1
|
Kiani M, Jokar S, Hassanzadeh L, Behnammanesh H, Bavi O, Beiki D, Assadi M. Recent Clinical Implications of FAPI: Imaging and Therapy. Clin Nucl Med 2024; 49:e538-e556. [PMID: 39025634 DOI: 10.1097/rlu.0000000000005348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ABSTRACT The fibroblast activation protein (FAP) is a biomarker that is selectively overexpressed on cancer-associated fibroblasts (CAFs) in various types of tumoral tissues and some nonmalignant diseases, including fibrosis, arthritis, cardiovascular, and metabolic diseases. FAP plays a critical role in tumor microenvironment through facilitating proliferation, invasion, angiogenesis, immunosuppression, and drug resistance. Recent studies reveal that FAP might be regarded as a promising target for cancer diagnosis and treatment. FAP-targeted imaging modalities, especially PET, have shown high sensitivity and specificity in detecting FAP-expressing tumors. FAP-targeted imaging can potentially enhance tumor detection, staging, and monitoring of treatment response, and facilitate the development of personalized treatment strategies. This study provides a comprehensive view of FAP and its function in the pathophysiology of cancer and nonmalignant diseases. It also will discuss the characteristics of radiolabeled FAP inhibitors, particularly those based on small molecules, their recent clinical implications in imaging and therapy, and the associated clinical challenges with them. In addition, we present the results of imaging and biodistribution radiotracer 68 Ga-FAPI-46 in patients with nonmalignant diseases, including interstitial lung disease, primary biliary cirrhosis, and myocardial infarction, who were referred to our department. Our results show that cardiac FAP-targeted imaging can provide a novel potential biomarker for managing left ventricle remodeling. Moreover, this study has been organized and presented in a manner that offers a comprehensive overview of the current status and prospects of FAPI inhibitors in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Mahshid Kiani
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safura Jokar
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Khalifa O, Al-Akl NS, Arredouani A. Differential expression of cardiometabolic and inflammation markers and signaling pathways between overweight/obese Qatari adults with high and low plasma salivary α-amylase activity. Front Endocrinol (Lausanne) 2024; 15:1421358. [PMID: 39411310 PMCID: PMC11473332 DOI: 10.3389/fendo.2024.1421358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024] Open
Abstract
Background The relationship between salivary α-amylase activity (sAAa) and susceptibility to cardiovascular disorders lacks a definitive consensus in available studies. To fill this knowledge gap, the present study endeavors to investigate this association among overweight/obese otherwise healthy Qatari adults. The study specifically categorizes participants based on their sAAa into high and low subgroups, aiming to provide a more comprehensive understanding of the potential link between sAAa levels and cardiovascular and inflammation markers in this population. Methods Plasma samples of 264 Qatari overweight/obese (Ow/Ob) participants were used to quantify the sAAa and to profile the proteins germane to cardiovascular, cardiometabolic, metabolism, and organ damage in low sAAa (LsAAa) and high sAAa (HsAAa) subjects using the Olink technology. Comprehensive statistical tools as well as chemometric and enrichments analyses were used to identify differentially expressed proteins (DEPs) and their associated signaling pathways and cellular functions. Results A total of ten DEPs were detected, among them five were upregulated (QPCT, LCN2, PON2, DPP7, CRKL) while five were down regulated in the LsAAa subgroup compared to the HsAAa subgroup (ARG1, CTSH, SERPINB6, OSMR, ALDH3A). Functional enrichment analysis highlighted several relevant signaling pathways and cellular functions enriched in the DEPs, including myocardial dysfunction, disorder of blood pressure, myocardial infraction, apoptosis of cardiomyocytes, hypertension, chronic inflammatory disorder, immunes-mediated inflammatory disease, inflammatory response, activation of leukocytes and activation of phagocytes. Conclusion Our study unveils substantial alterations within numerous canonical pathways and cellular or molecular functions that bear relevance to cardiometabolic disorders among Ow/Ob Qatari adults exhibiting LsAAa and HsAAa in the plasma. A more comprehensive exploration of these proteins and their associated pathways and functions offers the prospect of elucidating the mechanistic underpinnings inherent in the documented relationship between sAAa and metabolic disorders.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Neyla S. Al-Akl
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
3
|
Shimshon A, Dahan K, Israel-Gueta M, Olmayev-Yaakobov D, Timms RT, Bekturova A, Makaros Y, Elledge SJ, Koren I. Dipeptidyl peptidases and E3 ligases of N-degron pathways cooperate to regulate protein stability. J Cell Biol 2024; 223:e202311035. [PMID: 38874443 PMCID: PMC11178506 DOI: 10.1083/jcb.202311035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
N-degrons are short sequences located at protein N-terminus that mediate the interaction of E3 ligases (E3s) with substrates to promote their proteolysis. It is well established that N-degrons can be exposed following protease cleavage to allow recognition by E3s. However, our knowledge regarding how proteases and E3s cooperate in protein quality control mechanisms remains minimal. Using a systematic approach to monitor the protein stability of an N-terminome library, we found that proline residue at the third N-terminal position (hereafter "P+3") promotes instability. Genetic perturbations identified the dipeptidyl peptidases DPP8 and DPP9 and the primary E3s of N-degron pathways, UBR proteins, as regulators of P+3 bearing substrate turnover. Interestingly, P+3 UBR substrates are significantly enriched for secretory proteins. We found that secretory proteins relying on a signal peptide (SP) for their targeting contain a "built-in" N-degron within their SP. This degron becomes exposed by DPP8/9 upon translocation failure to the designated compartments, thus enabling clearance of mislocalized proteins by UBRs to maintain proteostasis.
Collapse
Affiliation(s)
- Adi Shimshon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Karin Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mor Israel-Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Olmayev-Yaakobov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre , Cambridge, UK
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
4
|
Poplawski SE, Hallett RM, Dornan MH, Novakowski KE, Pan S, Belanger AP, Nguyen QD, Wu W, Felten AE, Liu Y, Ahn SH, Hergott VS, Jones B, Lai JH, McCann JAB, Bachovchin WW. Preclinical Development of PNT6555, a Boronic Acid-Based, Fibroblast Activation Protein-α (FAP)-Targeted Radiotheranostic for Imaging and Treatment of FAP-Positive Tumors. J Nucl Med 2024; 65:100-108. [PMID: 38050111 DOI: 10.2967/jnumed.123.266345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Indexed: 12/06/2023] Open
Abstract
The overexpression of fibroblast activation protein-α (FAP) in solid cancers relative to levels in normal tissues has led to its recognition as a target for delivering agents directly to tumors. Radiolabeled quinoline-based FAP ligands have established clinical feasibility for tumor imaging, but their therapeutic potential is limited due to suboptimal tumor retention, which has prompted the search for alternative pharmacophores. One such pharmacophore is the boronic acid derivative N-(pyridine-4-carbonyl)-d-Ala-boroPro, a potent and selective FAP inhibitor (FAPI). In this study, the diagnostic and therapeutic (theranostic) potential of N-(pyridine-4-carbonyl)-d-Ala-boroPro-based metal-chelating DOTA-FAPIs was evaluated. Methods: Three DOTA-FAPIs, PNT6555, PNT6952, and PNT6522, were synthesized and characterized with respect to potency and selectivity toward soluble and cell membrane FAP; cellular uptake of the Lu-chelated analogs; biodistribution and pharmacokinetics in mice xenografted with human embryonic kidney cell-derived tumors expressing mouse FAP; the diagnostic potential of 68Ga-chelated DOTA-FAPIs by direct organ assay and small-animal PET; the antitumor activity of 177Lu-, 225Ac-, or 161Tb-chelated analogs using human embryonic kidney cell-derived tumors expressing mouse FAP; and the tumor-selective delivery of 177Lu-chelated DOTA-FAPIs via direct organ assay and SPECT. Results: DOTA-FAPIs and their natGa and natLu chelates exhibited potent inhibition of human and mouse sources of FAP and greatly reduced activity toward closely related prolyl endopeptidase and dipeptidyl peptidase 4. 68Ga-PNT6555 and 68Ga-PNT6952 showed rapid renal clearance and continuous accumulation in tumors, resulting in tumor-selective exposure at 60 min after administration. 177Lu-PNT6555 was distinguished from 177Lu-PNT6952 and 177Lu-PNT6522 by significantly higher tumor accumulation over 168 h. In therapeutic studies, all 3 177Lu-DOTA-FAPIs exhibited significant antitumor activity at well-tolerated doses, with 177Lu-PNT6555 producing the greatest tumor growth delay and animal survival. 225Ac-PNT6555 and 161Tb-PNT6555 were similarly efficacious, producing 80% and 100% survival at optimal doses, respectively. Conclusion: PNT6555 has potential for clinical translation as a theranostic agent in FAP-positive cancer.
