1
|
Hess WR, Wilde A, Mullineaux CW. Does mRNA targeting explain gene retention in chloroplasts? TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00267-X. [PMID: 39443276 DOI: 10.1016/j.tplants.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.
Collapse
Affiliation(s)
- Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
Sun Y, Zerges W. Translational regulation in chloroplasts for development and homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:809-20. [PMID: 25988717 DOI: 10.1016/j.bbabio.2015.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/13/2015] [Accepted: 05/10/2015] [Indexed: 11/16/2022]
Abstract
Chloroplast genomes encode 100-200 proteins which function in photosynthesis, the organellar genetic system, and other pathways and processes. These proteins are synthesized by a complete translation system within the chloroplast, with bacterial-type ribosomes and translation factors. Here, we review translational regulation in chloroplasts, focusing on changes in translation rates which occur in response to requirements for proteins encoded by the chloroplast genome for development and homeostasis. In addition, we delineate the developmental and physiological contexts and model organisms in which translational regulation in chloroplasts has been studied. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Yi Sun
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada
| | - William Zerges
- Biology Department and Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke W., Montreal, Quebec H4B 1R6, Canada.
| |
Collapse
|
4
|
Photosystem II repair in plant chloroplasts--Regulation, assisting proteins and shared components with photosystem II biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:900-9. [PMID: 25615587 DOI: 10.1016/j.bbabio.2015.01.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 01/30/2023]
Abstract
Photosystem (PS) II is a multisubunit thylakoid membrane pigment-protein complex responsible for light-driven oxidation of water and reduction of plastoquinone. Currently more than 40 proteins are known to associate with PSII, either stably or transiently. The inherent feature of the PSII complex is its vulnerability in light, with the damage mainly targeted to one of its core proteins, the D1 protein. The repair of the damaged D1 protein, i.e. the repair cycle of PSII, initiates in the grana stacks where the damage generally takes place, but subsequently continues in non-appressed thylakoid domains, where many steps are common for both the repair and de novo assembly of PSII. The sequence of the (re)assembly steps of genuine PSII subunits is relatively well-characterized in higher plants. A number of novel findings have shed light into the regulation mechanisms of lateral migration of PSII subcomplexes and the repair as well as the (re)assembly of the complex. Besides the utmost importance of the PSII repair cycle for the maintenance of PSII functionality, recent research has pointed out that the maintenance of PSI is closely dependent on regulation of the PSII repair cycle. This review focuses on the current knowledge of regulation of the repair cycle of PSII in higher plant chloroplasts. Particular emphasis is paid on sequential assembly steps of PSII and the function of the number of PSII auxiliary proteins involved both in the biogenesis and repair of PSII. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
5
|
Schneider A, Steinberger I, Strissel H, Kunz HH, Manavski N, Meurer J, Burkhard G, Jarzombski S, Schünemann D, Geimer S, Flügge UI, Leister D. The Arabidopsis Tellurite resistance C protein together with ALB3 is involved in photosystem II protein synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:344-356. [PMID: 24612058 DOI: 10.1111/tpj.12474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/04/2014] [Indexed: 05/28/2023]
Abstract
Assembly of photosystem II (PSII) occurs sequentially and requires several auxiliary proteins, such as ALB3 (ALBINO3). Here, we describe the role of the Arabidopsis thaliana thylakoid membrane protein Tellurite resistance C (AtTerC) in this process. Knockout of AtTerC was previously shown to be seedling-lethal. This phenotype was rescued by expressing TerC fused C-terminally to GFP in the terc-1 background, and the resulting terc-1TerC- GFP line and an artificial miRNA-based knockdown allele (amiR-TerC) were used to analyze the TerC function. The alterations in chlorophyll fluorescence and thylakoid ultrastructure observed in amiR-TerC plants and terc-1TerC- GFP were attributed to defects in PSII. We show that this phenotype resulted from a reduction in the rate of de novo synthesis of PSII core proteins, but later steps in PSII biogenesis appeared to be less affected. Yeast two-hybrid assays showed that TerC interacts with PSII proteins. In particular, its interaction with the PSII assembly factor ALB3 has been demonstrated by co-immunoprecipitation. ALB3 is thought to assist in incorporation of CP43 into PSII via interaction with Low PSII Accumulation2 (LPA2) Low PSII Accumulation3 (LPA3). Homozygous lpa2 mutants expressing amiR-TerC displayed markedly exacerbated phenotypes, leading to seedling lethality, indicating an additive effect. We propose a model in which TerC, together with ALB3, facilitates de novo synthesis of thylakoid membrane proteins, for instance CP43, at the membrane insertion step.
