affiliation(s)
- He Huang
- Key Lab of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute"s for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China
| | - Guosong Zheng
- Key Lab of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute"s for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weihong Jiang
- Key Lab of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute"s for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haifeng Hu
- Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China
| | - Yinhua Lu
- Key Lab of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institute"s for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Medina Marrero R, Marrero-Ponce Y, Barigye SJ, Echeverría Díaz Y, Acevedo-Barrios R, Casañola-Martín GM, García Bernal M, Torrens F, Pérez-Giménez F. QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:943-58. [PMID: 26567876 DOI: 10.1080/1062936x.2015.1104517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.
Collapse
Affiliation(s)
- R Medina Marrero
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- b Department of Microbiology , Chemical Bioactive Center, Central University of Las Villas , Villa Clara , Cuba
| | - Y Marrero-Ponce
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- c Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas , Universidad Tecnológica de Bolívar , Cartagena de Indias , Bolívar , Colombia
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
- h Grupo de Investigación Microbiología y Ambiente (GIMA) . Programa de Bacteriología, Facultad Ciencias de la Salud, Universidad de San Buenaventura , Calle Real de Ternera, 130010, Cartagena (Bolivar) , Colombia
| | - S J Barigye
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- e Departamento de Química , Universidade Federal de Lavras , Lavras , MG , Brazil
| | - Y Echeverría Díaz
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
| | - R Acevedo-Barrios
- c Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas , Universidad Tecnológica de Bolívar , Cartagena de Indias , Bolívar , Colombia
| | - G M Casañola-Martín
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
- f Facultad de Ingeniería Ambiental , Universidad Estatal Amazónica , Puyo , Ecuador
| | - M García Bernal
- b Department of Microbiology , Chemical Bioactive Center, Central University of Las Villas , Villa Clara , Cuba
| | - F Torrens
- g Institut Universitari de Ciència Molecular, Universitat de València , Valencia , Spain
| | - F Pérez-Giménez
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
| |
Collapse
|
16
|
Ranjbariyan A, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal activity of a soil isolate of Pseudomonas chlororaphis against medically important dermatophytes and identification of a phenazine-like compound as its bioactive metabolite. J Mycol Med 2014; 24:e57-64. [PMID: 24746720 DOI: 10.1016/j.mycmed.2014.01.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 11/24/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The increasing importance of dermatophytoses and emerging resistance of dermatophytes to current synthetic antifungals have stimulated the search for safer and more effective alternative drugs from natural sources. The present study was carried out to identify antagonistic bacteria of soil origin with strong inhibitory activities on the growth of major human pathogenic dermatophytes. MATERIALS AND METHODS Antifungal activity of isolated soil bacteria was screened against the dermatophytes from three genera Microsporum (M. canis, M. gypseum), Epidermophyton (E. floccosum) and Trichophyton (T. mentagrophytes, T. rubrum, T. violaceum, T. tonsurans) by using visual plate agar assay method. A Pseudomonas chlororaphis isolate S105, identified at the species level by 16S ribosomal RNA sequence analysis, was reported as the strongest antagonistic bacterium. P. chlororaphis S105 culture supernatant (PCCS) was examined against tested dermatophytes by GY (glucose-yeast extract) broth bioassay in 6-well microplates. Antifungal compound of the bacterium was partially purified from the culture supernatant through a purification scheme of methanol extraction, Diaion HP20 ion-exchange chromatography and preparative thin layer chromatography. RESULTS P. chlororaphis S105 was the most potent inhibitor of fungal growth for all tested dermatophytes with a percent inhibition ranged from 57.1% to 99.8%. The PCCS suppressed the growth of all fungi tested in the range of 18.5% to 84.8%. Partially purified antifungal compound of the bacterium was identified as a phenazine-like compound with an Rf value of 0.51. The compound inhibited fungal growth by 73.6% to 97.9% on GY broth. Fungal growth inhibition was significant for all dermatophytes tested in comparison with the controls (Anova, P<0.05). CONCLUSION With respect to the strong inhibitory activity of P. chlororaphis against pathogenic dermatophytes reported here, it may be considered as a rich source of useful metabolites with potential application in antifungal drug discovery.