Collapse
Affiliation(s)
- Sarah E Poplawski
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | | | | | - Shuang Pan
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Anthony P Belanger
- Harvard Medical School, Boston, Massachusetts
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | - Quang-De Nguyen
- Harvard Medical School, Boston, Massachusetts
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wengen Wu
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | - Yuxin Liu
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Shin Hye Ahn
- Harvard Medical School, Boston, Massachusetts
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | | | - Barry Jones
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | - Jack H Lai
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts
| | | | - William W Bachovchin
- Department of Developmental, Molecular and Chemical Biology, Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts;
| |
Collapse
|
5
|
Pijning T, Vujičić‐Žagar A, van der Laan J, de Jong RM, Ramirez‐Palacios C, Vente A, Edens L, Dijkstra BW. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci 2024; 33:e4856. [PMID: 38059672 PMCID: PMC10731622 DOI: 10.1002/pro.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role. Since these enzymes have an acidic pH optimum, the presence of a glutamic acid in the oxyanion hole may confine their activity to an acidic pH. Yet, considering the presence of the conventional catalytic triad, it is remarkable that the A. niger enzyme remains active down to pH 1.5. The determination of the primary cleavage site of cytochrome c along with molecular dynamics-assisted docking studies indicate that the active site pocket of AnPEP can accommodate a reverse turn of approximately 12 amino acids with proline at the S1 specificity pocket. Comparison with the structures of two S28-proline-specific exopeptidases reveals not only a more spacious active site cavity but also the absence of any putative binding sites for amino- and carboxyl-terminal residues as observed in the exopeptidases, explaining AnPEP's observed endoprotease activity.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Andreja Vujičić‐Žagar
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | | | | | | | - Andre Vente
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Luppo Edens
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Bauke W. Dijkstra
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Zhang XL, Xiao W, Qian JP, Yang WJ, Xu H, Xu XD, Zhang GW. The Role and Application of Fibroblast Activating Protein. Curr Mol Med 2024; 24:1097-1110. [PMID: 37259211 DOI: 10.2174/1566524023666230530095305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/02/2023]
Abstract
Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is rarely expressed in normal tissues but highly abundant in pathological diseases, including fibrosis, arthritis, and cancer. Ever since its discovery, we have deciphered its structure and biological properties and continue to investigate its roles in various diseases while attempting to utilize it for targeted therapy. To date, no significant breakthroughs have been made in terms of efficacy. However, in recent years, several practical applications in the realm of imaging diagnosis have been discovered. Given its unique expression in a diverse array of pathological tissues, the fundamental biological characteristics of FAP render it a crucial target for disease diagnosis and immunotherapy. To obtain a more comprehensive understanding of the research progress of FAP, its biological characteristics, involvement in diseases, and recent targeted application research have been reviewed. Moreover, we explored its development trend in the direction of clinical diagnoses and treatment.
Collapse
Affiliation(s)
- Xiao-Lou Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wang Xiao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Ping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wan-Jun Yang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-da Xu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wei Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Bukhari M, Patel N, Fontana R, Santiago-Medina M, Jiang Y, Li D, Pestonjamasp K, Christiansen VJ, Jackson KW, McKee PA, Yang J. Fibroblast activation protein drives tumor metastasis via a protease-independent role in invadopodia stabilization. Cell Rep 2023; 42:113302. [PMID: 37862167 PMCID: PMC10742343 DOI: 10.1016/j.celrep.2023.113302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung. Mechanistically, FAP is localized at invadopodia and required for invadopodia-mediated extracellular matrix degradation independent of its proteolytic activity. Live cell imaging shows that association of invadopodia precursors with FAP at the cell membrane promotes the stabilization and growth of invadopodia precursors into mature invadopodia. Together, our study identified FAP as a functional target of TWIST1 in driving tumor metastasis via promoting invadopodia-mediated matrix degradation and uncovered a proteolytic activity-independent role of FAP in stabilizing invadopodia precursors for maturation.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Navneeta Patel
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rosa Fontana
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Miguel Santiago-Medina
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Yike Jiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Dongmei Li
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Kersi Pestonjamasp
- Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Victoria J Christiansen
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kenneth W Jackson
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick A McKee
- William K. Warren Medical Research Center, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Bendre S, Kuo HT, Merkens H, Zhang Z, Wong AAWL, Bénard F, Lin KS. Synthesis and Preclinical Evaluation of Novel 68Ga-Labeled ( R)-Pyrrolidin-2-yl-boronic Acid-Based PET Tracers for Fibroblast Activation Protein-Targeted Cancer Imaging. Pharmaceuticals (Basel) 2023; 16:798. [PMID: 37375746 DOI: 10.3390/ph16060798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast activation protein (FAP) is a membrane-tethered serine protease overexpressed in the reactive stromal fibroblasts of >90% human carcinomas, which makes it a promising target for developing radiopharmaceuticals for the imaging and therapy of carcinomas. Here, we synthesized two novel (R)-pyrrolidin-2-yl-boronic acid-based FAP-targeted ligands: SB02055 (DOTA-conjugated (R)-(1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)glycyl)pyrrolidin-2-yl)boronic acid) and SB04028 (DOTA-conjugated ((R)-1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)-D-alanyl)pyrrolidin-2-yl)boronic acid). natGa- and 68Ga-complexes of both ligands were evaluated in preclinical studies and compared to previously reported natGa/68Ga-complexed PNT6555. Enzymatic assays showed that FAP binding affinities (IC50) of natGa-SB02055, natGa-SB04028 and natGa-PNT6555 were 0.41 ± 0.06, 13.9 ± 1.29 and 78.1 ± 4.59 nM, respectively. PET imaging and biodistribution studies in HEK293T:hFAP tumor-bearing mice showed that while [68Ga]Ga-SB02055 presented with a nominal tumor uptake (1.08 ± 0.37 %ID/g), [68Ga]Ga-SB04028 demonstrated clear tumor visualization with ~1.5-fold higher tumor uptake (10.1 ± 0.42 %ID/g) compared to [68Ga]Ga-PNT6555 (6.38 ± 0.45 %ID/g). High accumulation in the bladder indicated renal excretion of all three tracers. [68Ga]Ga-SB04028 displayed a low background level uptake in most normal organs, and comparable to [68Ga]Ga-PNT6555. However, since its tumor uptake was considerably higher than [68Ga]Ga-PNT6555, the corresponding tumor-to-organ uptake ratios for [68Ga]Ga-SB04028 were also significantly greater than [68Ga]Ga-PNT6555. Our data demonstrate that (R)-(((quinoline-4-carbonyl)-d-alanyl)pyrrolidin-2-yl)boronic acid is a promising pharmacophore for the design of FAP-targeted radiopharmaceuticals for cancer imaging and radioligand therapy.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer Research Institute, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer Research Institute, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
9
|
Bendre S, Zhang Z, Colpo N, Zeisler J, Wong AAWL, Bénard F, Lin KS. Synthesis and Evaluation of 68Ga-Labeled (2 S,4 S)-4-Fluoropyrrolidine-2-Carbonitrile and (4 R)-Thiazolidine-4-Carbonitrile Derivatives as Novel Fibroblast Activation Protein-Targeted PET Tracers for Cancer Imaging. Molecules 2023; 28:molecules28083481. [PMID: 37110717 PMCID: PMC10145249 DOI: 10.3390/molecules28083481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Fibroblast activation protein α (FAP-α) is a cell-surface protein overexpressed on cancer-associated fibroblasts that constitute a substantial component of tumor stroma and drive tumorigenesis. FAP is minimally expressed by most healthy tissues, including normal fibroblasts. This makes it a promising pan-cancer diagnostic and therapeutic target. In the present study, we synthesized two novel tracers, [68Ga]Ga-SB03045 and [68Ga]Ga-SB03058, bearing a (2S,4S)-4-fluoropyrrolidine-2-carbonitrile or a (4R)-thiazolidine-4-carbonitrile pharmacophore, respectively. [68Ga]Ga-SB03045 and [68Ga]Ga-SB03058 were evaluated for their FAP-targeting capabilities using substrate-based in vitro binding assays, and in PET/CT imaging and ex vivo biodistribution studies in an HEK293T:hFAP tumor xenograft mouse model. The IC50 values of natGa-SB03045 (1.59 ± 0.45 nM) and natGa-SB03058 (0.68 ± 0.09 nM) were found to be lower than those of the clinically validated natGa-FAPI-04 (4.11 ± 1.42 nM). Contrary to the results obtained in the FAP-binding assay, [68Ga]Ga-SB03058 demonstrated a ~1.5 fold lower tumor uptake than that of [68Ga]Ga-FAPI-04 (7.93 ± 1.33 vs. 11.90 ± 2.17 %ID/g), whereas [68Ga]Ga-SB03045 (11.8 ± 2.35 %ID/g) exhibited a tumor uptake comparable to that of [68Ga]Ga-FAPI-04. Thus, our data suggest that the (2S,4S)-4-fluoropyrrolidine-2-carbonitrile scaffold holds potential as a promising pharmacophore for the design of FAP-targeted radioligands for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shreya Bendre
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Antonio A W L Wong
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
10
|
Novel 68Ga-Labeled Pyridine-Based Fibroblast Activation Protein-Targeted Tracers with High Tumor-to-Background Contrast. Pharmaceuticals (Basel) 2023; 16:ph16030449. [PMID: 36986548 PMCID: PMC10057391 DOI: 10.3390/ph16030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Compared to quinoline-based fibroblast activation protein (FAP)-targeted radiotracers, pyridine-based FAP-targeted tracers are expected to have faster pharmacokinetics due to their smaller molecular size and higher hydrophilicity, which we hypothesize would improve the tumor-to-background image contrast. We aim to develop 68Ga-labeled pyridine-based FAP-targeted tracers for cancer imaging with positron emission tomography (PET), and compare their imaging potential with the clinically validated [68Ga]Ga-FAPI-04. Two DOTA-conjugated pyridine-based AV02053 and AV02070 were synthesized through multi-step organic synthesis. IC50(FAP) values of Ga-AV02053 and Ga-AV02070 were determined by an enzymatic assay to be 187 ± 52.0 and 17.1 ± 4.60 nM, respectively. PET imaging and biodistribution studies were conducted in HEK293T:hFAP tumor-bearing mice at 1 h post-injection. The HEK293T:hFAP tumor xenografts were clearly visualized with good contrast on PET images by [68Ga]Ga-AV02053 and [68Ga]Ga-AV02070, and both tracers were excreted mainly through the renal pathway. The tumor uptake values of [68Ga]Ga-AV02070 (7.93 ± 1.88%ID/g) and [68Ga]Ga-AV02053 (5.6 ± 1.12%ID/g) were lower than that of previously reported [68Ga]Ga-FAPI-04 (12.5 ± 2.00%ID/g). However, both [68Ga]Ga-AV02070 and [68Ga]Ga-AV02053 showed higher tumor-to-background (blood, muscle, and bone) uptake ratios than [68Ga]Ga-FAPI-04. Our data suggests that pyridine-based pharmacophores are promising for the design of FAP-targeted tracers. Future optimization on the selection of a linker will be explored to increase tumor uptake while maintaining or even further improving the high tumor-to-background contrast.
