1
|
Jia Z, Zhang H, Lv Y, Yu L, Cui Y, Zhang L, Yang C, Liu H, Zheng T, Xia W, Xu S, Li Y. Intrauterine chromium exposure and cognitive developmental delay: The modifying effect of genetic predisposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174350. [PMID: 38960203 DOI: 10.1016/j.scitotenv.2024.174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
There is limited evidence on the effects of intrauterine chromium (Cr) exposure on children's cognitive developmental delay (CDD). Further, little is known about the genetic factors in modifying the association between intrauterine Cr exposure and CDD. The present study involved 2361 mother-child pairs, in which maternal plasma Cr concentrations were assessed, a polygenic risk score for the child was constructed, and the child's cognitive development was evaluated using the Bayley Scales of Infant Development. The risks of CDD conferred by intrauterine Cr exposure in children with different genetic backgrounds were evaluated by logistic regression. The additive interaction between intrauterine Cr exposure and genetic factors was evaluated by calculating the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI). According to present study, higher intrauterine Cr exposure was significantly associated with increased CDD risk [each unit increase in ln-transformed maternal plasma Cr concentration (ln-Cr): adjusted OR (95 % CI), 1.18 (1.04-1.35); highest vs lowest quartile: adjusted OR (95 % CI), 1.57 (1.10-2.23)]. The dose-response relationship of intrauterine Cr exposure and CDD for children with high genetic risk was more prominent [each unit increased ln-Cr: adjusted OR (95 % CI), 1.36 (1.09-1.70)]. Joint effects between intrauterine Cr exposure and genetic factors were found. Specifically, for high genetic risk carriers, the association between intrauterine Cr exposure and CDD was more evident [highest vs lowest quartile: adjusted OR (95 % CI), 2.33 (1.43-3.80)]. For those children with high intrauterine Cr exposure and high genetic risk, the adjusted AP was 0.39 (95 % CI, 0.07-0.72). Conclusively, intrauterine Cr exposure was a high-risk factor for CDD in children, particularly for those with high genetic risk. Intrauterine Cr exposure and one's adverse genetic background jointly contribute to an increased risk of CDD in children.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuan Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Zamstein O, Wainstock T, Gutvirtz G, Sheiner E. Assessing the impact of medically assisted reproduction on autism spectrum disorder risk. J Assist Reprod Genet 2024; 41:2607-2613. [PMID: 38926295 PMCID: PMC11535083 DOI: 10.1007/s10815-024-03180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE Techniques of medically assisted reproduction interact with the embryo at crucial developmental stages, yet their impact on the fetus and subsequent child's health remains unclear. Given rising infertility rates and more frequent use of fertility treatments, we aimed to investigate if these methods heighten the risk of autism spectrum disorder (ASD) in children. METHODS A population-based cohort study was conducted at Soroka University Medical Center, a tertiary referral hospital, encompassing singleton births. The incidence of ASD in offspring, incorporating either hospital or community-based diagnoses, was compared in relation to the conception method. To examine the cumulative incidence of ASD, a Kaplan-Meier survival curve was utilized. Cox proportional hazards model was employed to adjust for confounders. RESULTS Among 115,081 pregnancies, 0.5% involved ovulation induction (OI) and 1.7% in vitro fertilization (IVF), with the rest conceived naturally. Fertility treatments were more common in older patients and linked to more diabetes, hypertensive disorders, preterm, and cesarean deliveries. Out of 767 ASD diagnoses, offspring from OI and IVF had higher initial ASD rates (2.1% and 1.3%) than natural conceptions (0.6%). In a Cox model accounting for maternal age, ethnicity, and gender, neither OI nor IVF was significantly associated with ASD. The adjusted hazard ratios were 0.83 (95% CI 0.48-1.43) for OI and 1.34 (95% CI 0.91-1.99) for IVF. When considering fertility treatments combined, the association with ASD remained non-significant (aHR 1.11, 95% CI 0.80-1.54, p = 0.52). CONCLUSION Fertility treatments, including OI and IVF, do not exhibit a significant association with heightened ASD risk in offspring.
Collapse
Affiliation(s)
- Omri Zamstein
- The Obstetrics and Gynecology Division, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| | - Tamar Wainstock
- Faculty of Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Gil Gutvirtz
- The Obstetrics and Gynecology Division, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Eyal Sheiner
- The Obstetrics and Gynecology Division, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
3
|
Ryan NM, Heron EA. Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. J Appl Genet 2023; 64:303-317. [PMID: 36710277 PMCID: PMC10076404 DOI: 10.1007/s13353-022-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
Collapse
Affiliation(s)
- Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Latchney SE, Cadney MD, Hopkins A, Garland T. DNA Methylation Analysis of Imprinted Genes in the Cortex and Hippocampus of Cross-Fostered Mice Selectively Bred for Increased Voluntary Wheel-Running. Behav Genet 2022; 52:281-297. [PMID: 35988119 PMCID: PMC9463359 DOI: 10.1007/s10519-022-10112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behavior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions. First, do HR mice have altered DNA methylation profiles of imprinted genes in the brain compared to C mice? Second, does maternal upbringing further modify the DNA methylation status of these imprinted genes? To address these questions, we cross-fostered all offspring at birth to create four experimental groups: C pups to other C dams, HR pups to other HR dams, C pups to HR dams, and HR pups to C dams. Bisulfite sequencing of 16 imprinted genes in the cortex and hippocampus revealed that the HR line had altered DNA methylation patterns of the paternally imprinted genes, Rasgrf1 and Zdbf2, as compared with the C line. Both fostering between the HR and C lines and sex modified the DNA methylation profiles for the paternally expressed genes Mest, Peg3, Igf2, Snrpn, and Impact. Ig-DMR, a gene with multiple paternal and maternal imprinted clusters, was also affected by maternal upbringing and sex. Our results suggest that differential methylation patterns of imprinted genes in the brain could contribute to evolutionary increases in wheel-running behavior and are also dependent on maternal upbringing and sex.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, 18952 E. Fisher Rd, Saint Mary's City, MD, 20686, USA.
| | - Marcell D Cadney
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry 2022; 12:210. [PMID: 35597773 PMCID: PMC9124202 DOI: 10.1038/s41398-022-01972-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.
Collapse
Affiliation(s)
- Anthony R. Isles
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
6
|
Karami K, Zerehdaran S, Javadmanesh A, Shariati MM. Assessment of maternal and parent of origin effects in genetic variation of economic traits in Iranian native fowl. Br Poult Sci 2019; 60:486-492. [PMID: 31132866 DOI: 10.1080/00071668.2019.1621987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The objective of the study was to investigate the influence of maternal and parent of origin effects (POE) on genetic variation of Iranian native fowl on economic traits. 2. Studied traits were body weights at birth (BW0), at eight (BW8) and 12 weeks of age (BW12), age (ASM) and weight at sexual maturity (WSM), egg number (EN) and average egg weight (AEW). 3. Several models, including additive, maternal additive genetics, permanent environmental effects and POE were compared using Wombat software. Bayesian Information Criterion (BIC) was used to identify the best model for each trait. The chance of reranking of birds between models was investigated using Spearman correlation and Wilcoxon rank test. 4. Based on the best model, direct heritability estimates for BW0, BW8, BW12, ASM, WSM, EN and AEW traits were 0.05, 0.21, 0.23, 0.30, 0.39, 0.22 and 0.38, respectively. Proportion of variance due to paternal POE for BW8 was 4% and proportion of variance due to maternal POE for BW12 was 5%. 5. Estimated maternal heritability for BW0 was 0.30 and for BW8 and BW12 were 0.00 and 0.01, respectively, which shows that maternal heritability was reduced by age. 6. Based on the results, considering POE for BW8 and BW12 and maternal genetic effects for BW0 improved the accuracy of estimations and avoid reranking of birds for these traits.