Collapse
Affiliation(s)
- A Ranjbariyan
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | - M Shams-Ghahfarokhi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran.
| | | |
Collapse
|
17
|
Ramsey JP, Mercurio A, Holland JA, Harris RN, Minbiole KPC. The cutaneous bacteriumJanthinobacterium lividuminhibits the growth ofTrichophyton rubrum in vitro. Int J Dermatol 2013; 54:156-9. [DOI: 10.1111/ijd.12217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy P. Ramsey
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - Albert Mercurio
- Department of Biology; James Madison University; Harrisonburg VA USA
| | | | - Reid N. Harris
- Department of Biology; James Madison University; Harrisonburg VA USA
| | - Kevin P. C. Minbiole
- Department of Chemistry and Biochemistry; James Madison University; Harrisonburg VA USA
| |
Collapse
|
18
|
Rossignol T, Kocsis B, Bouquet O, Kustos I, Kilár F, Nyul A, Jakus PB, Rajbhandari K, Prókai L, d’Enfert C, Lóránd T. Antifungal activity of fused Mannich ketones triggers an oxidative stress response and is Cap1-dependent in Candida albicans. PLoS One 2013; 8:e62142. [PMID: 23646117 PMCID: PMC3639977 DOI: 10.1371/journal.pone.0062142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/18/2013] [Indexed: 01/02/2023] Open
Abstract
We investigated the antifungal activity of fused Mannich ketone (FMK) congeners and two of their aminoalcohol derivatives. In particular, FMKs with five-membered saturated rings were shown to have minimum inhibitory concentration (MIC90s) ranging from 0.8 to 6 µg/mL toward C. albicans and the closely related C. parapsilosis and C. krusei while having reduced efficacy toward C. glabrata and almost no efficacy against Aspergillus sp. Transcript profiling of C. albicans cells exposed for 30 or 60 min to 2-(morpholinomethyl)-1-indanone, a representative FMK with a five-membered saturated ring, revealed a transcriptional response typical of oxidative stress and similar to that of a C. albicans Cap1 transcriptional activator. Consistently, C. albicans lacking the CAP1 gene was hypersensitive to this FMK, while C. albicans strains overexpressing CAP1 had decreased sensitivity to 2-(morpholinomethyl)-1-indanone. Quantitative structure-activity relationship studies revealed a correlation of antifungal potency and the energy of the lowest unoccupied molecular orbital of FMKs and unsaturated Mannich ketones thereby implicating redox cycling-mediated oxidative stress as a mechanism of action. This conclusion was further supported by the loss of antifungal activity upon conversion of representative FMKs to aminoalcohols that were unable to participate in redox cycles.
Collapse
Affiliation(s)
- Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC 2019, Paris, France
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Orsolya Bouquet
- Institute of Bioanalysis, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Ildikó Kustos
- Department of Microbiology, Alder Hey Children`s NHS Foundation Trust, Liverpool, United Kingdom
| | - Ferenc Kilár
- Institute of Bioanalysis, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Adrien Nyul
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Péter B. Jakus
- Department of Biochemistry and Medical Chemistry, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Kshitij Rajbhandari
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - László Prókai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC 2019, Paris, France
| | - Tamás Lóránd
- Department of Biochemistry and Medical Chemistry, Faculty of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
Kaplancikli ZA, Yurttaş L, Özdemir A, Turan-Zitouni G, Işcan G, Akalın G, Abu Mohsen U. Synthesis, anticandidal activity and cytotoxicity of some tetrazole derivatives. J Enzyme Inhib Med Chem 2013; 29:43-8. [PMID: 23323990 DOI: 10.3109/14756366.2012.752363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, 14 different 2-[(1-methyl-1H-tetrazole-5-yl)thio]-1-(phenyl)ethanone derivatives (1-14) were synthesized. The structures of the obtained compounds were elucidated using IR, (1)H-NMR, (13)C-NMR and FAB(+)-MS spectral data and elemental analyses results. The compounds were screened for their anticandidal activity using the microbroth dilution method and for their cytotoxic effects using the MTT assay against NIH/3T3 cells. Some of the compounds were found to be potent anticandidal agents with weak cytotoxicities.