Collapse
|
11
|
A new hybrid algorithm for three-stage gene selection based on whale optimization. Sci Rep 2023; 13:3783. [PMID: 36882446 PMCID: PMC9992521 DOI: 10.1038/s41598-023-30862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
In biomedical data mining, the gene dimension is often much larger than the sample size. To solve this problem, we need to use a feature selection algorithm to select feature gene subsets with a strong correlation with phenotype to ensure the accuracy of subsequent analysis. This paper presents a new three-stage hybrid feature gene selection method, that combines a variance filter, extremely randomized tree, and whale optimization algorithm. First, a variance filter is used to reduce the dimension of the feature gene space, and an extremely randomized tree is used to further reduce the feature gene set. Finally, the whale optimization algorithm is used to select the optimal feature gene subset. We evaluate the proposed method with three different classifiers in seven published gene expression profile datasets and compare it with other advanced feature selection algorithms. The results show that the proposed method has significant advantages in a variety of evaluation indicators.
Collapse
|
12
|
Bhattacharjee A, Bachovchin DA. DPP8/9 are not Required to Cleave Most Proline-Containing Peptides. Isr J Chem 2023; 63:e202200117. [PMID: 37982048 PMCID: PMC10655806 DOI: 10.1002/ijch.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 02/16/2023]
Abstract
Small molecule inhibitors of the intracellular serine peptidases DPP8 and DPP9 (DPP8/9) activate the NLRP1 and CARD8 inflammasomes, but the key DPP8/9 substrates have not yet been identified. DPP8/9 cleave after proline to remove N-terminal dipeptides from peptides or proteins, and studies using pseudo-peptide reporter substrates have suggested that these enzymes may play key roles in the catabolism of many proline-containing peptides generated by the proteasome. Here, we evaluated the degradation of a wide array of actual peptides in cell lysates, and discovered that DPP8/9 are not in fact involved in the processing of the vast majority of proline-containing peptides. Overall, these results indicate that DPP8/9 have a much more limited substrate scope than previously thought, and likely specifically cleave some critically important, but as yet unknown, intracellular peptide or protein that regulates inflammasome activation.
Collapse
Affiliation(s)
- Abir Bhattacharjee
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
- Pharmacology Program of the Weill Cornell, Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| |
Collapse
|
13
|
Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, Liu T, Deng W, Chu X, Jiang C, He W, Xia L, Yang Y, Hong J, Qi Q, Yin W, Liu X, Shi C, Chen M, Ye W, Zhang D. Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest 2022; 132:e157399. [PMID: 35951441 PMCID: PMC9525122 DOI: 10.1172/jci157399] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to antiangiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on "hijacker" tumor cells, whereas the function of the "hijackee" sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein α (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor-binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell-derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2/FGFR1/ERK1/-2/EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in tumor tissues derived from patients with CRCLM. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option-mediated bevacizumab resistance.
Collapse
Affiliation(s)
- Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuran Fan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jinghua Pan
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Qun Miao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijuan Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Shenghui Qiu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Weiqing Deng
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaodong Chu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chang Jiang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo He
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangping Xia
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Wenqian Yin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Changzheng Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and
| |
Collapse
|
14
|
Kaviani B, Samani MA, Haghshenas H, Dehkordi MG. Development of pyrrolidine and isoindoline derivatives as new DPP8 inhibitors using a combination of 3D-QSAR technique, pharmacophore modeling, docking studies, and molecular dynamics simulations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2125511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Bita Kaviani
- Division of Genetics, Department of Biology, Faculty of Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mojtaba Asad Samani
- Division of Genetics, Department of Biology, Faculty of Sciences, Islamic Azad University, Shahrekord, Iran
| | - Hamed Haghshenas
- Division of Biochemistry, Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Marzieh Ghani Dehkordi
- Division of Genetics, Department of Biology, Faculty of Sciences, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
15
|
Brabenec L, Müller M, Hellenthal KE, Karsten OS, Pryvalov H, Otto M, Holthenrich A, Matos ALL, Weiss R, Kintrup S, Hessler M, Dell'Aquila A, Thomas K, Naß J, Margraf A, Nottebaum AF, Rossaint J, Zarbock A, Vestweber D, Gerke V, Wagner NM. Targeting Procalcitonin Protects Vascular Barrier Integrity. Am J Respir Crit Care Med 2022; 206:488-500. [PMID: 35699655 DOI: 10.1164/rccm.202201-0054oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Capillary leakage frequently occurs during sepsis and after major surgery and is associated with microvascular dysfunction and adverse outcome. Procalcitonin is a well-established biomarker in inflammation without known impact on vascular integrity. OBJECTIVE We determined how procalcitonin induces endothelial hyperpermeability and how targeting procalcitonin protects vascular barrier integrity. METHODS In a prospective observational clinical study, procalcitonin levels were assessed in 50 cardiac surgery patients and correlated to postoperative fluid and vasopressor requirements along with sublingual microvascular functionality. Effects of the procalcitonin signaling pathway on endothelial barrier and adherens junctional integrity were characterized in vitro and verified in mice. Inhibition of procalcitonin activation by dipeptidyl-peptidase 4 (DPP4) was evaluated in murine polymicrobial sepsis and clinically verified in cardiac surgery patients chronically taking the DPP4 inhibitor sitagliptin. MEASUREMENTS AND MAIN RESULTS Elevated postoperative procalcitonin levels identified patients with 2-fold increased fluid requirements (P<0.01), 1.8-fold higher vasopressor demand (P<0.05) and compromised microcirculation (reduction to 63.5±2.8% of perfused vessels, P<0.05). Procalcitonin induced 1.4-fold endothelial and 2.3-fold pulmonary capillary permeability (both P<0.001) by destabilizing VE-cadherin. Procalcitonin effects were dependent on activation by DPP4 and targeting the procalcitonin receptor or DPP4 during sepsis-induced hyperprocalcitonemia reduced capillary leakage by 54±10.1% and 60.4±6.9% (both P<0.01), respectively. Sitagliptin prior to cardiac surgery was associated with augmented microcirculation (74.1±1.7% vs. 68.6±1.9% perfused vessels in sitagliptin non-medicated patients, P<0.05) and 2.3-fold decreased fluid (P<0.05) and 1.8-fold reduced vasopressor demand postoperatively (P<0.05). CONCLUSION Targeting procalcitonin's action on the endothelium is a feasible means to preserve vascular integrity during systemic inflammation associated with hyperprocalcitonemia.