Collapse
Affiliation(s)
- Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig Maximilians Universität München, 82152, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
7
|
Allen JF, de Paula WBM, Puthiyaveetil S, Nield J. A structural phylogenetic map for chloroplast photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:645-55. [PMID: 22093371 DOI: 10.1016/j.tplants.2011.10.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts are cytoplasmic organelles and the sites of photosynthesis in eukaryotic cells. Advances in structural biology and comparative genomics allow us to identify individual components of the photosynthetic apparatus precisely with respect to the subcellular location of their genes. Here we present outline maps of four energy-transducing thylakoid membranes. The maps for land plants and red and green algae distinguish protein subunits encoded in the nucleus from those encoded in the chloroplast. We find no defining structural feature that is common to all chloroplast gene products. Instead, conserved patterns of gene location are consistent with photosynthetic redox chemistry exerting gene regulatory control over its own rate-limiting steps. Chloroplast DNA carries genes whose expression is placed under this control.
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | |
Collapse
|
8
|
Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 2011; 28:2077-86. [PMID: 21289370 PMCID: PMC3112369 DOI: 10.1093/molbev/msr028] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ∼110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.
Collapse
Affiliation(s)
- Etienne Delannoy
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia.
| | | | | | | | | |
Collapse
|
9
|
Wright AF, Murphy MP, Turnbull DM. Do organellar genomes function as long-term redox damage sensors? Trends Genet 2009; 25:253-61. [PMID: 19481287 DOI: 10.1016/j.tig.2009.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 12/31/2022]
Abstract
A small group of proteins that form core components of electron transfer complexes are consistently encoded by organellar genomes in multicellular organisms, suggesting functional constraint. These genomes are costly to maintain and vulnerable to mutation. We propose that they provide cell lineages with sensors of long-term redox damage, and of bioenergetic and genomic competence. This proposed adaptive function sets tonic retrograde signalling to the nucleus and anterograde responses influencing protective and cell death pathways. The nature of the proposed gain-of-function signalling mechanisms is unclear but could involve defective complex assembly. Organellar proteomes therefore provide cumulative feedback on bioenergetic and genomic status within cell lineages, selection of the energetically 'fittest' cells and a means of removing cells that compromise survival of the organism.
Collapse
Affiliation(s)
- Alan F Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK.
| | | | | |
Collapse
|
10
|
Pogson BJ, Woo NS, Förster B, Small ID. Plastid signalling to the nucleus and beyond. TRENDS IN PLANT SCIENCE 2008; 13:602-9. [PMID: 18838332 DOI: 10.1016/j.tplants.2008.08.008] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 08/21/2008] [Accepted: 08/27/2008] [Indexed: 05/02/2023]
Abstract
Communication between the compartments or organelles of cells is essential for plant growth and development. There is an emerging understanding of signals generated within energy-transducing organelles, such as chloroplasts and mitochondria, and the nuclear genes that respond to them, a process known as retrograde signalling. A recent series of unconnected breakthroughs have given scientists a glimpse inside the 'black box' of organellar signalling thanks to the identification of some of the factors involved in generating and propagating signals to the nucleus and, in some instances, systemically throughout photosynthetic tissues. This review will focus on recent developments in our understanding of retrograde and systemic signals generated by organelles, with an emphasis on chloroplasts.
Collapse
Affiliation(s)
- Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
11
|
Krause K. From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 2008; 54:111-21. [DOI: 10.1007/s00294-008-0208-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
|
12
|
Barbrook AC, Howe CJ, Purton S. Why are plastid genomes retained in non-photosynthetic organisms? TRENDS IN PLANT SCIENCE 2006; 11:101-8. [PMID: 16406301 DOI: 10.1016/j.tplants.2005.12.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 12/05/2005] [Accepted: 12/20/2005] [Indexed: 05/06/2023]
Abstract
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the 'essential tRNAs' hypothesis and the 'transfer-window' hypothesis.
Collapse
Affiliation(s)
- Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | |
Collapse
|
13
|
Murcha MW, Rudhe C, Elhafez D, Adams KL, Daley DO, Whelan J. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. PLANT PHYSIOLOGY 2005; 138:2134-44. [PMID: 16040655 PMCID: PMC1183401 DOI: 10.1104/pp.105.062745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Mitochondria and plastids (including chloroplasts) have a small but vital genetic coding capacity, but what are the properties of some genes that dictate that they must remain encoded in organelles? Mitochondria and plastids (including chloroplasts) have a small but vital genetic coding capacity, but what are the properties of some genes that dictate that they must remain encoded in organelles?