Collapse
Affiliation(s)
- Zafer Asim Kaplancikli
- Department of Pharmaceutical Chemistry, Graduate School of Health Sciences, Anadolu University , Eskisehir , Turkey
| | | | | | | | | | | | | |
Collapse
|
20
|
Enhancement of anti-candidal activity of endophytic fungus Phomopsis sp. ED2, isolated from Orthosiphon stamineus Benth, by incorporation of host plant extract in culture medium. J Microbiol 2012; 50:581-5. [PMID: 22923105 DOI: 10.1007/s12275-012-2083-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
This study examined the effect of host extract in the culture medium on anti-candidal activity of Phomopsis sp. ED2, previously isolated from the medicinal herb Orthosiphon stamineus Benth. Interestingly, upon addition of aqueous host extract to the culture medium, the ethyl acetate extract prepared from fermentative broth exhibited moderate anti-candidal activity in a disc diffusion assay. The minimal inhibitory concentration of this extract was 62.5 μg/ml and it only exhibited fungistatic activity against C. albicans. In the time-kill study, a 50% growth reduction of C. albicans was observed at 31.4 h for extract from the culture incorporating host extract. In the bioautography assay, only one single spot (Rf 0.59) developed from the extract exhibited anti-candidal activity. A spot with the a similar Rf was not detected for the crude extract from YES broth without host extract. This indicated that the terpenoid anti-candidal compound was only produced when the host extract was introduced into the medium. The study concluded that the incorporation of aqueous extract of the host plant into the culture medium significantly enhanced the anti-candidal activity of Phomopsis sp. ED2.
Collapse
|
21
|
Sule A, Ahmed QU, Latip J, Samah OA, Omar MN, Umar A, Dogarai BBS. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro. PHARMACEUTICAL BIOLOGY 2012; 50:850-856. [PMID: 22587518 DOI: 10.3109/13880209.2011.641021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners. OBJECTIVE Antifungal activity of the whole plant extracts and isolation of active principles from A. paniculata were investigated. MATERIALS AND METHODS Dichloromethane (DCM) and methanol (MEOH) extracts of A. paniculata whole plant were screened for their antifungal potential using broth microdilution method in vitro against seven pathogenic fungal species responsible for skin infections. Active principles were detected through bioguided assays and isolated using chromatography techniques. Structures of compounds were elucidated through spectroscopy techniques and comparisons were made with previously reported data for similar compounds. RESULTS DCM extract revealed lowest minimum inhibitory concentration (MIC) value (100 μg/mL) against Microsporum canis, Candida albicans, and Candida tropicalis, whereas MEOH extract revealed lowest MIC (150 µg/mL) against C. tropicalis and Aspergillus niger. DCM extract showed lowest minimum fungicidal concentration (MFC) value (250 µg/mL) against M. canis, C. albicans, C. tropicalis and A. niger, whereas MEOH extract showed lowest MFC (250 µg/mL) against Trichophyton mentagrophytes, Trichophyton rubrum, M. canis, C. albicans, C. tropicalis and A. niger. Bioassay guided isolation from DCM and MEOH extract afforded 3-O-β-d-glucosyl-14-deoxyandrographiside, 14-deoxyandrographolide, and 14-deoxy-11,12-didehydroandrographolide as antifungal compounds. The lowest MIC (50 µg/mL) and MFC (50 µg/mL) was exerted by 14-deoxyandrographolide on M. canis. DISCUSSION AND CONCLUSION This is first report on the isolation of antifungal substances through bioassay-guided assay from A. paniculata. Our finding justifies the use of A. paniculata in folk medicines for the treatment of fungal skin infections.