Collapse
Affiliation(s)
- Laura Brabenec
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Melanie Müller
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Katharina Em Hellenthal
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Ole S Karsten
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Heorhii Pryvalov
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Mandy Otto
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Anna Holthenrich
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | | | - Raphael Weiss
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Sebastian Kintrup
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Michael Hessler
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Angelo Dell'Aquila
- University Hospital Münster, Department of Cardiac and Thoracic Surgery, Münster, Germany
| | - Katharina Thomas
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | - Johannes Naß
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Andreas Margraf
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Jan Rossaint
- Universitätsklinikum Münster, 39069, Department of Anesthesiology, Intensive Care and Pain Medicine, Münster, Germany
| | - Alexander Zarbock
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany
| | | | - Volker Gerke
- University of Münster Faculty of Medicine, 98883, Münster, Germany
| | - Nana-Maria Wagner
- University Hospital Münster Department of Anesthesiology and Intensive Care Medicine, 235721, Münster, Germany;
| |
Collapse
|
16
|
XaaP-ing DPP8/9 for CARD8 activation. Nat Chem Biol 2022; 18:439-440. [PMID: 35165444 DOI: 10.1038/s41589-021-00958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Hoshino Y, Hanaoka K, Sakamoto K, Yasunaga M, Kojima T, Kotani D, Nomoto A, Sasaki E, Komatsu T, Ueno T, Takamaru H, Saito Y, Seto Y, Urano Y. Molecular design of near-infrared (NIR) fluorescent probes targeting exo-peptidase and application for detection of dipeptidyl peptidase 4 (DPP-4) activity. RSC Chem Biol 2022; 3:859-867. [PMID: 35866167 PMCID: PMC9257614 DOI: 10.1039/d1cb00253h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Monitoring the activities of proteases in vivo is an important requirement in biological and medical research. Near-infrared (NIR) fluorescent probes are particularly useful for in vivo fluorescence imaging, due to the high penetration of NIR and the low autofluorescence in tissue for this wavelength region, but most current NIR fluorescent probes for proteases are targeted to endopeptidase. Here, we describe a new molecular design for NIR fluorescent probes that target exopeptidase by utilizing the >110 nm blueshift of unsymmetrical Si–rhodamines upon amidation of the N atom of their xanthene moiety. Based on this molecular design, we developed Leu-SiR640 as a probe for leucine amino peptidase (LAP). Leu-SiR640 shows a one order of magnitude larger fluorescence increment (669-fold) upon reaction with LAP than existing NIR fluorescent probes. We similarly designed and synthesized EP-SiR640, a NIR fluorescent probe that targets dipeptidyl peptidase 4 (DPP-4). We show that this probe can monitor DPP-4 activity not only in living cells but also in mouse organs and tumors. This probe could also detect esophageal cancer in human clinical specimens, based on the overexpression of DPP-4 activity. We developed a new molecular design for NIR fluorescent probes that target exopeptidase by utilizing the >110 nm blueshift of unsymmetrical Si–rhodamines.![]()
Collapse
Affiliation(s)
- Yuki Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University 1-5-30 Shibakoen Minato-ku Tokyo 105-8512 Japan
| | - Kei Sakamoto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8655 Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center 6-5-1 Kashiwanoha Kashiwa Chiba 277-8577 Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East 6-5-1, Kashiwanoha Kashiwa-shi Chiba 277-8577 Japan
| | - Daisuke Kotani
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East 6-5-1, Kashiwanoha Kashiwa-shi Chiba 277-8577 Japan
| | - Ayumu Nomoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Eita Sasaki
- Graduate School of Pharmaceutical Sciences, Keio University 1-5-30 Shibakoen Minato-ku Tokyo 105-8512 Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo 104-0045 Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital 5-1-1 Tsukiji Chuo-ku Tokyo 104-0045 Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8655 Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Medicine, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
18
|
Sandomenico A, Gogliettino M, Iaccarino E, Fusco C, Caporale A, Ruvo M, Palmieri G, Cocca E. Oxidized Substrates of APEH as a Tool to Study the Endoprotease Activity of the Enzyme. Int J Mol Sci 2021; 23:ijms23010443. [PMID: 35008880 PMCID: PMC8745263 DOI: 10.3390/ijms23010443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
APEH is a ubiquitous and cytosolic serine protease belonging to the prolyl oligopeptidase (POP) family, playing a critical role in the processes of degradation of proteins through both exo- and endopeptidase events. Endopeptidase activity has been associated with protein oxidation; however, the actual mechanisms have yet to be elucidated. We show that a synthetic fragment of GDF11 spanning the region 48–64 acquires sensitivity to the endopeptidase activity of APEH only when the methionines are transformed into the corresponding sulphoxide derivatives. The data suggest that the presence of sulphoxide-modified methionines is an important prerequisite for the substrates to be processed by APEH and that the residue is crucial for switching the enzyme activity from exo- to endoprotease. The cleavage occurs on residues placed on the C-terminal side of Met(O), with an efficiency depending on the methionine adjacent residues, which thereby may play a crucial role in driving and modulating APEH endoprotease activity.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
| | - Marta Gogliettino
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
| | - Emanuela Iaccarino
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
| | - Carmela Fusco
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Andrea Caporale
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (CNR-IBB), 80134 Napoli, Italy; (A.S.); (E.I.); (A.C.)
- Correspondence: (M.R.); (G.P.)
| | - Gianna Palmieri
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
- Correspondence: (M.R.); (G.P.)
| | - Ennio Cocca
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), 80131 Napoli, Italy; (M.G.); (C.F.); (E.C.)
| |
Collapse
|
19
|
Qian XK, Zhang J, Li XD, Song PF, Zou LW. Research Progress on Dipeptidyl Peptidase Family: Structure, Function and Xenobiotic Metabolism. Curr Med Chem 2021; 29:2167-2188. [PMID: 34525910 DOI: 10.2174/0929867328666210915103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022]
Abstract
Prolyl-specific peptidases or proteases, including Dipeptidyl Peptidase 2, 4, 6, 8, 9, 10, Fibroblast Activation Protein, prolyl endopeptidase and prolyl carboxypeptidase, belong to the dipeptidyl peptidase family. In human physiology and anatomy, they have homology amino acid sequences, similarities in structure, but play distinct functions and roles. Some of them also play important roles in the metabolism of drugs containing endogenous peptides, xenobiotics containing peptides, and exogenous peptides. The major functions of these peptidases in both the metabolism of human health and bioactive peptides are of significant importance in the development of effective inhibitors to control the metabolism of endogenous bioactive peptides. The structural characteristics, distribution of tissue, endogenous substrates, and biological functions were summarized in this review. Furthermore, the xenobiotics metabolism of the dipeptidyl peptidase family is illustrated. All the evidence and information summarized in this review would be very useful for researchers to extend the understanding of the proteins of these families and offer advice and assistance in physiology and pathology studies.
Collapse
Affiliation(s)
- Xing-Kai Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Jing Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Pei-Fang Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai. China
| |
Collapse
|
20
|
Xin L, Gao J, Zheng Z, Chen Y, Lv S, Zhao Z, Yu C, Yang X, Zhang R. Fibroblast Activation Protein-α as a Target in the Bench-to-Bedside Diagnosis and Treatment of Tumors: A Narrative Review. Front Oncol 2021; 11:648187. [PMID: 34490078 PMCID: PMC8416977 DOI: 10.3389/fonc.2021.648187] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Fibroblast activation protein-α (FAP) is a type II integral serine protease that is specifically expressed by activated fibroblasts. Cancer-associated fibroblasts (CAFs) in the tumor stroma have an abundant and stable expression of FAP, which plays an important role in promoting tumor growth, invasion, metastasis, and immunosuppression. For example, in females with a high incidence of breast cancer, CAFs account for 50–70% of the cells in the tumor’s microenvironment. CAF overexpression of FAP promotes tumor development and metastasis by influencing extracellular matrix remodeling, intracellular signaling, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. This review discusses the basic biological characteristics of FAP and its applications in the diagnosis and treatment of various cancers. We review the emerging basic and clinical research data regarding the use of nanomaterials that target FAP.