Collapse
Affiliation(s)
- K Karami
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - S Zerehdaran
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - A Javadmanesh
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - M M Shariati
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
7
|
Ramos-Ibeas P, Heras S, Gómez-Redondo I, Planells B, Fernández-González R, Pericuesta E, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod Dev 2019; 86:1292-1306. [PMID: 30719806 DOI: 10.1002/mrd.23119] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long-term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Sonia Heras
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
8
|
Reciprocal F1 Hybrids of Two Inbred Mouse Strains Reveal Parent-of-Origin and Perinatal Diet Effects on Behavior and Expression. G3-GENES GENOMES GENETICS 2018; 8:3447-3468. [PMID: 30171036 PMCID: PMC6222572 DOI: 10.1534/g3.118.200135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parent-of-origin effects (POE) in mammals typically arise from maternal effects or imprinting. In some instances, such POE have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. However, POE on complex traits such as behavior remain largely uncharacterized. Moreover, although both behavior and epigenetic effects are known to be modified by perinatal environmental exposures such as nutrient deficiency, the architecture of such environment-by-POE is mostly unexplored. To study POE and environment-by-POE, we employ a relatively neglected but especially powerful experimental system for POE-detection: reciprocal F1 hybrids (RF1s). We exposed female NOD/ShiLtJ×C57Bl/6J and C57Bl/6J×NOD/ShiLtJ mice, perinatally, to one of four different diets, then after weaning recorded a set of behaviors that model psychiatric disease. Whole-brain microarray expression data revealed an imprinting-enriched set of 15 genes subject to POE. The most-significant expression POE, on the non-imprinted gene Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Bayesian mediation analysis suggested Carmil1 expression suppresses behavioral POE, and that the imprinted gene Airn suppresses POE on Carmil1 expression. A suggestive diet-by-POE was observed on percent center time in the open field test, and a significant diet-by-POE was observed on one imprinted gene, Mir341, and on 16 non-imprinted genes. The relatively small, tractable set of POE and diet-by-POE detected on behavior and expression here motivates further studies examining such effects across RF1s on multiple genetic backgrounds.
Collapse
|
9
|
Zhao C, Gong G. Mapping the effect of the X chromosome on the human brain: Neuroimaging evidence from Turner syndrome. Neurosci Biobehav Rev 2017; 80:263-275. [PMID: 28591595 DOI: 10.1016/j.neubiorev.2017.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/07/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In addition to determining sex, the X chromosome has long been considered to play a crucial role in brain development and intelligence. Turner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females. Thus, Turner syndrome provides a unique "knock-out model" for investigating how the X chromosome influences the human brain in vivo. Numerous cutting-edge neuroimaging techniques and analyses have been applied to investigate various brain phenotypes in women with TS, which have yielded valuable evidence toward elucidating the causal relationship between the X chromosome and human brain structure and function. In this review, we comprehensively summarize the recent progress made in TS-related neuroimaging studies and emphasize how these findings have enhanced our understanding of X chromosome function with respect to the human brain. Future investigations are encouraged to address the issues of previous TS neuroimaging studies and to further identify the biological mechanisms that underlie the function of specific X-linked genes in the human brain.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Identification of Novel MAGE-G1-Interacting Partners in Retinoic Acid-Induced P19 Neuronal Differentiation Using SILAC-Based Proteomics. Sci Rep 2017; 7:44699. [PMID: 28374796 PMCID: PMC5379670 DOI: 10.1038/srep44699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
MAGE-G1 is a protein plays role in the early process of neurogenesis. However, the fundamental roles MAGE-G1 played in neurogenesis have not yet been completely understood. Finding the partners MAGE-G1 interacting with will surely contribute to the function study of MAGE-G1. In this study, using Stable Isotope Labeling by Amino acids in Cell culture-immunoprecipitation quantitative proteomics, we screened the interacting proteins of MAGE-G1 during retinoic acid -induced neuronal differentiation of P19 cells and firstly found that FSCN1 and VIME were potential novel MAGE-G1-interacting proteins. Then, the interaction between overexpressed MAGE-G1 and FSCN1 or VIME was validated by GST-pull down assay in bacteria and by co-immunoprecipitation assay in COS7 cells. Endogenous co-immunoprecipitation assay further confirmed that MAGE-G1 interacted with FSCN1 or VIME in P19 cells after a 6-day retinoic acid-induced neuronal differentiation. Those results provide a functional linkage between MAGE-G1 and FSCN1 or VIME and may facilitate a better understanding of the fundamental aspects of MAGE-G1 during neurogenesis.
Collapse
|
11
|
Lassi G, Maggi S, Balzani E, Cosentini I, Garcia-Garcia C, Tucci V. Working-for-Food Behaviors: A Preclinical Study in Prader-Willi Mutant Mice. Genetics 2016; 204:1129-1138. [PMID: 27672097 PMCID: PMC5105846 DOI: 10.1534/genetics.116.192286] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/14/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormal feeding behavior is one of the main symptoms of Prader-Willi syndrome (PWS). By studying a PWS mouse mutant line, which carries a paternally inherited deletion of the small nucleolar RNA 116 (Snord116), we observed significant changes in working-for-food behavioral responses at various timescales. In particular, we report that PWS mutant mice show a significant delay compared to wild-type littermate controls in responding to both hour-scale and seconds-to-minutes-scale time intervals. This timing shift in mutant mice is associated with better performance in the working-for-food task, and results in better decision making in these mutant mice. The results of our study reveal a novel aspect of the organization of feeding behavior, and advance the understanding of the interplay between the metabolic functions and cognitive mechanisms of PWS.
Collapse
Affiliation(s)
- Glenda Lassi
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Silvia Maggi
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Edoardo Balzani
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Ilaria Cosentini
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Celina Garcia-Garcia
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Valter Tucci
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
12
|
Marty V, Labialle S, Bortolin-Cavaillé ML, Ferreira De Medeiros G, Moisan MP, Florian C, Cavaillé J. Deletion of the miR-379/miR-410 gene cluster at the imprintedDlk1-Dio3locus enhances anxiety-related behaviour. Hum Mol Genet 2016; 25:728-39. [DOI: 10.1093/hmg/ddv510] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022] Open
|
13
|
Bowers ME, Yehuda R. Intergenerational Transmission of Stress in Humans. Neuropsychopharmacology 2016; 41:232-44. [PMID: 26279078 PMCID: PMC4677138 DOI: 10.1038/npp.2015.247] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
The hypothesis that offspring are affected by parental trauma or stress exposure, first noted anecdotally, is now supported empirically by data from Holocaust survivor offspring cohorts and other populations. These findings have been extended to less extreme forms of stress, where differential physical, behavioral, and cognitive outcomes are observed in affected offspring. Parental stress-mediated effects in offspring could be explained by genetics or social learning theory. Alternatively, biological variations stemming from stress exposure in parents could more directly have an impact on offspring, a concept we refer to here as 'intergenerational transmission', via changes to gametes and the gestational uterine environment. We further extend this definition to include the transmission of stress to offspring via early postnatal care, as animal studies demonstrate the importance of early maternal care of pups in affecting offsprings' long-term behavioral changes. Here, we review clinical observations in offspring, noting that offspring of stress- or trauma-exposed parents may be at greater risk for physical, behavioral, and cognitive problems, as well as psychopathology. Furthermore, we review findings concerning offspring biological correlates of parental stress, in particular, offspring neuroendocrine, epigenetic, and neuroanatomical changes, in an attempt to determine the extent of parental stress effects. Although understanding the etiology of effects in offspring is currently impeded by methodological constraints, and limitations in our knowledge, we summarize current information and conclude by presenting hypotheses that have been prompted by recent studies in the field.
Collapse
Affiliation(s)
- Mallory E Bowers
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY, USA,Mental Health Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount, NY, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, James J. Peters Veterans Affairs Medical Center, 526 OOMH PTSD 116/A, JJP VAMC, 130 W Kingsbridge Road, Bronx, NY 10468, USA, Tel: +718 741 4000, ext. 6964, Fax: +718 741 4703, E-mail:
| |
Collapse
|
14
|
Discontinuity in the genetic and environmental causes of the intellectual disability spectrum. Proc Natl Acad Sci U S A 2015; 113:1098-103. [PMID: 26711998 PMCID: PMC4743770 DOI: 10.1073/pnas.1508093112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intellectual disability (ID) is present in almost 3% of children and fundamentally characterized by IQ scores below 70. Genetic research has shown that it is among the most heritable traits, and it has been accepted that ID is the extreme low of the normal IQ distribution. However, we show that, while the genetic and environmental factors influencing mild ID (lowest 3% of IQ distribution) are similar to those influencing IQ in the normal range, factors influencing severe ID (lowest 0.5%) differ from those influencing mild ID or IQ scores in the normal range. Therefore, severe ID is a distinct disorder, qualitatively different from the majority of ID, which in turn represents the low extreme of the normal distribution of intelligence. Intellectual disability (ID) occurs in almost 3% of newborns. Despite substantial research, a fundamental question about its origin and links to intelligence (IQ) still remains. ID has been shown to be inherited and has been accepted as the extreme low of the normal IQ distribution. However, ID displays a complex pattern of inheritance. Previously, noninherited rare mutations were shown to contribute to severe ID risk in individual families, but in the majority of cases causes remain unknown. Common variants associated with ID risk in the population have not been systematically established. Here we evaluate the hypothesis, originally proposed almost 1 century ago, that most ID is caused by the same genetic and environmental influences responsible for the normal distribution of IQ, but that severe ID is not. We studied more than 1,000,000 sibling pairs and 9,000 twin pairs assessed for IQ and for the presence of ID. We evaluated whether genetic and environmental influences at the extremes of the distribution are different from those operating in the normal range. Here we show that factors influencing mild ID (lowest 3% of IQ distribution) were similar to those influencing IQ in the normal range. In contrast, the factors influencing severe ID (lowest 0.5% of IQ distribution) differ from those influencing mild ID or IQ scores in the normal range. Taken together, our results suggest that most severe ID is a distinct condition, qualitatively different from the preponderance of ID, which, in turn, represents the low extreme of the normal distribution of intelligence.