Collapse
Affiliation(s)
- Abubakar Sule
- Department of Biomedical Sciences, Faculty of Science, Kuantan, Pahang Darul Makmur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
22
|
An integrated approach for identification and target validation of antifungal compounds active against Erg11p. Antimicrob Agents Chemother 2012; 56:4233-40. [PMID: 22615293 DOI: 10.1128/aac.06332-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Systemic life-threatening fungal infections represent a significant unmet medical need. Cell-based, phenotypic screening can be an effective means of discovering potential novel antifungal compounds, but it does not address target identification, normally required for compound optimization by medicinal chemistry. Here, we demonstrate a combination of screening, genetic, and biochemical approaches to identify and characterize novel antifungal compounds. We isolated a set of novel non-azole antifungal compounds for which no target or mechanism of action is known, using a screen for inhibition of Saccharomyces cerevisiae proliferation. Haploinsufficiency profiling of these compounds in S. cerevisiae suggests that they target Erg11p, a cytochrome P450 family member, which is the target of azoles. Consistent with this, metabolic profiling in S. cerevisiae revealed a buildup of the metabolic intermediates prior to Erg11p activity, following compound treatment. Further, human cytochrome P450 is also inhibited in in vitro assays by these compounds. We modeled the Erg11p protein based on the human CYP51 crystal structure, and in silico docking of these compounds suggests that they interact with the heme center in a manner similar to that of azoles. Consistent with these docking observations, Candida strains carrying azole-resistant alleles of ERG11 are also resistant to the compounds in this study. Thus, we have identified non-azole Erg11p inhibitors, using a systematic approach for ligand and target characterization.
Collapse
|
23
|
Duraipandiyan V, Ignacimuthu S. Antifungal activity of traditional medicinal plants from Tamil Nadu, India. Asian Pac J Trop Biomed 2011. [DOI: 10.1016/s2221-1691(11)60157-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
24
|
Patra JK, Dhal NK, Thatoi HN. In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): A mangrove associate from Bhitarkanika, India. ASIAN PAC J TROP MED 2011; 4:727-34. [DOI: 10.1016/s1995-7645(11)60182-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/11/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022] Open
|
25
|
|
26
|
Kim JH, Chan KL, Mahoney N, Campbell BC. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Ann Clin Microbiol Antimicrob 2011; 10:23. [PMID: 21627838 PMCID: PMC3127747 DOI: 10.1186/1476-0711-10-23] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI). Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ) and two mitogen-activated protein kinase (MAPK) mutants of A. fumigatus (sakAΔ, mpkCΔ), indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC) or fungicidal (MFC) concentrations. Effective inhibition of fungal growth can also be achieved using combinations of these benzaldehydes. Conclusions Natural benzaldehydes targeting cellular antioxidation components of fungi, such as superoxide dismutases, glutathione reductase, etc., effectively inhibit fungal growth. They possess antifungal or chemosensitizing capacity to enhance efficacy of conventional antifungal agents. Chemosensitization can reduce costs, abate resistance, and alleviate negative side effects associated with current antifungal treatments.
Collapse
Affiliation(s)
- Jong H Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan St,, Albany, CA 94710, USA
| | | | | | | |
Collapse
|
27
|
Navarro-García VM, Rojas G, Avilés M, Fuentes M, Zepeda G. In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand. Mycoses 2011; 54:e569-71. [PMID: 21605187 DOI: 10.1111/j.1439-0507.2010.01993.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bis-coumarin daphnoretin and its monomeric precursors scopoletin and umbelliferone were isolated for the first time from the aerial part of Loeselia mexicana Brand (a vegetal species used in Mexican traditional medicine) using chromatographic techniques. The structures of these compounds were determined by (1) H and (13) C NMR analyses. These coumarins were evaluated for in vitro antifungal activity. The three compounds tested showed significant antifungal activity.