Collapse
Affiliation(s)
- Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, S106 91, Sweden
| | - James Whelan
- Plant Molecular Biology Group, School of Biomedical and Chemical Science, University of Western Australia, Nedlands 6009, Western Australia, Australia
| |
Collapse
|
15
|
Wang Y, Jensen L, Højrup P, Morse D. Synthesis and degradation of dinoflagellate plastid-encoded psbA proteins are light-regulated, not circadian-regulated. Proc Natl Acad Sci U S A 2005; 102:2844-9. [PMID: 15703299 PMCID: PMC549448 DOI: 10.1073/pnas.0406522102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In many dinoflagellate species, the plastid genome has been proposed to exist as a limited number of single-gene minicircles, and many genes normally found in the plastid genome are nuclear-encoded. Unlike the nuclear-encoded plastid-directed gene products whose expression is often regulated by the circadian clock, little is known about expression of minicircle genes. Furthermore, even the plastid location of the minicircles has recently been challenged. We have examined the incorporation in vivo of [(35)S]methionine into the proteins of purified plastids, and we find that several plastid proteins are labeled in the presence of cycloheximide but not chloramphenicol. One of these proteins, labeled in two different dinoflagellate species, was identified as psbA by Western blot analysis. Furthermore, this psbA has the expected physiological characteristics, because both synthesis and degradation are induced by light. We find no evidence for circadian control over either synthesis or degradation of psbA, unlike the several nuclear-encoded plastid-directed proteins studied. Finally, we find that levels of psbA protein or RNA do not change over a 24-h light-dark cycle, suggesting that this protein may not be involved in mediating the circadian rhythm in oxygen evolution rates. This demonstration is the first, to our knowledge, that minicircle genes encoding plastid proteins are translated in dinoflagellate plastids, and it suggests that a proteomic approach to characterizing the dinoflagellate plastid genome is feasible.
Collapse
Affiliation(s)
- Yunling Wang
- Department of Biological Science, University of Montreal, 4101 Sherbrooke est, Montreal, QC, Canada H1X 2B2
| | | | | | | |
Collapse
|
16
|
Suorsa M, Regel RE, Paakkarinen V, Battchikova N, Herrmann RG, Aro EM. Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits PsbL and PsbJ. EUROPEAN JOURNAL OF BIOCHEMISTRY 2004; 271:96-107. [PMID: 14686923 DOI: 10.1046/j.1432-1033.2003.03906.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protein assembly and stability of photosystem II (PSII) (sub)complexes were studied in mature leaves of four plastid mutants of tobacco (Nicotiana tabacum L), each having one of the psbEFLJ operon genes inactivated. In the absence of psbL, no PSII core dimers or PSII-light harvesting complex (LHCII) supercomplexes were formed, and the assembly of CP43 into PSII core monomers was extremely labile. The assembly of CP43 into PSII core monomers was found to be necessary for the assembly of PsbO on the lumenal side of PSII. The two other oxygen-evolving complex (OEC) proteins, PsbP and PsbQ, were completely lacking in Delta psbL. In the absence of psbJ, both intact PSII core monomers and PSII core dimers harboring the PsbO protein were formed, whereas the LHCII antenna remained detached from the PSII dimers, as demonstrated by 77 K fluorescence measurements and by the lack of PSII-LHCII supercomplexes. The Delta psbJ mutant was characterized by a deficiency of PsbQ and a complete lack of PsbP. Thus, both the PsbL and PsbJ subunits of PSII are essential for proper assembly of the OEC. The absence of psbE and psbF resulted in a complete absence of all central PSII core and OEC proteins. In contrast, very young, vigorously expanding leaves of all psbEFLJ operon mutants accumulated at least traces of D2, CP43 and the OEC proteins PsbO and PsbQ, implying developmental control of the expression of the PSII core and OEC proteins. Despite severe problems in PSII assembly, the thylakoid membrane complexes other than PSII were present and correctly assembled in all psbEFLJ operon mutants.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, Finland
| | | | | | | | | | | |
Collapse
|
17
|
Baena-González E, Allahverdiyeva Y, Svab Z, Maliga P, Josse EM, Kuntz M, Mäenpää P, Aro EM. Deletion of the tobacco plastid psbA gene triggers an upregulation of the thylakoid-associated NAD(P)H dehydrogenase complex and the plastid terminal oxidase (PTOX). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:704-16. [PMID: 12969424 DOI: 10.1046/j.1365-313x.2003.01842.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have constructed a tobacco psbA gene deletion mutant that is devoid of photosystem II (PSII) complex. Analysis of thylakoid membranes revealed comparable amounts, on a chlorophyll basis, of photosystem I (PSI), the cytochrome b6f complex and the PSII light-harvesting complex (LHCII) antenna proteins in wild-type (WT) and DeltapsbA leaves. Lack of PSII in the mutant, however, resulted in over 10-fold higher relative amounts of the thylakoid-associated plastid terminal oxidase (PTOX) and the NAD(P)H dehydrogenase (NDH) complex. Increased amounts of Ndh polypeptides were accompanied with a more than fourfold enhancement of NDH activity in the mutant thylakoids, as revealed by in-gel NADH dehydrogenase measurements. NADH also had a specific stimulating effect on P700+ re-reduction in the DeltapsbA thylakoids. Altogether, our results suggest that enhancement of electron flow via the NDH complex and possibly other alternative electron transport routes partly compensates for the loss of PSII function in the DeltapsbA mutant. As mRNA levels were comparable in WT and DeltapsbA plants, upregulation of the alternative electron transport pathways (NDH complex and PTOX) occurs apparently by translational or post-translational mechanisms.