Collapse
|
15
|
Zayats T, Johansson S, Haavik J. Expanding the toolbox of ADHD genetics. How can we make sense of parent of origin effects in ADHD and related behavioral phenotypes? Behav Brain Funct 2015; 11:33. [PMID: 26475699 PMCID: PMC4609130 DOI: 10.1186/s12993-015-0078-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association (GWA) studies have shown that many different genetic variants cumulatively contribute to the risk of psychiatric disorders. It has also been demonstrated that various parent-of-origin effects (POE) may differentially influence the risk of these disorders. Together, these observations have provided important new possibilities to uncover the genetic underpinnings of such complex phenotypes. As POE so far have received little attention in neuropsychiatric disorders, there is still much progress to be made. Here, we mainly focus on the new and emerging role of POE in attention-deficit hyperactivity disorder (ADHD). We review the current evidence that POE play an imperative role in vulnerability to ADHD and related disorders. We also discuss how POE can be assessed using statistical genetics tools, expanding the resources of modern psychiatric genetics. We propose that better comprehension and inspection of POE may offer new insight into the molecular basis of ADHD and related phenotypes, as well as the potential for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Tetyana Zayats
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Stefan Johansson
- Department of Clinical Science, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Jan Haavik
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
16
|
Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev 2015; 49:90-104. [PMID: 25496904 PMCID: PMC7112550 DOI: 10.1016/j.neubiorev.2014.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/16/2022]
Abstract
Mounting evidence indicates that schizophrenia is associated with adverse intrauterine experiences. An adverse or suboptimal fetal environment can cause irreversible changes in brain that can subsequently exert long-lasting effects through resetting a diverse array of biological systems including endocrine, immune and nervous. It is evident from animal and imaging studies that subtle variations in the intrauterine environment can cause recognizable differences in brain structure and cognitive functions in the offspring. A wide variety of environmental factors may play a role in precipitating the emergent developmental dysregulation and the consequent evolution of psychiatric traits in early adulthood by inducing inflammatory, oxidative and nitrosative stress (IO&NS) pathways, mitochondrial dysfunction, apoptosis, and epigenetic dysregulation. However, the precise mechanisms behind such relationships and the specificity of the risk factors for schizophrenia remain exploratory. Considering the paucity of knowledge on fetal programming of schizophrenia, it is timely to consolidate the recent advances in the field and put forward an integrated overview of the mechanisms associated with fetal origin of schizophrenia.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health & Neurosciences, Bangalore 560029, India.
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre and Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, India
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, and Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
17
|
Nye MD, Hoyo C, Murphy SK. In vitro lead exposure changes DNA methylation and expression of IGF2 and PEG1/MEST. Toxicol In Vitro 2015; 29:544-50. [PMID: 25596546 DOI: 10.1016/j.tiv.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/10/2014] [Accepted: 01/06/2015] [Indexed: 11/28/2022]
Abstract
Epigenetic processes, such as changes in DNA methylation, likely mediate the link between environmental exposures in utero and altered gene expression. Differentially methylated regions (DMRs) that regulate imprinted genes may be especially vulnerable to environmental exposures since imprinting is established and maintained largely through DNA methylation, resulting in expression from only one parental chromosome. We used the human embryonic kidney cell line, HEK-293, to investigate the effects of exposure to physiologically relevant doses of lead acetate (Pb) on the methylation status of nine imprinted gene DMRs. We assessed mean methylation after seventy-two hours of Pb exposure (0-25 μg/dL) using bisulfite pyrosequencing. The PEG1/MEST and IGF2 DMRs had maximum methylation decreases of 9.6% (20 μg/dL; p<0.005) and 3.8% (25 μg/dL; p<0.005), respectively. Changes at the MEG3 DMRs had a maximum decrease in methylation of 2.9% (MEG3) and 1.8% (MEG3-IG) at 5 μg/dL Pb, but were not statistically significant. The H19, NNAT, PEG3, PLAGL1, and SGCE/PEG10 DMRs showed a less than 0.5% change in methylation, across the dose range used, and were deemed non-responsive to Pb in our model. Pb exposure below reportable/actionable levels increased expression of PEG1/MEST concomitant with decreased methylation. These results suggest that Pb exposure can stably alter the regulatory capacity of multiple imprinted DMRs.
Collapse
Affiliation(s)
- Monica D Nye
- Duke University Medical Center, Department of Obstetrics and Gynecology, B225 LSRC, Research Drive, Durham, NC 27708, USA; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, 450 West Drive, Chapel Hill, NC 27599, USA.
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Susan K Murphy
- Duke University Medical Center, Department of Obstetrics and Gynecology, B225 LSRC, Research Drive, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Serrano A, Decara JM, Fernández-González R, López-Cardona AP, Pavón FJ, Orio L, Alen F, Gutiérrez-Adán A, de Fonseca FR. Hyperplastic Obesity and Liver Steatosis as Long-Term Consequences of Suboptimal In Vitro Culture of Mouse Embryos1. Biol Reprod 2014; 91:30. [DOI: 10.1095/biolreprod.114.117879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
19
|
Basic concepts of epigenetics. Fertil Steril 2013; 99:607-15. [DOI: 10.1016/j.fertnstert.2013.01.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/20/2022]
|
20
|
Schmidt MH, Petermann F, Schipper M. Epigenetik–Revolution der Entwicklungspsychopathologie? KINDHEIT UND ENTWICKLUNG 2012. [DOI: 10.1026/0942-5403/a000091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Die Epigenetik, die sich mit der Bedeutung der Gene im Kontext der menschlichen Entwicklung beschäftigt, konnte zeigen, dass genetische Wirkungen auf die Entwicklung immer auf einer Wechselwirkung zwischen Genom und Umwelt basieren. Die Annahme, der genetische Einfluss auf die (psychische) Entwicklung sei konstant und nur durch gentechnologische Maßnahmen veränderbar, ist demnach offenbar ein Fehlschluss. Es werden Grundbegriffe der Epigenetik und aktuelle Forschungsergebnisse erörtert. Desweiteren wird diskutiert, ob epigenetische Prozesse die Pathogenese psychischer Störungen beeinflussen und ob diese Prozesse an bestimmte Entwicklungsphasen gebunden sind. Anschließend wird die Epigenetik im Kontext der Klinischen Kinderpsychologie betrachtet. Es wird diskutiert, ob die Epigenetik die Entwicklungspsychopathologie grundlegend verändert und welche Konsequenzen die neuen epigenetischen Erkenntnisse für die Klinische Kinderpsychologie bereithalten.
Collapse
Affiliation(s)
- Martin H. Schmidt
- Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg
| | - Franz Petermann
- Zentrum für Klinische Psychologie und Rehabilitation der Universität Bremen
| | - Marc Schipper
- Zentrum für Klinische Psychologie und Rehabilitation der Universität Bremen
| |
Collapse
|
21
|
Wu Y, Liu X, Luo H, Deng W, Zhao G, Wang Q, Zhang L, Ma X, Liu X, Murray RA, Collier DA, Li T. Advanced paternal age increases the risk of schizophrenia and obsessive-compulsive disorder in a Chinese Han population. Psychiatry Res 2012; 198:353-9. [PMID: 22424906 PMCID: PMC3778893 DOI: 10.1016/j.psychres.2012.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 02/05/2023]
Abstract
Using the Structured Clinical Interview for DSM-IV, patient and non-patient version (SCID-P/NP), this study investigated 351 patients with schizophrenia, 122 with obsessive-compulsive disorder (OCD), and 238 unrelated healthy volunteers in a Chinese Han population. The relative risks posed by advanced paternal age for schizophrenia and OCD in offspring were computed under logistic regression analyses and adjusted for the participant's sex, age and co-parent age at birth. Compared to the offspring with paternal age of 25-29 years old, the relative risks rose from 2.660 to 10.183 in the paternal age range of 30-34 and ≥35. The relative risks for OCD increased from 2.225 to 5.413 in 30-34 and ≥35. For offspring with paternal age of <25, the odds ratios of developing schizophrenia and OCD were 0.628 and 0.289 respectively, whereas an association between increased maternal age and risk for schizophrenia/OCD was not seen. Interaction analysis showed an interaction effect between paternal age and maternal age at birth. Such a tendency of risk affected by parental age for schizophrenia and OCD existed after splitting out the data of early onset patients. Sex-specific analyses found that the relative risks for schizophrenia with paternal age of 30-34 and ≥35 in male offspring were 2.407 and 10.893, and in female offspring were 3.080 and 9.659. The relative risks for OCD with paternal age of 30-34 and ≥35 in male offspring were 3.493 and 7.373, and in female offspring 2.005 and 4.404. The mean paternal age of schizophrenia/OCD patients born before the early 1980s was much greater than that of patients who were born after then. The findings illustrated that advanced paternal age is associated with increased risk for both schizophrenia and OCD in a Chinese Han population, prominently when paternal age is over 35. Biological and non-biological mechanisms may both be involved in the effects of advanced paternal age on schizophrenia and OCD.