Collapse
Affiliation(s)
- Victor M Navarro-García
- Laboratorio de Microbiología, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, México.
| | | | | | | | | |
Collapse
|
28
|
Singh J, Verma PK, Tiwari K, Singh SB. Synthesis of Novel Pyrazole Derivative Containing Aryl Phenyl Ether as Potential Antifungal Agent. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2011. [DOI: 10.5012/jkcs.2011.55.2.153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Majerz-Maniecka K, Musiol R, Skórska-Stania A, Tabak D, Mazur P, Oleksyn BJ, Polanski J. X-ray and molecular modelling in fragment-based design of three small quinoline scaffolds for HIV integrase inhibitors. Bioorg Med Chem 2011; 19:1606-12. [DOI: 10.1016/j.bmc.2011.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 01/25/2023]
|
30
|
Isolation and identification of bioactive antibacterial components in leaf extracts of Vangueria spinosa (Rubiaceae). ASIAN PAC J TROP MED 2011; 4:35-40. [PMID: 21771412 DOI: 10.1016/s1995-7645(11)60028-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/27/2010] [Accepted: 12/15/2010] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The column chromatographic fraction of ethyl acetate (EA1, EA2, EA3, EA4 and EA5) leaf extracts of Vangueria spinosa (V. spinosa) were screened for antibacterial activity and phytochemical analysis. METHODS EA3 fraction was isolated and identified by column chromatography, thin layer chromatography, spectral data analysis and phytochemical screening were used for analysis. RESULTS EA3 fraction was significantly active at 4 to 64 mg/L against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa with minimum inhibitory concentration of 1.5625 to 3.1250 mg/mL. The active fraction (EA3) revealed the presence of flavonoid with retention factor value (R(f)) of 0.39. The active antibacterial agent in the most potent fraction (EA3) was isolated and identified as flavonoid (-)-epicatechin-3-O-β-glucopyranoside by thin layer chromatography (TLC) and phytochemical screening. EA1 and EA2 show inhibitory activity at 4 to 64 mg/L against Staphylococcus aureus only where as fraction EA4 and EA5 do not shows any inhibitory activity within that range of concentration against any bacteria. CONCLUSIONS The results support the ethnomedicinal use of leaf of V. spinosa for the treatment of bacterial diseases.
Collapse
|
31
|
Qaralleh H, Idid S, Saad S, Susanti D, Taher M, Khleifat K. Antifungal and Antibacterial Activities of Four Malaysian Sponge Species (Petrosiidae). J Mycol Med 2010. [DOI: 10.1016/j.mycmed.2010.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Isolation and identification of antibacterial components in seed extracts of Argemone mexicana L. (Papaveraceae). ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60132-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Özdemir A, Turan-Zitouni G, Asım Kaplancıklı Z, Revial G, Demirci F, İşcan G. Preparation of some pyrazoline derivatives and evaluation of their antifungal activities. J Enzyme Inhib Med Chem 2010; 25:565-71. [DOI: 10.3109/14756360903373368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülhan Turan-Zitouni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gilbert Revial
- Laboratoire de Transformations Chimiques et Pharmaceutiques, UMR-CNRS 7084, Cnam, Paris, France
| | - Fatih Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gökalp İşcan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
34
|
Björkbom A, Ohvo-Rekilä H, Kankaanpää P, Nyholm TKM, Westerlund B, Slotte JP. Characterization of membrane properties of inositol phosphorylceramide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:453-60. [PMID: 19913494 DOI: 10.1016/j.bbamem.2009.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/05/2009] [Accepted: 11/04/2009] [Indexed: 12/11/2022]
Abstract
Inositol phosphorylceramides (IPCs) are a class of anionic sphingolipids with a single inositol-phosphate head group coupled to ceramide. IPCs and more complex glycosylated IPCs have been identified in fungi, plants and protozoa but not in mammals. IPCs have also been identified in detergent resistant membranes in several organisms. Here we report on the membrane properties of the saturated N-palmitoyl-IPC (P-IPC) in one component bilayers as well as in complex bilayers together with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and cholesterol. The membrane properties of P-IPC were shown to be affected by calcium. According to anisotropy changes reported by DPH, the gel-to-liquid transition temperature (T(m)) of P-IPC was 48 degrees C. Addition of 5 mM CaCl(2) during vesicle preparation markedly increased the T(m) (65 degrees C). According to fluorescence quenching experiments in complex lipid mixtures, P-IPC formed sterol containing domains in an otherwise fluid environment. The P-IPC containing domains melted at a lower temperature and appeared to contain less sterol as compared to domains containing N-palmitoyl-sphingomyelin. Calcium further reduced the sterol content of the ordered domains and also increased the thermal stability of the domains. Calcium also induced vesicle aggregation of unilamellar vesicles containing P-IPC, as was observed by 4D confocal microscopy and dynamic light scattering. We believe that IPCs and the calcium induced effects could be important in numerous membrane associated cellular processes such as membrane fusion and in membrane raft linked processes.