Collapse
Affiliation(s)
- Lei Xin
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Ziliang Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Yiyou Chen
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuxin Lv
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhikai Zhao
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunhai Yu
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaotang Yang
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruiping Zhang
- Department of Radiology, Affiliated Tumor Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Li X, Chen M, Lu W, Tang J, Deng L, Wen Q, Huang M, Deng R, Ye G, Ye W, Zhang D. Targeting FAPα-expressing tumor-associated mesenchymal stromal cells inhibits triple-negative breast cancer pulmonary metastasis. Cancer Lett 2021; 503:32-42. [PMID: 33482262 DOI: 10.1016/j.canlet.2021.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023]
Abstract
Tumor metastasis is the main cause of death in patients with triple-negative breast cancer (TNBC). Bone marrow-derived mesenchymal stem cells (BM-MSCs) have tropism towards tumor tissues, and can be converted into tumor-associated mesenchymal stromal cells (TA-MSCs) to facilitate TNBC metastasis through interactions with tumor-associated macrophages (TAMs). However, the underlying molecular mechanisms are complex and unclear, and effective strategies to suppress tumor metastasis via eliminating TA-MSCs are still lacking. Here, we demonstrate that fibroblast activation protein alpha (FAPα) was overexpressed in TA-MSCs, which prompts TA-MSCs to secrete multiple C-C motif chemokine ligands, promoting C-C motif chemokine receptor 2 (CCR2)+ TAM recruitment and facilitating TAM polarization into the M2 phenotype, thereby promoting TNBC pulmonary metastasis. Z-GP-DAVLBH, an FAPα-activated vinblastine prodrug, induces FAPα+ TA-MSC apoptosis, which significantly suppresses CCR2+ TAM recruitment and polarization, thus inhibiting pulmonary metastasis of orthotopic TNBC cell-derived xenografts and patient-derived xenografts. This study provides insight into an important role of FAPα in mediating TA-MSC-induced TNBC metastasis and provides compelling evidence that targeting TA-MSCs with an FAPα-activated prodrug is a promising strategy for suppressing TNBC metastasis.
Collapse
Affiliation(s)
- Xiaobo Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Weijin Lu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jun Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China; Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Lijuan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Qing Wen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
22
|
Gu X, Al Dubayee M, Alshahrani A, Masood A, Benabdelkamel H, Zahra M, Li L, Abdel Rahman AM, Aljada A. Distinctive Metabolomics Patterns Associated With Insulin Resistance and Type 2 Diabetes Mellitus. Front Mol Biosci 2020; 7:609806. [PMID: 33381523 PMCID: PMC7768025 DOI: 10.3389/fmolb.2020.609806] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with an increased risk of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) which is a multi-factorial disease associated with a dysregulated metabolism and can be prevented in pre-diabetic individuals with impaired glucose tolerance. A metabolomic approach emphasizing metabolic pathways is critical to our understanding of this heterogeneous disease. This study aimed to characterize the serum metabolomic fingerprint and multi-metabolite signatures associated with IR and T2DM. Here, we have used untargeted high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) to identify candidate biomarkers of IR and T2DM in sera from 30 adults of normal weight, 26 obese adults, and 16 adults newly diagnosed with T2DM. Among the 3633 peak pairs detected, 62% were either identified or matched. A group of 78 metabolites were up-regulated and 111 metabolites were down-regulated comparing obese to lean group while 459 metabolites were up-regulated and 166 metabolites were down-regulated comparing T2DM to obese groups. Several metabolites were identified as IR potential biomarkers, including amino acids (Asn, Gln, and His), methionine (Met) sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-oxobutanoic acid, and 4,6-dihydroxyquinoline. T2DM was associated with dysregulation of 42 metabolites, including amino acids, amino acids metabolites, and dipeptides. In conclusion, these pilot data have identified IR and T2DM metabolomics panels as potential novel biomarkers of IR and identified metabolites associated with T2DM, with possible diagnostic and therapeutic applications. Further studies to confirm these associations in prospective cohorts are warranted.
Collapse
Affiliation(s)
- Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Al Dubayee
- Department of Medicine, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Awad Alshahrani
- Department of Medicine, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Zahra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Anas M Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Segerer SE, Bartmann C, Schwab M, Kämmerer U. Expression of the Peptidase "Fibroblast Activation Protein" on Decidual Stromal Cells Facilitating Tissue Remodeling. Gynecol Obstet Invest 2020; 85:428-436. [PMID: 33171480 DOI: 10.1159/000511439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/30/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Expression of fibroblast activation protein (FAP) has been detected in activated fibroblasts participating in injury response, fibrotic and inflammatory conditions, and tumorigenesis. Human endometrium is equally characterized by rapid tissue remodeling events due to the reproductive tasks comprising the activity of proteolytic enzymes. OBJECTIVE We therefore hypothesized that FAP-positive fibroblasts could also be involved in physiological processes requiring tissue remodeling, such as decidualization during early pregnancy. METHODS/RESULTS The expression of FAP was analyzed by immunohistochemistry in frozen sections of decidual tissue from early pregnancy (gestational weeks: 6-12). All tissue samples clearly displayed a strong expression of FAP on the surface of stromal fibroblasts. Additionally, the percentage of FAP-positive fibroblasts freshly isolated from the decidua of the corresponding gestational weeks was calculated by applying FACS analysis. Decidual fibroblasts of different gestational weeks showed a significant decrease in FAP expression between the 6th and 7th weeks of gestation, which was followed by a steady slow reconstitution. By analyzing the expression of cytokines, chemokines, and growth factors of isolated FAP-positive decidual fibroblasts, we detected high levels of monocyte-attracting chemokines (growth-related oncogene alpha and monocyte chemoattractant protein-1 and -2), granulocyte-attracting chemokines (e.g., IL-8), proinflammatory factors (IL-1α and tumor necrosis factor alpha), and angiogenic substances (e.g., vascular endothelial growth factor and IL-8), which all promote an optimal microenvironment for implantation and growth of the conceptus. CONCLUSIONS Our data demonstrate that the healthy early pregnancy decidua is characterized by a general occurrence of FAP-positive fibroblasts possibly participating in active tissue remodeling during implantation.
Collapse
Affiliation(s)
- Sabine E Segerer
- Department of Gynecology, Amedes Experts, Hamburg, Germany, .,Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany,
| | - Catharina Bartmann
- Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany
| | - Michael Schwab
- Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany
| | - Ulrike Kämmerer
- Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Yamamoto F, Morisaka H, Ueda M, Watanabe K. Molecular characterization of a prolyl endopeptidase from a feather-degrading thermophile Meiothermus ruber H328. J Biochem 2020; 168:499-508. [PMID: 32597969 DOI: 10.1093/jb/mvaa069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022] Open
Abstract
Prolyl endopeptidase from an aerobic and Gram-negative thermophile Meiothermus ruber H328 (MrPEP) was purified in native and recombinant forms, but both preparations had comparable characteristics. Production of the native MrPEP was increased 10-fold by adding intact chicken feathers. The gene for MrPEP (mrH_2860) was cloned from the genome of strain H328 and found to have no signal sequence at the N-terminus. MrPEP is composed of two major domains: the β-propeller domain and the peptidase domain with a typical active site motif and catalytic triad. Based on extensive investigations with different types of peptide substrates and FRETS-25Xaa libraries, MrPEP showed strict preferences for Pro residue at the P1 position but broader preferences at the P2 and P3 positions in substrate specificity with stronger affinity for residues at the P3 position of substrate peptides that are longer than four residues in length. In conclusion, the molecular characterization of MrPEP resembles its animal counterparts more closely than bacterial counterparts in function and structure.
Collapse
Affiliation(s)
- Fumi Yamamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan
| | - Hironobu Morisaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan
| | - Kunihiko Watanabe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan
| |
Collapse
|
25
|
Johnson DC, Okondo MC, Orth EL, Rao SD, Huang HC, Ball DP, Bachovchin DA. DPP8/9 inhibitors activate the CARD8 inflammasome in resting lymphocytes. Cell Death Dis 2020; 11:628. [PMID: 32796818 PMCID: PMC7428001 DOI: 10.1038/s41419-020-02865-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Canonical inflammasomes are innate immune signaling platforms that are formed in response to intracellular pathogen-associated signals and trigger caspase-1-dependent pyroptosis. Inflammasome formation and signaling is thought to mainly occur in myeloid cells, and in particular monocytes and macrophages. Here we show that small molecule inhibitors of dipeptidyl peptidases 8 and 9 (DPP8/9), which activate the related CARD8 and NLRP1 inflammasomes, also activate pyroptosis in human and rodent resting lymphocytes. We found that both CD4+ and CD8+ T cells were particularly sensitive to these inhibitors, although the sensitivity of T cells, like macrophages, varied considerably between species. In human T cells, we show that CARD8 mediates DPP8/9 inhibitor-induced pyroptosis. Intriguingly, although activated human T cells express the key proteins known to be required for CARD8-mediated pyroptosis, these cells were completely resistant to DPP8/9 inhibitors. Overall, these data show that resting lymphoid cells can activate at least one inflammasome, revealing additional cell types and states poised to undergo rapid pyroptotic cell death in response to danger-associated signals.