Collapse
Affiliation(s)
- Elena Baena-González
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zerges W, Auchincloss AH, Rochaix JD. Multiple translational control sequences in the 5' leader of the chloroplast psbC mRNA interact with nuclear gene products in Chlamydomonas reinhardtii. Genetics 2003; 163:895-904. [PMID: 12663530 PMCID: PMC1462503 DOI: 10.1093/genetics/163.3.895] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation of the chloroplast psbC mRNA in the unicellular eukaryotic alga Chlamydomonas reinhardtii is controlled by interactions between its 547-base 5' untranslated region and the products of the nuclear loci TBC1, TBC2, and possibly TBC3. In this study, a series of site-directed mutations in this region was generated and the ability of these constructs to drive expression of a reporter gene was assayed in chloroplast transformants that are wild type or mutant at these nuclear loci. Two regions located in the middle of the 5' leader and near the initiation codon are important for translation. Other deletions still allow for partial expression of the reporter gene in the wild-type background. Regions with target sites for TBC1 and TBC2 were identified by estimating the residual translation activity in the respective mutant backgrounds. TBC1 targets include mostly the central part of the leader and the translation initiation region whereas the only detected TBC2 targets are in the 3' part. The 5'-most 93 nt of the leader are required for wild-type levels of transcription and/or mRNA stabilization. The results indicate that TBC1 and TBC2 function independently and further support the possibility that TBC1 acts together with TBC3.
Collapse
Affiliation(s)
- William Zerges
- Biology Department, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | | | | |
Collapse
|
19
|
Douglas AE, Raven JA. Genomes at the interface between bacteria and organelles. Philos Trans R Soc Lond B Biol Sci 2003; 358:5-17; discussion 517-8. [PMID: 12594915 PMCID: PMC1693093 DOI: 10.1098/rstb.2002.1188] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The topic of the transition of the genome of a free-living bacterial organism to that of an organelle is addressed by considering three cases. Two of these are relatively clear-cut as involving respectively organisms (cyanobacteria) and organelles (plastids). Cyanobacteria are usually free-living but some are involved in symbioses with a range of eukaryotes in which the cyanobacterial partner contributes photosynthesis, nitrogen fixation, or both of these. In several of these symbioses the cyanobacterium is vertically transmitted, and in a few instances, sufficient unsuccessful attempts have been made to culture the cyanobiont independently for the association to be considered obligate for the cyanobacterium. Plastids clearly had a cyanobacterial ancestor but cannot grow independently of the host eukaryote. Plastid genomes have at most 15% of the number of genes encoded by the cyanobacterium with the smallest number of genes; more genes than are retained in the plastid genome have been transferred to the eukaryote nuclear genome, while the rest of the cyanobacterial genes have been lost. Even the most cyanobacteria-like plastids, for example the "cyanelles" of glaucocystophyte algae, are functionally and genetically very similar to other plastids and give little help in indicating intermediates in the evolution of plastids. The third case considered is the vertically transmitted intracellular bacterial symbionts of insects where the symbiosis is usually obligate for both partners. The number of genes encoded by the genomes of these obligate symbionts is intermediate between that of organelles and that of free-living bacteria, and the genomes of the insect symbionts also show rapid rates of sequence evolution and AT (adenine, thymine) bias. Genetically and functionally, these insect symbionts show considerable similarity to organelles.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| | | |
Collapse
|
20
|
Allen JF. The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 2003; 358:19-37; discussion 37-8. [PMID: 12594916 PMCID: PMC1693096 DOI: 10.1098/rstb.2002.1191] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence.
Collapse
Affiliation(s)
- John F Allen
- Plant Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
21
|
Allen JF. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. TRENDS IN PLANT SCIENCE 2003; 8:15-9. [PMID: 12523995 DOI: 10.1016/s1360-1385(02)00006-7] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photosynthetic electron transport is coupled to ATP synthesis. This process - photosynthetic phosphorylation - proceeds by several alternative electron-transport pathways in isolated chloroplasts. The question: 'Which of these works in real life?' has long occupied students of photosynthesis. Recent results from structural biology and genomics suggest that the answer is 'All of them'. The interplay between the pathways might explain the flexibility of photosynthesis in meeting different metabolic demands for ATP.
Collapse
Affiliation(s)
- John F Allen
- Department of Plant Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, Sweden.
| |
Collapse
|