Collapse
Affiliation(s)
- Anders Björkbom
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6 A, FI-20520, Finland.
| | | | | | | | | | | |
Collapse
|
35
|
Cherif A, Sadfi-Zouaoui N, Eleuch D, Ben Osman Dhahri A, Boudabous A. Pseudomonas isolates have in vitro antagonistic activity against the dermatophytes Trichophyton rubrum, Trichophyton mentagrophytes var interdigitale and Microsporum canis. J Mycol Med 2009. [DOI: 10.1016/j.mycmed.2009.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Ring-substituted 4-hydroxy-1H-quinolin-2-ones: preparation and biological activity. Molecules 2009; 14:1145-59. [PMID: 19305366 PMCID: PMC6253998 DOI: 10.3390/molecules14031145] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 11/16/2022] Open
Abstract
In the study, a series of twelve ring-substituted 4-hydroxy-1H-quinolin-2-one derivatives were prepared. The procedures for synthesis of the compounds are presented. The compounds were analyzed using RP-HPLC to determine lipophilicity and tested for their photosynthesis-inhibiting activity using spinach (Spinacia oleracea L.) chloroplasts. All the synthesized compounds were also evaluated for antifungal activity using in vitro screening with eight fungal strains. For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds are discussed, as well as their structure-activity relationships (SAR).
Collapse
|
37
|
Delgado A, Casas J, Llebaria A, Abad JL, Fabriás G. Chemical tools to investigate sphingolipid metabolism and functions. ChemMedChem 2008; 2:580-606. [PMID: 17252619 DOI: 10.1002/cmdc.200600195] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise an important group of biomolecules, some of which have been shown to play important roles in the regulation of many cell functions. From a structural standpoint, they all share a long 2-amino-1,3-diol chain, which can be either saturated (sphinganine), hydroxylated at C4 (phytosphingosine), or unsaturated at C4 (sphingosine) as in most mammalian cells. N-acylation of sphingosine leads to ceramide, a key intermediate in sphingolipid metabolism that can be enzymatically modified at the C1-OH position to other biologically important sphingolipids, such as sphingomyelin or glycosphingolipids. In addition, both ceramide and sphingosine can be phosphorylated at C1-OH to give ceramide-1-phosphate and sphingosine-1-phosphate, respectively. To better understand the biological and biophysical roles of sphingolipids, many efforts have been made to design synthetic analogues as chemical tools able to unravel their structure-activity relationships, and to alter their cellular levels. This last approach has been thoroughly studied by the development of specific inhibitors of some key enzymes that play an important role in biosynthesis or metabolism of these intriguing lipids. With the above premises in mind, the aim of this review is to collect, in a systematic way, the recent efforts described in the literature leading to the development of new chemical entities specifically designed to achieve the above goals.
Collapse
Affiliation(s)
- Antonio Delgado
- Research Unit on Bioactive Molecules, Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona (C.S.I.C); Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
38
|
QSAR of heterocyclic antifungal agents by flip regression. J Comput Aided Mol Des 2008; 22:885-95. [PMID: 18574697 DOI: 10.1007/s10822-008-9223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022]
Abstract
QSAR analysis of a set of 96 heterocyclics with antifungal activity was performed. The results reveals that a pyridine ring is more favorable than benzene as the 6-membered ring, for high activity, but thiazole is unfavorable as the 5-membered ring relative to imidazole or oxazole. Methylene is the spacer leading to the highest activity. The descriptors used are indicator variables, which account for identity of substituent, lipophilicity and volume of substituent, and total polarizability. Unlike previously reported results for this data set, our fits do not exceed the limitations set by the nature of the data itself.