Collapse
Affiliation(s)
- Darren C Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth L Orth
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahana D Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel P Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A Bachovchin
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Xie J, Yuan S, Peng L, Li H, Niu L, Xu H, Guo X, Yang M, Duan F. Antitumor immunity targeting fibroblast activation protein-α in a mouse Lewis lung carcinoma model. Oncol Lett 2020; 20:868-876. [PMID: 32566014 PMCID: PMC7285819 DOI: 10.3892/ol.2020.11637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor stromal microenvironment is an integral part of the occurrence and development of tumor. Cancer-associated fibroblasts (CAFs) are a key component of most tumor stromal microenvironments. The present study aimed to investigate the use of CAFs-targeted immunotherapy to fibroblast activation protein-α (FAP-α) expressed in CAFs. Recombinant adenoviral vectors containing the mouse FAP-α cDNA (rAd-FAP-α) were constructed. C57BL/6 mice were immunized with rAd-FAP-α infected dendritic cells (DCs) against FAP-α, which is overexpress in CAFs. The results demonstrated that mice vaccinated with rAd-FAP-α DCs gave rise to potent FAP-α-specific cytotoxic T lymphocytes capable of lysing Lewis lung cancer (LLC) CAFs. Furthermore, mice vaccinated with rAd-FAP-α-transduced DCs induced an effective therapeutic or protective antitumor immunity to LLC in a subcutaneous model, and prolonged overall survival time compared with mice vaccinated with the control recombinant adenovirus-transduced DCs (rAd-c DCs) or DCs alone. The results of the present study suggested that FAP-α, which is preferentially expressed in CAFs, may be considered as a potential target for killing or destroying CAFs within the tumor stromal microenvironment, and may be exploited to develop immunogenic tumor vaccines.
Collapse
Affiliation(s)
- Junping Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shiyang Yuan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Laishui Peng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huanyu Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxia Niu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaolin Guo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengying Duan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
27
|
Liu D, Zhang D, Huang Q, Gu L, Zhou N, Tian Y. Mutagenesis for Improvement of Activity and Stability of Prolyl Aminopeptidase from Aspergillus oryzae. Appl Biochem Biotechnol 2020; 191:1483-1498. [PMID: 32125650 DOI: 10.1007/s12010-020-03277-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 11/27/2022]
Abstract
In this study, the prokaryotic expression system of Escherichia coli was used to modify prolyl aminopeptidase derived from Aspergillus oryzae JN-412 (AoPAP) via random mutagenesis and site-directed saturation mutagenesis. A random mutant library with a capacity of approximately 3000 mutants was compiled using error-prone polymerase chain reaction, and nonconservative amino acids within 3 Å of the substrate L-proline-p-nitroaniline were selected as site-directed saturation mutagenesis sites via homologous simulation and molecular docking of AoPAP. Variants featuring high catalytic efficiency were screened by a high-throughput screening method. The specific activities of the variants of 3D9, C185V, and Y393W were 127 U mg-1, 156 U mg-1, and 120 U mg-1, respectively, which were 27%, 56%, and 20% higher than those of the wild type, with a value of 100 U mg-1. The half-life of thermostability of the mutant 3D9 was 4.5 h longer than that of the wild type at 50 °C. The mutant C185V improved thermostability and had a half-life 2 h longer than that of the wild type at a pH of 6.5. Prolyl aminopeptidase had improved stability within the acidic range and thermostability after modification, making it more suitable for a synergistic combination with various acidic and neutral endoproteases.
Collapse
Affiliation(s)
- Dehua Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Dawei Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qinqin Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lili Gu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Yaping Tian
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
28
|
Design and synthesis of selective and blood-brain barrier-permeable hydroxamate-based gelatinase inhibitors. Bioorg Chem 2020; 94:103365. [DOI: 10.1016/j.bioorg.2019.103365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022]
|
29
|
Griswold AR, Ball DP, Bhattacharjee A, Chui AJ, Rao SD, Taabazuing CY, Bachovchin DA. DPP9's Enzymatic Activity and Not Its Binding to CARD8 Inhibits Inflammasome Activation. ACS Chem Biol 2019; 14:2424-2429. [PMID: 31525884 PMCID: PMC6862324 DOI: 10.1021/acschembio.9b00462] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Inflammasomes
are multiprotein complexes formed in response to
pathogens. NLRP1 and CARD8 are related proteins that form inflammasomes,
but the pathogen-associated signal(s) and the molecular mechanisms
controlling their activation have not been established. Inhibitors
of the serine dipeptidyl peptidases DPP8 and DPP9 (DPP8/9) activate
both NLRP1 and CARD8. Interestingly, DPP9 binds directly to NLRP1
and CARD8, and this interaction may contribute to the inhibition of
NLRP1. Here, we use activity-based probes, reconstituted inflammasome
assays, and mass spectrometry-based proteomics to further investigate
the DPP9–CARD8 interaction. We show that the DPP9–CARD8
interaction, unlike the DPP9–NLRP1 interaction, is not disrupted
by DPP9 inhibitors or CARD8 mutations that block autoproteolysis.
Moreover, wild-type, but not catalytically inactive mutant, DPP9 rescues
CARD8-mediated cell death in DPP9 knockout cells.
Together, this work reveals that DPP9’s catalytic activity
and not its binding to CARD8 restrains the CARD8 inflammasome and
thus suggests the binding interaction likely serves some other biological
purpose.
Collapse
Affiliation(s)
- Andrew R. Griswold
- Tri-Institutional M.D.−Ph.D. Program, Memorial Sloan Kettering Cancer Center, Rockefeller University, Weill Cornell Medical College, New York, New York 10065, United States
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel P. Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Abir Bhattacharjee
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ashley J. Chui
- Tri-Institutional Ph.D. Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Sahana D. Rao
- Tri-Institutional Ph.D. Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Cornelius Y. Taabazuing
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel A. Bachovchin
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| |
Collapse
|
30
|
Gai K, Okondo MC, Rao SD, Chui AJ, Ball DP, Johnson DC, Bachovchin DA. DPP8/9 inhibitors are universal activators of functional NLRP1 alleles. Cell Death Dis 2019; 10:587. [PMID: 31383852 PMCID: PMC6683174 DOI: 10.1038/s41419-019-1817-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
Intracellular pathogenic structures or activities stimulate the formation of inflammasomes, which recruit and activate caspase-1 and trigger an inflammatory form of cell death called pyroptosis. The well-characterized mammalian inflammasome sensor proteins all detect one specific type of signal, for example double-stranded DNA or bacterial flagellin. Remarkably, NLRP1 was the first protein discovered to form an inflammasome, but the pathogenic signal that NLRP1 detects has not yet been identified. NLRP1 is highly polymorphic, even among inbred rodent strains, and it has been suggested that these diverse NLRP1 alleles may have evolved to detect entirely different stimuli. Intriguingly, inhibitors of the serine proteases DPP8 and DPP9 (DPP8/9) were recently shown to activate human NLRP1, its homolog CARD8, and several mouse NLRP1 alleles. Here, we show now that DPP8/9 inhibitors activate all functional rodent NLRP1 alleles, indicating that DPP8/9 inhibition induces a signal detected by all NLRP1 proteins. Moreover, we discovered that the NLRP1 allele sensitivities to DPP8/9 inhibitor-induced and Toxoplasma gondii-induced pyroptosis are strikingly similar, suggesting that DPP8/9 inhibition phenocopies a key activity of T. gondii. Overall, this work indicates that the highly polymorphic NLRP1 inflammasome indeed senses a specific signal like the other mammalian inflammasomes.
Collapse
Affiliation(s)
- Kuo Gai
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sahana D Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ashley J Chui
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Daniel P Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Darren C Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Griswold AR, Cifani P, Rao SD, Axelrod AJ, Miele MM, Hendrickson RC, Kentsis A, Bachovchin DA. A Chemical Strategy for Protease Substrate Profiling. Cell Chem Biol 2019; 26:901-907.e6. [PMID: 31006619 DOI: 10.1016/j.chembiol.2019.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/14/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
The dipeptidyl peptidases (DPPs) regulate hormones, cytokines, and neuropeptides by cleaving dipeptides after proline from their amino termini. Due to technical challenges, many DPP substrates remain unknown. Here, we introduce a simple method, termed CHOPS (chemical enrichment of protease substrates), for the discovery of protease substrates. CHOPS exploits a 2-pyridinecarboxaldehyde (2PCA)-biotin probe, which selectively biotinylates protein N-termini except those with proline in the second position. CHOPS can, in theory, discover substrates for any protease, but is particularly well suited to discover canonical DPP substrates, as cleaved but not intact DPP substrates can be identified by gel electrophoresis or mass spectrometry. Using CHOPS, we show that DPP8 and DPP9, enzymes that control the Nlrp1 inflammasome through an unknown mechanism, do not directly cleave Nlrp1. We further show that DPP9 robustly cleaves short peptides but not full-length proteins. More generally, this work delineates a practical technology for identifying protease substrates, which we anticipate will complement available "N-terminomic" approaches.