Collapse
Affiliation(s)
- Yuejing Wu
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiang Liu
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongrong Luo
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Deng
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gaofeng Zhao
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Wang
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lan Zhang
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaohong Ma
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiehe Liu
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Robin A. Murray
- Department of Psychological Medicine, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - David A. Collier
- The MRC SGDP Centre, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Tao Li
- The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding author at: 28 Dian Xin Nan Road, West China Hospital, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
22
|
Murphy SK, Huang Z, Hoyo C. Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues. PLoS One 2012; 7:e40924. [PMID: 22808284 PMCID: PMC3396645 DOI: 10.1371/journal.pone.0040924] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022] Open
Abstract
Epigenetic plasticity in relation to in utero exposures may mechanistically explain observed differences in the likelihood of developing common complex diseases including hypertension, diabetes and cardiovascular disease through the cumulative effects of subtle alterations in gene expression. Imprinted genes are essential mediators of growth and development and are characterized by differentially methylated regulatory regions (DMRs) that carry parental allele-specific methylation profiles. This theoretical 50% level of methylation provides a baseline from which endogenously- or exogenously-induced deviations in methylation can be detected. We quantified DNA methylation at imprinted gene DMRs in a large panel of human conceptal tissues, in matched buccal cell specimens collected at birth and at one year of age, and in the major cell fractions of umbilical cord blood to assess the stability of methylation at these regions. DNA methylation was measured using validated pyrosequencing assays at seven DMRs regulating the IGF2/H19, DLK1/MEG3, MEST, NNAT and SGCE/PEG10 imprinted domains. DMR methylation did not significantly differ for the H19, MEST and SGCE/PEG10 DMRs across all conceptal tissues analyzed (ANOVA p>0.10). Methylation differences at several DMRs were observed in tissues from brain (IGF2 and MEG3-IG DMRs), liver (IGF2 and MEG3 DMRs) and placenta (both DLK1/MEG3 DMRs and NNAT DMR). In most infants, methylation profiles in buccal cells at birth and at one year of age were comparable, as was methylation in the major cell fractions of umbilical cord blood. Several infants showed temporal deviations in methylation at multiple DMRs. Similarity of inter-individual and intra-individual methylation at some, but not all of the DMRs analyzed supports the possibility that methylation of these regions can serve as useful biosensors of exposure.
Collapse
Affiliation(s)
- Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
23
|
Calle A, Fernandez-Gonzalez R, Ramos-Ibeas P, Laguna-Barraza R, Perez-Cerezales S, Bermejo-Alvarez P, Ramirez MA, Gutierrez-Adan A. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 2012; 77:785-93. [DOI: 10.1016/j.theriogenology.2011.07.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 01/10/2023]
|
24
|
Pun FW, Zhao C, Lo WS, Ng SK, Tsang SY, Nimgaonkar V, Chung WS, Ungvari GS, Xue H. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor β(2) subunit. Mol Psychiatry 2011; 16:557-68. [PMID: 20404824 DOI: 10.1038/mp.2010.47] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex genetic disorder, the inheritance pattern of which is likely complicated by epigenetic factors yet to be elucidated. In this study, transmission disequilibrium tests with family trios yielded significant differences between paternal and maternal transmissions of the disease-associated single-nucleotide polymorphism (SNP) rs6556547 and its haplotypes. The minor allele (T) of rs6556547 was paternally undertransmitted to male schizophrenic offsprings, and this parent-of-origin effect strongly suggested that GABRB2 is imprinted. 'Flipping' of allelic expression in heterozygotes of SNP rs2229944 (C/T) in GABRB2 or rs2290732 (G/A) in the neighboring GABRA1 was compatible with imprinting effects on gene expression. Clustering analysis of GABRB2 mRNA expressions suggested that imprinting brought about the observed two-tiered distribution of expression levels in controls with heterozygous genotype at the disease-associated SNP rs1816071 (A/G). The deficit of upper-tiered expressions accounted for the lowered expression levels in the schizophrenic heterozygotes. The occurrence of a two-tiered distribution furnished support for imprinting, and also pointed to the necessity of differentiating between two kinds of heterozygotes of different parental origins in disease association studies on GABRB2. Bisulfite sequencing revealed hypermethylation in the neighborhood of SNP rs1816071, and methylation differences between controls and schizophrenia patients. Notably, the two schizophrenia-associated SNPs rs6556547 and rs1816071 overlapped with a CpG dinucleotide, thereby opening the possibility that CpG methylation status of these sites could have an impact on the risk of schizophrenia. Thus multiple lines of evidence pointed to the occurrence of imprinting in the GABRB2 gene and its possible role in the development of schizophrenia.
Collapse
Affiliation(s)
- F W Pun
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Brown WM. The Parental Antagonism Theory of Language Evolution: Preliminary Evidence for the Proposal. Hum Biol 2011; 83:213-45. [DOI: 10.3378/027.083.0205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Swaney WT. Genomic imprinting and mammalian reproduction. Horm Behav 2011; 59:369-74. [PMID: 20594966 DOI: 10.1016/j.yhbeh.2010.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/15/2022]
Abstract
Among animals, genomic imprinting is a uniquely mammalian phenomenon in which certain genes are monoallelically expressed according to their parent of origin. This silencing of certain alleles often involves differential methylation at regulatory regions associated with imprinted genes and must be recapitulated at every generation with the erasure and reapplication of these epigenetic marks in the germline. Imprinted genes encode regulatory proteins that play key roles in fetal growth and development, but they also exert wider effects on mammalian reproduction. Genetic knockout experiments have shown that certain paternally expressed imprinted genes regulate post-natal behavior in offspring as well as reproductive behaviors in males and females. These deficits involve changes in hypothalamic function affecting multiple areas and different neurochemical pathways. Paternally expressed genes are highly expressed in the hypothalamus which regulates growth, metabolism and reproduction and so are well placed to influence all aspects of reproduction from adults to the resultant offspring. Coadaptation between offspring and mother appears to have played an important role in the evolution of some paternally expressed genes, but the influence of these genes on male reproductive behavior also suggests that they have evolved to regulate their own transmission to successive generations via the male germline.
Collapse
Affiliation(s)
- William T Swaney
- Behavioural Biology and Helmholtz Institute, Utrecht University, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
27
|
Li Y, Guo Y, Wang J, Hou W, Chang MN, Liao D, Wu R. A statistical design for testing transgenerational genomic imprinting in natural human populations. PLoS One 2011; 6:e16858. [PMID: 21364891 PMCID: PMC3045439 DOI: 10.1371/journal.pone.0016858] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/31/2010] [Indexed: 12/27/2022] Open
Abstract
Genomic imprinting is a phenomenon in which the same allele is expressed differently, depending on its parental origin. Such a phenomenon, also called the parent-of-origin effect, has been recognized to play a pivotal role in embryological development and pathogenesis in many species. Here we propose a statistical design for detecting imprinted loci that control quantitative traits based on a random set of three-generation families from a natural population in humans. This design provides a pathway for characterizing the effects of imprinted genes on a complex trait or disease at different generations and testing transgenerational changes of imprinted effects. The design is integrated with population and cytogenetic principles of gene segregation and transmission from a previous generation to next. The implementation of the EM algorithm within the design framework leads to the estimation of genetic parameters that define imprinted effects. A simulation study is used to investigate the statistical properties of the model and validate its utilization. This new design, coupled with increasingly used genome-wide association studies, should have an immediate implication for studying the genetic architecture of complex traits in humans.