Collapse
|
39
|
Cherif A, El Euch D, Bessaied N, Ben Osman Dhahri A, Boudabous A, Sadfi-Zouaoui N. Environmental and clinicalPseudomonas isolates antagonistic against the dermatophytesTrichophyton andMicrosporum. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Fontenelle R, Morais S, Brito E, Brilhante R, Cordeiro R, Nascimento N, Kerntopf M, Sidrim J, Rocha M. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J Appl Microbiol 2008; 104:1383-90. [DOI: 10.1111/j.1365-2672.2007.03707.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Emami S, Foroumadi A, Falahati M, Lotfali E, Rajabalian S, Ebrahimi SA, Farahyar S, Shafiee A. 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg Med Chem Lett 2008; 18:141-6. [DOI: 10.1016/j.bmcl.2007.10.111] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
42
|
Piérard GE, Arrese JE, Quatresooz P, Piérard-Franchimont C. Emerging therapeutic agents for onychomycosis. Expert Opin Emerg Drugs 2007; 12:345-53. [PMID: 17874965 DOI: 10.1517/14728214.12.3.345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Onychomycosis is a frequent disorder that represents the most prevalent fungal infection, particularly among older individuals. Diverse fungi of the dermatophyte, non-dermatophyte mold and yeast families have been reported to be responsible for onychomycosis. The output from the pharmaceutical industry of new antifungals to treat onychomycosis has been limited over the last decade. Present treatment options include both oral and topical drugs, with oral therapies giving better outcomes. However, neither of these treatment options provides high cure rates that are durable. At present, azoles and allylamines are keeping the pivotal roles. New derivatives with a favorable risk-benefit ratio and new formulations of older azoles seem to be promising. Thus, ongoing drug development activities have focused on novel delivery technologies to facilitate incorporation of existing antifungal drugs inside the nail plate and the discovery of new active antifungals.
Collapse
Affiliation(s)
- Gérald E Piérard
- CHU Sart Tilman, Department of Dermatopathology, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
43
|
. SH, . RU, . ML, . PN, . RW, . ML, . AE. Nutritive Value, Phytochemical and Antifungal Properties of Pergularia tomentosa L. (Asclepiadaceae). INT J PHARMACOL 2007. [DOI: 10.3923/ijp.2007.334.340] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Hassan S, Lawal M, Muhammad B, Umar R, Bilbis L, Faruk U, Ebbo A. Antifungal Activity and Phytochemical Analysis of Column Chromatographic Fractions of Stem Bark Extracts of Ficus sycomorus L. (Moraceae). ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jps.2007.209.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Duchowicz PR, Vitale MG, Castro EA, Fernández M, Caballero J. QSAR analysis for heterocyclic antifungals. Bioorg Med Chem 2007; 15:2680-9. [PMID: 17296301 DOI: 10.1016/j.bmc.2007.01.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/14/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
We perform linear regression analyses on 1202 numerical descriptors that encode the various aspects of the topological, geometrical and electronic molecular structure with the aim of achieving the best QSAR relationship between the antifungal potencies against the Candida albicans strain and the structure of 96 heterocyclic ring derivatives. As a realistic application we employ the model found to predict the biological activity for 60 non-yet measured compounds.