Collapse
Affiliation(s)
- Andrew R Griswold
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sahana D Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abram J Axelrod
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew M Miele
- Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center and Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
32
|
Golyan FF, Moghaddassian M, Forghanifard MM, Talebi S, Farshchian M, Mahmoudian RA, Abbaszadegan MR. Whole Exome Sequencing Reveals a Novel Damaging Mutation in Human Fibroblast Activation Protein in a Family with Esophageal Squamous Cell Carcinoma. J Gastrointest Cancer 2019; 51:179-188. [DOI: 10.1007/s12029-019-00224-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Li Y, Zhang J, Zhou Q, Wang H, Xie S, Yang X, Ji P, Zhang W, He T, Liu Y, Wang K, Li X, Shi J, Hu D. Linagliptin inhibits high glucose-induced transdifferentiation of hypertrophic scar-derived fibroblasts to myofibroblasts via IGF/Akt/mTOR signalling pathway. Exp Dermatol 2018; 28:19-27. [PMID: 30308704 DOI: 10.1111/exd.13800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Li
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Peng Ji
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Ting He
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| |
Collapse
|
34
|
Wang K, Tian Y, Zhou N, Liu D, Zhang D. Studies on fermentation optimization, stability and application of prolyl aminopeptidase from Bacillus subtilis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A, Bachovchin DA. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med 2018; 24:1151-1156. [PMID: 29967349 PMCID: PMC6082709 DOI: 10.1038/s41591-018-0082-y] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
Abstract
Small-molecule inhibitors of the serine dipeptidases DPP8 and DPP9 (DPP8/9) induce a lytic form of cell death called pyroptosis in mouse and human monocytes and macrophages1,2. In mouse myeloid cells, Dpp8/9 inhibition activates the inflammasome sensor Nlrp1b, which in turn activates pro-caspase-1 to mediate cell death3, but the mechanism of DPP8/9 inhibitor-induced pyroptosis in human myeloid cells is not yet known. Here we show that the CARD-containing protein CARD8 mediates DPP8/9 inhibitor-induced pro-caspase-1-dependent pyroptosis in human myeloid cells. We further show that DPP8/9 inhibitors induce pyroptosis in the majority of human acute myeloid leukemia (AML) cell lines and primary AML samples, but not in cells from many other lineages, and that these inhibitors inhibit human AML progression in mouse models. Overall, this work identifies an activator of CARD8 in human cells and indicates that its activation by small-molecule DPP8/9 inhibitors represents a new potential therapeutic strategy for AML.
Collapse
Affiliation(s)
- Darren C Johnson
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Marian C Okondo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley J Chui
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahana D Rao
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fiona C Brown
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Casie Reed
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Peguero
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A Bachovchin
- Tri-institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Yang YN, Zhang XH, Wang YM, Zhang X, Gu Z. miR-204 reverses temozolomide resistance and inhibits cancer initiating cells phenotypes by degrading FAP-α in glioblastoma. Oncol Lett 2018; 15:7563-7570. [PMID: 29725461 PMCID: PMC5920462 DOI: 10.3892/ol.2018.8301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Malignant gliomas are treated with temozolomide (TMZ) at present, but often exhibit resistance to this agent. Cancer-initiating cells (CICs) have been suggested to lead to TMZ resistance. The mechanisms underlying CICs-based TMZ resistance are not fully understood. MicroRNAs (miRNAs) have been demonstrated to serve important roles in tumorigenesis and TMZ resistance. In the present study, a sphere forming assay and western blot analysis were performed to detect the formation of CICs and fibroblast activation protein α (FAP-α) protein expression. It was revealed that TMZ resistance promoted the formation of CICs and upregulated FAP-α expression in glioblastoma cells. Over-expressing FAP-α was also demonstrated to promote TMZ resistance and induce the formation of CICs in U251MG cells. In addition, using a reverse transcription-quantitative polymerase chain reaction, it was observed that miR-204 was downregulated in U251MG-resistant (-R) cells. miR-204 expression negatively correlated with the FAP-α levels in human glioblastoma tissues, and it may inhibit the formation of CICs and reverse TMZ resistance in U251MG-R cells. Therefore, it was concluded that miR-204 reversed temozolomide resistance and inhibited CICs phenotypes by degrading FAP-α in glioblastoma.
Collapse
Affiliation(s)
- Yun-Na Yang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Xiang-Hua Zhang
- Department of Neurosurgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100050, P.R. China
| | - Yan-Ming Wang
- Department of Spinal Surgery, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Xi Zhang
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Zheng Gu
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|
37
|
Protein and Peptides for Elderly Health. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:265-308. [DOI: 10.1016/bs.apcsb.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Bainbridge TW, Dunshee DR, Kljavin NM, Skelton NJ, Sonoda J, Ernst JA. Selective Homogeneous Assay for Circulating Endopeptidase Fibroblast Activation Protein (FAP). Sci Rep 2017; 7:12524. [PMID: 28970566 PMCID: PMC5624913 DOI: 10.1038/s41598-017-12900-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023] Open
Abstract
Fibroblast Activation Protein (FAP) is a membrane-bound serine protease whose expression is often elevated in activated fibroblasts associated with tissue remodeling in various common diseases such as cancer, arthritis and fibrosis. Like the closely related dipeptidyl peptidase DPPIV, the extracellular domain of FAP can be released into circulation as a functional enzyme, and limited studies suggest that the circulating level of FAP correlates with the degree of tissue fibrosis. Here we describe a novel homogeneous fluorescence intensity assay for circulating FAP activity based on a recently identified natural substrate, FGF21. This assay is unique in that it can effectively distinguish endopeptidase activity of FAP from that of other related enzymes such as prolyl endopeptidase (PREP) and was validated using Fap-deficient mice. Structural modeling was used to elucidate the mechanistic basis for the observed specificity in substrate recognition by FAP, but not by DPPIV or PREP. Finally, the assay was used to detect elevated FAP activity in human patients diagnosed with liver cirrhosis and to determine the effectiveness of a chemical inhibitor for FAP in mice. We propose that the assay presented here could thus be utilized for diagnosis of FAP-related pathologies and for the therapeutic development of FAP inhibitors.
Collapse
Affiliation(s)
| | | | - Noelyn M Kljavin
- Molecular Oncology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Nicholas J Skelton
- Discovery Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Junichiro Sonoda
- Molecular Biology, Genentech Inc., South San Francisco, CA, 94080, USA. .,Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - James A Ernst
- Protein Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA. .,Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
39
|
Kumar R, Bavi R, Jo MG, Arulalapperumal V, Baek A, Rampogu S, Kim MO, Lee KW. New compounds identified through in silico approaches reduce the α-synuclein expression by inhibiting prolyl oligopeptidase in vitro. Sci Rep 2017; 7:10827. [PMID: 28883518 PMCID: PMC5589771 DOI: 10.1038/s41598-017-11302-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/22/2017] [Indexed: 11/30/2022] Open
Abstract
Prolyl oligopeptidase (POP) is a serine protease that is responsible for the maturation and degradation of short neuropeptides and peptide hormones. The inhibition of POP has been demonstrated in the treatment of α-synucleinopathies and several neurological conditions. Therefore, ligand-based and structure-based pharmacophore models were generated and validated in order to identify potent POP inhibitors. Pharmacophore-based and docking-based virtual screening of a drug-like database resulted in 20 compounds. The in vitro POP assays indicated that the top scoring compounds obtained from virtual screening, Hit 1 and Hit 2 inhibit POP activity at a wide range of concentrations from 0.1 to 10 µM. Moreover, treatment of the hit compounds significantly reduced the α-synuclein expression in SH-SY5Y human neuroblastoma cells, that is implicated in Parkinson’s disease. Binding modes of Hit 1 and Hit 2 compounds were explored through molecular dynamics simulations. A detailed investigation of the binding interactions revealed that the hit compounds exhibited hydrogen bond interactions with important active site residues and greater electrostatic and hydrophobic interactions compared to those of the reference inhibitors. Finally, our findings indicated the potential of the identified compounds for the treatment of synucleinopathies and CNS related disorders.