Collapse
Affiliation(s)
- Yao Li
- Center for Computational Biology, Beijing Forestry University, Beijing, People's Republic of China
- Department of Statistics, West Virginia University, Morgantown, West Virginia, United States of America
| | - Yunqian Guo
- Center for Computational Biology, Beijing Forestry University, Beijing, People's Republic of China
| | - Jianxin Wang
- Center for Computational Biology, Beijing Forestry University, Beijing, People's Republic of China
| | - Wei Hou
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States of America
| | - Myron N. Chang
- Department of Biostatistics, University of Florida, Gainesville, Florida, United States of America
| | - Duanping Liao
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rongling Wu
- Center for Computational Biology, Beijing Forestry University, Beijing, People's Republic of China
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Liu X, Solehdin F, Cohen IL, Gonzalez MG, Jenkins EC, Lewis MES, Holden JJA. Population- and Family-Based Studies Associate the MTHFR Gene with Idiopathic Autism in Simplex Families. J Autism Dev Disord 2010; 41:938-44. [DOI: 10.1007/s10803-010-1120-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Davies W. Genomic imprinting on the X chromosome: implications for brain and behavioral phenotypes. Ann N Y Acad Sci 2010; 1204 Suppl:E14-9. [DOI: 10.1111/j.1749-6632.2010.05567.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Mains L, Zimmerman M, Blaine J, Stegmann B, Sparks A, Ansley T, Van Voorhis B. Achievement test performance in children conceived by IVF. Hum Reprod 2010; 25:2605-11. [DOI: 10.1093/humrep/deq218] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Fernandez-Gonzalez R, Ramirez MA, Pericuesta E, Calle A, Gutierrez-Adan A. Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice. Biol Reprod 2010; 83:720-7. [PMID: 20650886 DOI: 10.1095/biolreprod.110.084715] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
For epigenetic phenotypes to be passed on from one generation to the next, it is required that epigenetic marks between generations are not cleared during the two stages of epigenetic reprogramming: mammalian gametogenesis and preimplantation development. The molecular nature of the chromatin marks involved in these events is unknown. Using the epigenetically inherited allele Axin1(Fu) (the result of a retrotransposon insertion upstream of the Axin1 gene) we sought to establish the heritable mark during early embryonic development that determines transgenerational epigenetic inheritance and to examine a possible shift in the expression of this epiallele in future progeny induced by in vitro culture (IVC). To identify the heritable mark we analyzed 1) the level of DNA methylation shown by the Axin1(Fu) allele in sperm and embryos at blastocysts stage and 2) the histone marks (H3K4 me2, H3K9 me3, H3K9 ac, and H4K20 me3) present at the blastocyst stage at the specific Axin1(Fu) locus. According to our data, histone H3K4 me2 and H3K9 ac mark the differences between the Axin1(Fu) penetrant and the silent locus during the first period of demethylation of the preimplantation development. Moreover, suboptimal IVC (reported to produce epigenetic alterations in embryos) and the histone deacetylase inhibitor trichostatin A affect the postnatal expression of this epigenetically sensitive allele through histone modifications during early development. This finding indicates that altered histone modifications during preimplantation can drive altered gene expression later on in development.
Collapse
|
32
|
A model for transgenerational imprinting variation in complex traits. PLoS One 2010; 5:e11396. [PMID: 20644725 PMCID: PMC2904369 DOI: 10.1371/journal.pone.0011396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/06/2010] [Indexed: 12/15/2022] Open
Abstract
Despite the fact that genetic imprinting, i.e., differential expression of the same allele due to its different parental origins, plays a pivotal role in controlling complex traits or diseases, the origin, action and transmission mode of imprinted genes have still remained largely unexplored. We present a new strategy for studying these properties of genetic imprinting with a two-stage reciprocal F mating design, initiated with two contrasting inbred lines. This strategy maps quantitative trait loci that are imprinted (i.e., iQTLs) based on their segregation and transmission across different generations. By incorporating the allelic configuration of an iQTL genotype into a mixture model framework, this strategy provides a path to trace the parental origin of alleles from previous generations. The imprinting effects of iQTLs and their interactions with other traditionally defined genetic effects, expressed in different generations, are estimated and tested by implementing the EM algorithm. The strategy was used to map iQTLs responsible for survival time with four reciprocal F populations and test whether and how the detected iQTLs inherit their imprinting effects into the next generation. The new strategy will provide a tool for quantifying the role of imprinting effects in the creation and maintenance of phenotypic diversity and elucidating a comprehensive picture of the genetic architecture of complex traits and diseases.
Collapse
|
33
|
Ponnudurai R, Jayakar J. Mode of transmission of schizophrenia. Asian J Psychiatr 2010; 3:67-72. [PMID: 23051193 DOI: 10.1016/j.ajp.2010.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 02/28/2010] [Accepted: 03/07/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Although the evidences for the phenomenon of "anticipation" and parental "imprinting" have been shown in schizophrenia, they are inconclusive. The purpose of this study was to test these hypotheses by examining three successive generations. METHOD 58 schizophrenic patients who had their maternal or paternal parent or grandparent, or both, affected with schizophrenia or related disorders were analyzed. Chi-square test was used to assess the association of the sex of the parent with more than one of the affected proband families. The differences in the age of onset of the illness between the successive three generations was calculated using the t-test. RESULTS In comparison to mothers' affected families, a large proportion of the father side affected families had more than one of their offspring affected with the illness. The age of onset in probands was lower in comparison to that of those on the parental side and the difference was more significant when the paternal side was affected. Interestingly, when the age of onset in the grandparents was compared with either of the parental sides of the probands no difference emerged, indicating lack of support from this study for the theory of anticipation. At any rate, the age of onset of probands was significantly lower in comparison to that of the paternal grandfather side. Further, skipping of a generation in the process of transmission was noted in some families. CONCLUSIONS It is hard to ignore our findings that suggest paternal side transmission.
Collapse
Affiliation(s)
- R Ponnudurai
- Department of Psychiatry, Sri Ramachandra Medical College & Research Institute, Porur, Chennai 600116, India
| | | |
Collapse
|
34
|
Ludwig KU, Roeske D, Herms S, Schumacher J, Warnke A, Plume E, Neuhoff N, Bruder J, Remschmidt H, Schulte-Körne G, Müller-Myhsok B, Nöthen MM, Hoffmann P. Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:503-511. [PMID: 19591125 DOI: 10.1002/ajmg.b.31007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A multi-marker haplotype within GRIN2B, a gene coding for a subunit of the ionotropic glutamate receptor, has recently been found to be associated with variation in human memory performance [de Quervain and Papassotiropoulos, 2006]. The gene locus is located within a region that has been linked to a phonological memory phenotype in a recent genome scan in families with dyslexia [Brkanac et al., 2008]. These findings may indicate the involvement of GRIN2B in memory-related aspects of human cognition. Memory performance is one of the cognitive functions observed to be disordered in dyslexia patients. We therefore investigated whether genetic variation in GRIN2B contributes to specific quantitative measures in a German dyslexia sample by genotyping 66 SNPs in its entire genomic region. We found supportive evidence that markers in intron 3 are associated with short-term memory in dyslexia, and were able to demonstrate that this effect is even stronger when only maternal transmission is considered. These results suggest that variation within GRIN2B may contribute to the genetic background of specific cognitive processes which are correlates of the dyslexia phenotype.
Collapse
Affiliation(s)
- Kerstin U Ludwig
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Stefan Herms
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Andreas Warnke
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Ellen Plume
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Nina Neuhoff
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Munich, Germany
| | - Jennifer Bruder
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Munich, Germany
| | - Helmut Remschmidt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Munich, Munich, Germany
| | | | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Kelly SA, Nehrenberg DL, Hua K, Gordon RR, Garland T, Pomp D. Parent-of-origin effects on voluntary exercise levels and body composition in mice. Physiol Genomics 2009; 40:111-20. [PMID: 19903762 DOI: 10.1152/physiolgenomics.00139.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the health-related benefits of exercise, many people do not engage in enough activity to realize the rewards, and little is known regarding the genetic or environmental components that account for this individual variation. We created and phenotyped a large G(4) advanced intercross line originating from reciprocal crosses between mice with genetic propensity for increased voluntary exercise (HR line) and the inbred strain C57BL/6J. G(4) females (compared to males) ran significantly more when provided access to a running wheel and were smaller with a greater percentage of body fat pre- and postwheel access. Change in body composition resulting from a 6-day exposure to wheels varied between the sexes with females generally regulating energy balance more precisely in the presence of exercise. We observed parent-of-origin effects on most voluntary wheel running and body composition traits, which accounted for 3-13% of the total phenotypic variance pooled across sexes. G(4) individuals descended from progenitor (F(0)) crosses of HRfemale symbol and C57BL/6Jmale symbol ran greater distances, spent more time running, ran at higher maximum speeds/day, and had lower percent body fat and higher percent lean mass than mice descended from reciprocal progenitor crosses (C57BL/6Jfemale symbol x HRmale symbol). For some traits, significant interactions between parent of origin and sex were observed. We discuss these results in the context of sex dependent activity and weight loss patterns, the contribution of parent-of-origin effects to predisposition for voluntary exercise, and the genetic (i.e., X-linked or mtDNA variations), epigenetic (i.e., genomic imprinting), and environmental (i.e., in utero environment or maternal care) phenomena potentially modulating these effects.