Collapse
Affiliation(s)
- Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), División Química Teórica, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
46
|
Selvakumar D, Miyamoto M, Furuichi Y, Komiyama T. Inhibition of fungal beta-1,3-glucan synthase and cell growth by HM-1 killer toxin single-chain anti-idiotypic antibodies. Antimicrob Agents Chemother 2006; 50:3090-7. [PMID: 16940106 PMCID: PMC1563539 DOI: 10.1128/aac.01435-05] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-chain variable-fragment (scFv) anti-idiotypic antibodies of an HM-1 killer toxin (HM-1) from the yeast Williopsis saturnus var. mrakii IFO 0895 have been produced by recombinant DNA technology from the splenic lymphocytes of mice immunized by idiotypic vaccination with a neutralizing monoclonal antibody (nMAb-KT). The fungicidal activity of scFv anti-idiotypic antibodies against the isolates of four Candida species was assessed by MIC analysis. scFv antibodies were fungicidal at concentrations of 1.56 to 12.5 microg/ml in vitro against four Candida species. The scFv antibodies exerted a strong candidacidal activity in vitro, with 50% inhibitory concentration (IC(50)) values ranging from 7.3 x 10(-8) to 16.0 x 10(-8) M, and were neutralized by adsorption with nMAb-KT. Furthermore, all scFv antibodies effectively inhibited fungal beta-1,3-glucan synthase activity in vitro, with IC(50) values ranging from 2.0 x 10(-8) to 22.7 x 10(-8) M, values which almost coincide with the values that are inhibitory to the growth of fungal cells. Binding assays showed that the scFv antibodies specifically bind to nMAb-KT, and this binding pattern was confirmed by surface plasmon resonance analysis. The binding ability was further demonstrated by the competition observed between scFv antibodies and HM-1 to bind nMAb-KT. To the best of our knowledge, this is the first study to show that an antifungal anti-idiotypic antibody, in the form of recombinant scFv, potentially inhibits beta-1,3-glucan synthase activity.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata 956-8603, Japan
| | | | | | | |
Collapse
|
47
|
Selvakumar D, Karim N, Miyamoto M, Furuichi Y, Komiyama T. Recombinant single-chain anti-idiotypic antibody: an effective fungal beta-1,3-glucan synthase inhibitor. Biol Pharm Bull 2006; 29:1848-53. [PMID: 16946497 DOI: 10.1248/bpb.29.1848] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant single-chain fragment variable anti-idiotypic antibodies were produced to represent the internal image of HM-1 killer toxin and were used as novel and effective antifungal agents to inhibit in vitro beta-1,3-glucan synthase and cell growth. The mechanism of cytocidal activity of anti-idiotypic antibodies was investigated and was compared with the actions of aculeacin A and papulacandin B, the most common antibiotics acting as beta-1,3-glucan synthase inhibitors. The degree of inhibition of beta-1,3-glucan synthase by both antibodies and antibiotics were examined for yeasts Saccharomyces cerevisiae A451, Cryptococcus albidus NBRC 0612 and Candida albicans IFM 40215. Although the mechanism of actions of the anti-idiotypic antibodies and antibiotics seems identical, the IC(50) values for the various yeasts used in this study confirmed that anti-idiotypic antibodies could be used as more effective fungal beta-1,3-glucan synthase inhibitors than those of antibiotics.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Niigata, Japan
| | | | | | | | | |
Collapse
|
48
|
Subramania S, . DSK, . PA, . GS. In vitro Antibacterial and Antifungal Activities of Ethanolic Extract of Aloe vera Leaf Gel. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/jps.2006.348.355] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
|
50
|
Musiol R, Jampilek J, Buchta V, Silva L, Niedbala H, Podeszwa B, Palka A, Majerz-Maniecka K, Oleksyn B, Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg Med Chem 2006; 14:3592-8. [PMID: 16458522 DOI: 10.1016/j.bmc.2006.01.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/05/2006] [Accepted: 01/10/2006] [Indexed: 10/25/2022]
Abstract
The series of quinoline derivatives were prepared. The synthetic approach, analytical, and spectroscopic data of all synthesized compounds are presented. All the prepared derivatives were analyzed using the reversed-phase high performance liquid chromatography (RP-HPLC) method for the lipophilicity measurement. In the present study, the correlation between RP-HPLC retention parameter log K (the logarithm of capacity factor K) and various calculated log P data is shown. The relationships between the lipophilicity and the chemical structure of the studied compounds are discussed as well. The prepared compounds were tested for their in vitro antifungal activity. 2-[(3-Hydroxyphenylimino)methyl]quinolin-8-ol (8), 2-[(4-hydroxyphenylimino)methyl]quinolin-8-ol (9) and 2-[(2,5-dichloro-4-nitrophenylamino)methoxymethyl]quinolin-8-ol (10) showed in vitro antifungal activity comparable to or higher than that of the standard fluconazole. Structure-activity relationships among the chemical structure, the physical properties, and the biological activities of the evaluated compounds are discussed in the article.
Collapse
Affiliation(s)
- Robert Musiol
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|