Collapse
Affiliation(s)
- Scott A Kelly
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Genomic imprinting refers to the differential expression of a gene based on parental origin. Animal and clinical studies have suggested that genomic imprinting is influential in brain development, with the maternal genome playing a disproportionate role in the development of the cortex. The present study investigated this phenomenon in a nonclinical human population, using intrafamilial correlations. Broadly consistent with predictions, it was found that abilities mediated by frontal, parietal, and temporal lobes, but not occipital lobes, were more closely correlated between children and mothers versus fathers. The implications of these findings for the prevailing theory of the evolution of genomic imprinting, and for the general study of genetics and behavior, are discussed.
Collapse
Affiliation(s)
- Lisa M Goos
- Brain and Behaviour Program, Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8.
| | | |
Collapse
|
37
|
Schizophrenia and birthplace of paternal and maternal grandfather in the Jerusalem perinatal cohort prospective study. Schizophr Res 2009; 111:23-31. [PMID: 19361958 PMCID: PMC2716070 DOI: 10.1016/j.schres.2009.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 11/23/2022]
Abstract
Some forms of epigenetic abnormalities transmitted to offspring are manifested in differences in disease incidence that depend on parent-of-origin. To explore whether such phenomena might operate in schizophrenia spectrum disorders, we estimated the relative incidence of these conditions in relation to parent-of-origin by considering the two grandfathers' countries of birth. In a prospective cohort of 88,829 offspring, born in Jerusalem in 1964-76 we identified 637 cases through Israel's psychiatric registry. Relative risks (RR) were estimated for paternal and maternal grandfathers' countries of birth using proportional hazards methods, controlling for parents' ages, low social class and duration of marriage. After adjusting for multiple observations, we found no significant differences between descendants of maternal or paternal grandfathers born in Iraq, Iran, Turkey, Syria, Yemen, Morocco, Algeria, Tunisia, Libya/Egypt, Poland, USSR, Czechoslovakia, Germany or the USA. Those with paternal grandfathers from Romania (RR=1.9, 95% CI=1.3-2.8) or Hungary (1.6, 1.0-2.6) showed an increased incidence; however, those with maternal grandfathers from these countries experienced reduced incidence (RR=0.5, 0.3-0.8 and 0.4, 0.2-0.8). In post-hoc analyses we found that results were similar whether the comparison groups were restricted to descendants of other Europeans or included those from Western Asia and North Africa; and effects of paternal grandfathers from Romania/Hungary were more pronounced in females, while effects of maternal grandfathers from these countries were similar in males and females. These post-hoc "hypothesis-generating" findings lead one to question whether some families with ancestors in Romania or Hungary might carry a variant or mutation at a parentally imprinted locus that is altering susceptibility to schizophrenia. Such a locus, if it exists, might involve the X chromosome.
Collapse
|
38
|
Fernández-González R, de Dios Hourcade J, López-Vidriero I, Benguría A, De Fonseca FR, Gutiérrez-Adán A. Analysis of gene transcription alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice. Reproduction 2009; 137:271-83. [DOI: 10.1530/rep-08-0265] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have reported thatin vitroculture (IVC) of preimplantation mouse embryos in the presence of FCS produces long-term effects (LTE) on development, growth and behaviour of the offspring at adult age. To analyse the mechanisms underlying this phenomenon, we have examined development and global alterations in gene expression in the mouse blastocysts produced in the presence of FCS, conditions known to be suboptimal and that generate LTE. Embryos culturedin vitroin KSOM and in KSOM+FCS had a reduced number of cells in the inner cell mass at the blastocyst stage compared within vivoderived embryos; however, only culture in KSOM+FCS leads to a reduction in the number of trophoblast cells. Gene expression levels were measured by comparison among three groups of blastocysts (in vivo, IVC in KSOM and IVC in KSOM+FCS). Different patterns of gene expression and development were found between embryos culturedin vitroorin vivo. Moreover, when we compared the embryos produced in KSOM versus KSOM+FCS, we observed that the presence of FCS affected the expression of 198 genes. Metabolism, proliferation, apoptosis and morphogenetic pathways were the most common processes affected by IVC. However, the presence of FCS during IVC preferentially affected genes associated with certain molecular and biological functions related to epigenetic mechanisms. These results suggest that culture-induced alterations in transcription at the blastocyst stage related to epigenetic mechanisms provide a foundation for understanding the molecular origin at the time of preimplantation development of the long-term consequences of IVC in mammals.
Collapse
|
39
|
Hager R, Cheverud JM, Leamy LJ, Wolf JB. Sex dependent imprinting effects on complex traits in mice. BMC Evol Biol 2008; 8:303. [PMID: 18976474 PMCID: PMC2605465 DOI: 10.1186/1471-2148-8-303] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 10/31/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic source of variation in quantitative traits that results from monoallelic gene expression, where commonly either only the paternally- or the maternally-derived allele is expressed. Imprinting has been shown to affect a diversity of complex traits in a variety of species. For several such quantitative traits sex-dependent genetic effects have been discovered, but whether imprinting effects also show such sex-dependence has yet to be explored. Moreover, theoretical work on the evolution of sex-dependent genomic imprinting effects makes specific predictions about the phenotypic patterns of such effects, which, however, have not been assessed empirically to date. RESULTS Using a genome-scan for loci affecting a set of complex growth and body composition traits from an intercross between two divergent mouse strains, we investigated possible sex-dependent imprinting effects. Our results demonstrate for the first time the existence of genomic imprinting effects that depend on sex and are not related to sex-chromosome effects. We detected a total of 13 loci on 11 chromosomes that showed significant differences between the sexes in imprinting effects. Most loci showed imprinting effects in only one sex, with eight imprinted effects found in males and six in females. One locus showed sex-dependent imprinting effects in both sexes for different traits. The absence of an imprinting effect in one sex was not necessarily indicative of the overall inactivity of the locus in that sex, as for several loci a significant additive or dominance effect was detected. Moreover, three loci exhibited significant additive effects in both sexes but their imprinting effect was restricted to one sex. CONCLUSION Our results clearly show that imprinting effects can be sex-dependent and also suggest that new candidate imprinted loci can be detected when taking account of sex-specific imprinting effects. However, predictions made about the evolution of sex-dependent imprinting effects and associated phenotypic patterns cannot be unequivocally supported at present and further research into the selection pressures applied to the strains of mice used in our study is required.
Collapse
Affiliation(s)
- Reinmar Hager
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - James M Cheverud
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Larry J Leamy
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Jason B Wolf
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Kent L, Bowdin S, Kirby GA, Cooper WN, Maher ER. Beckwith Weidemann syndrome: a behavioral phenotype-genotype study. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1295-7. [PMID: 18314872 DOI: 10.1002/ajmg.b.30729] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurobehavioral defects have been reported in human imprinting disorders such as Prader-Willi syndrome and Angelman syndrome and imprinted genes are often implicated in neurodevelopment processes. Beckwith-Wiedemann syndrome (BWS) is a classical human imprinting disorder characterized by prenatal and postnatal overgrowth and variable developmental anomalies. As neurodevelopmental aspects of BWS have not previously been studied in detail, we undertook a questionnaire based neurobehavioral survey of 87 children with BWS. A greater than expected proportion of children demonstrated abnormal scores on measures of emotional and behavioral difficulties. In addition, 6.8% of children had been diagnosed with an autistic spectrum disorder (ASD). 4/6 BWS children with ASD had normal chromosomes and ASD occurred in children with UPD and imprinting center 2 defects. These findings suggest a potential role for the 11p15.5 imprinted gene cluster in ASD and indicate a need for further investigations of neurobehavioral phenotypes in BWS.
Collapse
Affiliation(s)
- Lindsey Kent
- Bute Medical School, University of St. Andrews, St. Andrews, Scotland, UK.
| | | | | | | | | |
Collapse
|
41
|
Crespi B. Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 2008; 83:441-93. [PMID: 18783362 DOI: 10.1111/j.1469-185x.2008.00050.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
I review and evaluate genetic and genomic evidence salient to the hypothesis that the development and evolution of psychotic spectrum conditions have been mediated in part by alterations of imprinted genes expressed in the brain. Evidence from the genetics and genomics of schizophrenia, bipolar disorder, major depression, Prader-Willi syndrome, Klinefelter syndrome, and other neurogenetic conditions support the hypothesis that the etiologies of psychotic spectrum conditions commonly involve genetic and epigenetic imbalances in the effects of imprinted genes, with a bias towards increased relative effects from imprinted genes with maternal expression or other genes favouring maternal interests. By contrast, autistic spectrum conditions, including Kanner autism, Asperger syndrome, Rett syndrome, Turner syndrome, Angelman syndrome, and Beckwith-Wiedemann syndrome, commonly engender increased relative effects from paternally expressed imprinted genes, or reduced effects from genes favouring maternal interests. Imprinted-gene effects on the etiologies of autistic and psychotic spectrum conditions parallel the diametric effects of imprinted genes in placental and foetal development, in that psychotic spectrum conditions tend to be associated with undergrowth and relatively-slow brain development, whereas some autistic spectrum conditions involve brain and body overgrowth, especially in foetal development and early childhood. An important role for imprinted genes in the etiologies of psychotic and autistic spectrum conditions is consistent with neurodevelopmental models of these disorders, and with predictions from the conflict theory of genomic imprinting.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University, Burnaby BCV5A1S6, Canada.
| |
Collapse
|
42
|
Leamy LJ, Klingenberg CP, Sherratt E, Wolf JB, Cheverud JM. A search for quantitative trait loci exhibiting imprinting effects on mouse mandible size and shape. Heredity (Edinb) 2008; 101:518-26. [PMID: 18685568 DOI: 10.1038/hdy.2008.79] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Genomic imprinting refers to the pattern of monoallelic parent-of-origin-dependent gene expression where one of the two alleles at a locus is expressed and the other silenced. Although some genes in mice are known to be imprinted, the true scope of imprinting and its impact on the genetic architecture of a wide range of morphometric traits is mostly unknown. We therefore searched for quantitative trait loci (QTL) exhibiting imprinting effects on mandible size and shape traits in a large F(3) population of mice originating from an intercross of the LG/J (Large) and SM/J (Small) inbred strains. We discovered a total of 51 QTL affecting mandible size and shape, 6 of which exhibited differences between reciprocal heterozygotes, the usual signature of imprinting effects. However, our analysis showed that only one of these QTL (affecting mandible size) exhibited a pattern consistent with true imprinting effects, whereas reciprocal heterozygote differences in the other five all were due to maternal genetic effects. We concluded that genomic imprinting has a negligible effect on these specific morphometric traits, and that maternal genetic effects may account for many of the previously reported instances of apparent genomic imprinting.
Collapse
Affiliation(s)
- L J Leamy
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | | | | | | | | |
Collapse
|
43
|
Wolf JB, Cheverud JM, Roseman C, Hager R. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice. PLoS Genet 2008; 4:e1000091. [PMID: 18535661 PMCID: PMC2390766 DOI: 10.1371/journal.pgen.1000091] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 05/08/2008] [Indexed: 11/23/2022] Open
Abstract
Parent-of-origin–dependent gene expression resulting from genomic imprinting plays an important role in modulating complex traits ranging from developmental processes to cognitive abilities and associated disorders. However, while gene-targeting techniques have allowed for the identification of imprinted loci, very little is known about the contribution of imprinting to quantitative variation in complex traits. Most studies, furthermore, assume a simple pattern of imprinting, resulting in either paternal or maternal gene expression; yet, more complex patterns of effects also exist. As a result, the distribution and number of different imprinting patterns across the genome remain largely unexplored. We address these unresolved issues using a genome-wide scan for imprinted quantitative trait loci (iQTL) affecting body weight and growth in mice using a novel three-generation design. We identified ten iQTL that display much more complex and diverse effect patterns than previously assumed, including four loci with effects similar to the callipyge mutation found in sheep. Three loci display a new phenotypic pattern that we refer to as bipolar dominance, where the two heterozygotes are different from each other while the two homozygotes are identical to each other. Our study furthermore detected a paternally expressed iQTL on Chromosome 7 in a region containing a known imprinting cluster with many paternally expressed genes. Surprisingly, the effects of the iQTL were mostly restricted to traits expressed after weaning. Our results imply that the quantitative effects of an imprinted allele at a locus depend both on its parent of origin and the allele it is paired with. Our findings also show that the imprinting pattern of a locus can be variable over ontogenetic time and, in contrast to current views, may often be stronger at later stages in life. For certain genes, individuals express only the copy of the gene they inherit from either their mother (“maternally expressed” genes) or their father (“paternally expressed” genes). This “parent-of-origin–dependent” pattern of gene expression is known as genomic imprinting and has been shown to play an important role in modulating a variety of traits ranging from developmental processes to cognitive abilities and associated disorders. While various molecular techniques have allowed for the identification of many imprinted genes, very little is known about the contribution of imprinting to variation seen among individuals in continuously varying traits such as body size. Here we address this issue by using a genome-wide analysis aimed at finding regions of the genome that show an effect of imprinting on body weight and growth in mice. We identified ten loci that displayed complex and diverse patterns of effect, including four loci with effects similar to the unusual callipyge mutation found in sheep and three that displayed a new phenotypic pattern that we refer to as bipolar dominance. Surprisingly, most imprinting effects were strongest during the post-weaning period, and many showed shifts in the pattern of imprinting over ontogenetic time.
Collapse
Affiliation(s)
- Jason B Wolf
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Ergür AT, Ocal G, Berberoglu M, Tekin M, Kiliç BG, Aycan Z, Kutlu A, Adiyaman P, Siklar Z, Akar N, Sahin A, Akçayöz D. Paternal X could relate to arithmetic function; study of cognitive function and parental origin of X chromosome in Turner syndrome. Pediatr Int 2008; 50:172-4. [PMID: 18353053 DOI: 10.1111/j.1442-200x.2008.02540.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND 45,X Turner syndrome (TS) female subjects have visuospatial skill and social cognition deficits that may arise from X-linked imprinting. The aim of the present study was to compare phenotypic characteristics and neurocognitive pattern of 12 monosomic TS girls, according to X-linked imprinting. METHODS Microsatellite markers were used to determine the parental origin of the missing chromosome X. Wechsler Intelligence Scale for Children-Revised (WISC-R) was administered as measures of general intellectual functioning. The results were compared in TS patients with maternally derived X chromosome (Xm) and paternally derived X chromosome (Xp). RESULTS Six out of 12 patients (50%) had Xm, and the other six (50%) had Xp chromosome. There was no difference in the total, verbal and performance IQ score between the TS subgroups with Xm and Xp. When the WISC-R subtest score patterns were compared, the mean arithmetic scores were significantly poorer in the Xm TS than in the Xp TS. CONCLUSION In monosomic TS cases, paternal imprinting may predict arithmetic ability, on the other hand, reductionist consideration defined by genetic imprinting is not sufficient to confirm this. Further studies should be undertaken to clarify this situation.
Collapse
Affiliation(s)
- Ayça T Ergür
- Division of Pediatric Endocrinology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics 2008; 178:1755-62. [PMID: 18245362 DOI: 10.1534/genetics.107.080697] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Epigenetic effects are increasingly recognized as an important source of variation in complex traits and have emerged as the focus of a rapidly expanding area of research. Principle among these effects is genomic imprinting, which has generally been examined in analyses of complex traits by testing for parent-of-origin-dependent effects of alleles. However, in most of these analyses maternal effects are confounded with genomic imprinting because they can produce the same patterns of phenotypic variation expected for various forms of imprinting. Distinguishing between the two is critical for genetic and evolutionary studies because they have entirely different patterns of gene expression and evolutionary dynamics. Using a simple single-locus model, we show that maternal genetic effects can result in patterns that mimic those expected under genomic imprinting. We further demonstrate how maternal effects and imprinting effects can be distinguished using genomic data from parents and offspring. The model results are applied to a genome scan for quantitative trait loci (QTL) affecting growth- and weight-related traits in mice to illustrate how maternal effects can mimic imprinting. This genome scan revealed five separate maternal-effect loci that caused a diversity of patterns mimicking those expected under various modes of genomic imprinting. These results demonstrate that the appearance of parent-of-origin-dependent effects (POEs) of alleles at a locus cannot be taken as direct evidence that the locus is imprinted. Moreover, they show that, in gene mapping studies, genetic data from both parents and offspring are required to successfully differentiate between imprinting and maternal effects as the cause of apparent parent-of-origin effects of alleles.
Collapse
|
46
|
Davies W, Isles AR, Humby T, Wilkinson LS. What are imprinted genes doing in the brain? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:62-70. [PMID: 18372791 DOI: 10.1007/978-0-387-77576-0_5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As evidence for the existence of brain-expressed imprinted genes accumulates, we need to address exactly what they are doing in this tissue, especially in terms of organisational themes and the major challenges posed by reconciling imprinted gene action in brain with current evolutionary theories attempting to explain the origin and maintenance of genomic imprinting. We are at the beginning of this endeavor and much work remains to be done but already it is clear that imprinted genes have the potential to influence diverse behavioral processes via multiple brain mechanisms. There are also grounds to believe that imprinting may contribute to risk of mental and neurological disease. As well as being a source of basic information about imprinted genes in the brain (e.g., via the newly established website, www.bgg.cardiff.ac.uk/imprinted_tables/index. html), we have used this chapter to identify and focus on a number of key questions. How are brain-expressed imprinted genes organised at the molecular and cellular levels? To what extent does imprinted action depend on neurodevelopmental mechanisms? Do imprinted gene effects interact with other epigenetic influences, especially early on in life? Are imprinted effects on adult behaviors adaptive or just epiphenomena? If they are adaptive, what areas of brain function and behavior might be sensitive to imprinted effects? These are big questions and, as shall become apparent, we need much more data, arising from interactions between behavioral neuroscientists, molecular biologists and evolutionary theorists, if we are to begin to answer them.
Collapse
Affiliation(s)
- William Davies
- Department of Psychological Medicine, University of Cardiff, Henry Wellcome Building, Heath Park, Cardiff, Wales, UK.
| | | | | | | |
Collapse
|
47
|
Genomic imprinting and human psychology: cognition, behavior and pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 626:71-88. [PMID: 18372792 DOI: 10.1007/978-0-387-77576-0_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imprinted genes expressed in the brain are numerous and it has become clear that they play an important role in nervous system development and function. The significant influence of genomic imprinting during development sets the stage for structural and physiological variations affecting psychological function and behaviour, as well as other physiological systems mediating health and well-being. However, our understanding of the role of imprinted genes in behaviour lags far behind our understanding of their roles in perinatal growth and development. Knowledge of genomic imprinting remains limited among behavioral scientists and clinicians and research regarding the influence of imprinted genes on normal cognitive processes and the most common forms of neuropathology has been limited to date. In this chapter, we will explore how knowledge of genomic imprinting can be used to inform our study of normal human cognitive and behavioral processes as well as their disruption. Behavioural analyses of rare imprinted disorders, such as Prader-Willi and Angelman syndromes, provide insight regarding the phenotypic impact of imprinted genes in the brain, and can be used to guide the study of normal behaviour as well as more common but etiologically complex disorders such as ADHD and autism. Furthermore, hypotheses regarding the evolutionary development of imprinted genes can be used to derive predictions about their role in normal behavioural variation, such as that observed in food-related and social interactions.
Collapse
|
48
|
Miyashita A, Arai H, Asada T, Imagawa M, Matsubara E, Shoji M, Higuchi S, Urakami K, Kakita A, Takahashi H, Toyabe S, Akazawa K, Kanazawa I, Ihara Y, Kuwano R. Genetic association of CTNNA3 with late-onset Alzheimer's disease in females. Hum Mol Genet 2007; 16:2854-69. [PMID: 17761686 DOI: 10.1093/hmg/ddm244] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia in the elderly, was found to exhibit a trend toward a higher risk in females than in males through epidemiological studies. Therefore, we hypothesized that gender-related genetic risks could exist. To reveal the ones for late-onset AD (LOAD), we extended our previous genetic work on chromosome 10q (genomic region, 60-107 Mb), and single nucleotide polymorphism (SNP)-based genetic association analyses were performed on the same chromosomal region, where the existence of genetic risk factors for plasma Abeta42 elevation in LOAD was implied on a linkage analysis. Two-step screening of 1140 SNPs was carried out using a total of 1408 subjects with the APOE-epsilon3*3 genotype: we first genotyped an exploratory sample set (LOAD, 363; control, 337), and then genotyped some associated SNPs in a validation sample set (LOAD, 336; control, 372). Seven SNPs, spanning about 38 kb, in intron 9 of CTNNA3 were found to show multiple-hit association with LOAD in females, and exhibited more significant association on Mantel-Haenszel test (allelic P-values(MH-F) = 0.000005945-0.0007658). Multiple logistic regression analysis of a total of 2762 subjects (LOAD, 1313; controls, 1449) demonstrated that one of the seven SNPs directly interacted with the female gender, but not with the male gender. Furthermore, we found that this SNP exhibited no interaction with the APOE-epsilon4 allele. Our data suggest that CTNNA3 may affect LOAD through a female-specific mechanism independent of the APOE-epsilon4 allele.
Collapse
Affiliation(s)
- Akinori Miyashita
- Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Oliver C, Horsler K, Berg K, Bellamy G, Dick K, Griffiths E. Genomic imprinting and the expression of affect in Angelman syndrome: what's in the smile? J Child Psychol Psychiatry 2007; 48:571-9. [PMID: 17537073 DOI: 10.1111/j.1469-7610.2007.01736.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Kinship theory (or the genomic conflict hypothesis) proposes that the phenotypic effects of genomic imprinting arise from conflict between paternally and maternally inherited alleles. A prediction arising for social behaviour from this theory is that imbalance in this conflict resulting from a deletion of a maternally imprinted gene, as in Angelman syndrome (AS), will result in a behavioural phenotype that should evidence behaviours that increase access to maternally provided social resources (adult contact). METHOD Observation of the social behaviour of children with AS (n = 13), caused by a deletion at 15q11-q13, and a matched comparison group (n = 10) was undertaken for four hours in a socially competitive setting and the effect of adult attention on child behaviours and the effect of child smiling on adult behaviours evaluated using group comparisons and observational lag sequential analyses. RESULTS The AS group smiled more than the comparison group in all settings, which had different levels of adult attention, and more when the level of adult attention was high. Smiling by children with AS evoked higher levels of adult attention, eye contact and smiling both than by chance and in comparison to other children and this effect was sustained for 30 s to 50 s. Smiling by children with AS was frequently preceded by child initiated contact toward the adult. DISCUSSION The results are consistent with a kinship theory explanation of the function of heightened levels of sociability and smiling in Angelman syndrome and provide support for an emotion signalling interpretation of the mechanism by which smiling accesses social resources. Further research on other behaviours characteristic of Angelman and Prader-Willi syndromes warrant examination from this perspective.
Collapse
Affiliation(s)
- Chris Oliver
- School of Psychology, University of Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Fernández-Gonzalez R, Ramirez MA, Bilbao A, De Fonseca FR, Gutiérrez-Adán A. Suboptimal in vitro culture conditions: an epigenetic origin of long-term health effects. Mol Reprod Dev 2007; 74:1149-56. [PMID: 17474101 DOI: 10.1002/mrd.20746] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The foetal origins of adult diseases or Barker hypothesis suggests that there can be adverse in uterus effects on the foetus that can lead to certain diseases in adults. Extending this hypothesis to the early stages of embryo development, in particular, to preimplantation stages, it was recently demonstrated that, long-term programming of postnatal development, growth and physiology can be irreversibly affected during this period of embryo development by suboptimal in vitro culture (IVC). As an example, it was found in two recent studies that, mice derived from embryos cultured in suboptimal conditions can suffer from obesity, increased anxiety, and deficiencies on their implicit memory system. In addition, it was observed that suboptimal IVC can cause disease in mature animals by promoting alterations in their genetic imprinting during preimplantation development. Imprinting and other epigenetic mechanisms control the establishment and maintenance of gene expression patterns in the embryo, placenta and foetus. The previously described observations, suggest that the loss of epigenetic regulation during preimplantation development may lead to severe long-term effects. Although mostly tested in rodents, the hypothesis that underlies these studies can also fit assisted reproductive technology (ART) procedures in other species, including humans. The lack of information on how epigenetic controls are lost during IVC, and on the long-term consequences of ART, underscore the necessity for sustained epigenetic analysis of embryos produced in vitro and long-term tracking of the health of the human beings conceived using these procedures.
Collapse
|