Collapse
Affiliation(s)
- Raj Kumar
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Rohit Bavi
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Min Gi Jo
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Venkatesh Arulalapperumal
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Ayoung Baek
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Shailima Rampogu
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
40
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Fibroblast activation protein-α in fibrogenic disorders and cancer: more than a prolyl-specific peptidase? Expert Opin Ther Targets 2017; 21:977-991. [DOI: 10.1080/14728222.2017.1370455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- CHUV and UNIL, University Institute of Pathology, Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters, Paris, France
- Hybrigenics Corporation, Cambridge Innovation Center, Cambridge, MA, USA
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
41
|
Tsiatsiani L, Akeroyd M, Olsthoorn M, Heck AJR. Aspergillus niger Prolyl Endoprotease for Hydrogen-Deuterium Exchange Mass Spectrometry and Protein Structural Studies. Anal Chem 2017; 89:7966-7973. [PMID: 28657298 PMCID: PMC5541327 DOI: 10.1021/acs.analchem.7b01161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022]
Abstract
To monitor the structural integrity of therapeutic proteins, hydrogen-deuterium exchange mass spectrometry (HDX-MS) is increasingly utilized in the pharmaceutical industry. The successful outcome of HDX-MS analyses depends on the sample preparation conditions, which involve the rapid digestion of proteins at 0 °C and pH 2.5. Very few proteases are able to withstand such harsh conditions, with pepsin being the best-known exception, even though its activity is also strongly reduced at 0 °C. Here, we evaluate the usage of a prolyl endopeptidase from Aspergillus niger (An-PEP) for HDX-MS. What makes this protease very attractive is that it cleaves preferentially the hardest to digest amino acid, proline. To our surprise, and in contrast to previous reports, An-PEP activity was found optimal around pH 2.5 and could be further enhanced by urea up to 40%. Under typical HDX-MS conditions and using small amounts of enzyme, An-PEP generated an equivalent number of peptides as pepsin, as exemplified by using the two model systems tetrameric human hemoglobin (Hb) and human IgG4. Interestingly, because An-PEP peptides are shorter than pepsin-generated peptides, higher sequence resolution could be achieved, especially for Pro-containing protein regions in the alpha subunit of Hb, revealing new protected Hb regions that were not observed with pepsin. Due to its Pro-preference and resistance to low pH, we conclude that An-PEP is an archetype enzyme for HDX-MS, highly complementary to pepsin, and especially promising for structural studies on Pro-rich proteins or proteins containing Pro-rich binding domains involved in cellular signaling.
Collapse
Affiliation(s)
- Liana Tsiatsiani
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics
Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michiel Akeroyd
- DSM
Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | | | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for
Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics
Centre, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
42
|
García-Rojo G, Gámiz F, Ampuero E, Rojas-Espina D, Sandoval R, Rozas C, Morales B, Wyneken U, Pancetti F. In Vivo Sub-chronic Treatment with Dichlorvos in Young Rats Promotes Synaptic Plasticity and Learning by a Mechanism that Involves Acylpeptide Hydrolase Instead of Acetylcholinesterase Inhibition. Correlation with Endogenous β-Amyloid Levels. Front Pharmacol 2017; 8:483. [PMID: 28790916 PMCID: PMC5524899 DOI: 10.3389/fphar.2017.00483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acylpeptide hydrolase (APEH) is a serine hydrolase that displays two catalytic activities, acting both as an exopeptidase toward short N-acylated peptides and as an endopeptidase toward oxidized peptides or proteins. It has been demonstrated that this enzyme can degrade monomers, dimers, and trimers of the Aβ1-40 peptide in the conditioned media of neuroblastoma cells. In a previous report, we showed that the specific inhibition of this enzyme by the organophosphate molecule dichlorvos (DDVP) triggers an enhancement of long-term potentiation in rat hippocampal slices. In this study, we demonstrate that the same effect can be accomplished in vivo by sub-chronic treatment of young rats with a low dose of DDVP (0.1 mg/kg). Besides exhibiting a significant enhancement of LTP, the treated animals also showed improvements in parameters of spatial learning and memory. Interestingly, higher doses of DDVP such as 2 mg/kg did not prove to be beneficial for synaptic plasticity or behavior. Due to the fact that at 2 mg/kg we observed inhibition of both APEH and acetylcholinesterase, we interpret that in order to achieve positive effects on the measured parameters only APEH inhibition should be obtained. The treatment with both DDVP doses produced an increase in the endogenous concentration of Aβ1-40, although this was statistically significant only at the dose of 0.1 mg/kg. We propose that APEH represents an interesting pharmacological target for cognitive enhancement, acting through the modulation of the endogenous concentration of Aβ1-40.
Collapse
Affiliation(s)
- Gonzalo García-Rojo
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Fernando Gámiz
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Estíbaliz Ampuero
- Laboratory of Neuroscience, Faculty of Medicine, Universidad de Los AndesSantiago, Chile
| | - Daniel Rojas-Espina
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Rodrigo Sandoval
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Ursula Wyneken
- Laboratory of Neuroscience, Faculty of Medicine, Universidad de Los AndesSantiago, Chile
| | - Floria Pancetti
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del NorteCoquimbo, Chile
| |
Collapse
|
43
|
Graham TH. Prolylcarboxypeptidase (PrCP) inhibitors and the therapeutic uses thereof: a patent review. Expert Opin Ther Pat 2017; 27:1077-1088. [PMID: 28699813 DOI: 10.1080/13543776.2017.1349104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Prolylcarboxypeptidase (PrCP) is a serine protease that produces or degrades signaling proteins in several important pathways including the renin-angiotensin system (RAS), kallikrein-kinin system (KKS) and pro-opiomelanocortin (POMC) system. PrCP has the potential to be a therapeutic target for cardiovascular, inflammatory and metabolic diseases. Numerous classes of PrCP inhibitors have been developed by rational drug design and from high-throughput screening hits. These inhibitors have been tested in mouse models to assess their potential as new therapeutics. Areas Covered: This review covers the relevant studies that support PrCP as a target for drug discovery. All the significant patent applications and primary literature concerning the development of PrCP inhibitors are discussed. Expert Opinion: The pathways where PrCP is known to operate are complex and many aspects remain to be characterized. Many potent inhibitors of PrCP have been tested in vivo. The variable results obtained from in vivo studies with PrCP inhibitors suggest that additional understanding of the biochemistry and the required therapeutic inhibitor levels is necessary. Additional fundamental research into the signaling pathways is likely required before the true therapeutic potential of PrCP inhibition will be realized.
Collapse
Affiliation(s)
- Thomas H Graham
- a Merck Research Laboratories , Merck & Co., Inc ., Kenilworth , NJ , USA
| |
Collapse
|
44
|
Protein digestomic analysis reveals the bioactivity of deer antler velvet in simulated gastrointestinal digestion. Food Res Int 2017; 96:182-190. [PMID: 28528097 DOI: 10.1016/j.foodres.2017.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
Abstract
Proteins are the most prominent bioactive component in deer antler velvet. The aim of the present study was to track the fate of protein of antler velvet by protein digestomics. The peptide profile identified by LC-MS/MS and the in vitro bioactivity of antler velvet aqueous extract (AAE) were investigated in simulated gastrointestinal digestion. A total of 23, 387 and 417 peptides in AAE, gastric and pancreatic digests were identified using LC-MS/MS, respectively. Collagens, the predominant proteins, released 34 peptides in gastric digests and 146 peptides in pancreatic digests. The gastric and pancreatic digests presented dipeptidyl peptidase IV (DPP-IV) and prolyl endopeptidase (PEP) inhibition activities. Four peptides from digests were proved to be DPP-IV and PEP inhibitory peptides. The results showed that the peptides released from antler velvet protein contributed to the bioactivity of antler velvet during digestion.
Collapse
|
45
|
A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy. Eur J Med Chem 2017; 127:200-209. [DOI: 10.1016/j.ejmech.2016.12.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
|
46
|
|
47
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
48
|
Nguyen TD, Moon S, Oo MM, Tayade R, Soh MS, Song JT, Oh SA, Jung KH, Park SK. Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system. PLANT REPRODUCTION 2016; 29:291-300. [PMID: 27796586 DOI: 10.1007/s00497-016-0293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Rice microspore-promoters. Based on microarray data analyzed for developing anthers and pollen grains, we identified nine rice microspore-preferred (RMP) genes, designated RMP1 through RMP9. To extend their biotechnological applicability, we then investigated the activity of RMP promoters originating from monocotyledonous rice in a heterologous system of dicotyledonous Arabidopsis. Expression of GUS was significantly induced in transgenic plants from the microspore to the mature pollen stages and was driven by the RMP1, RMP3, RMP4, RMP5, and RMP9 promoters. We found it interesting that, whereas RMP2 and RMP6 directed GUS expression in microspore at the early unicellular and bicellular stages, RMP7 and RMP8 seemed to be expressed at the late tricellular and mature pollen stages. Moreover, GUS was expressed in seven promoters, RMP3 through RMP9, during the seedling stage, in immature leaves, cotyledons, and roots. To confirm microspore-specific expression, we used complementation analysis with an Arabidopsis male-specific gametophytic mutant, sidecar pollen-2 (scp-2), to verify the activity of three promoters. That mutant shows defects in microspore development prior to pollen mitosis I. These results provide strong evidence that the SIDECAR POLLEN gene, driven by RMP promoters, successfully complements the scp-2 mutation, and they strongly suggest that these promoters can potentially be applied for manipulating the expression of target genes at the microspore stage in various species.
Collapse
Affiliation(s)
- Tien Dung Nguyen
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Moe Moe Oo
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Rupesh Tayade
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
49
|
Wu WL, Hao J, Domalski M, Burnett DA, Pissarnitski D, Zhao Z, Stamford A, Scapin G, Gao YD, Soriano A, Kelly TM, Yao Z, Powles MA, Chen S, Mei H, Hwa J. Discovery of Novel Tricyclic Heterocycles as Potent and Selective DPP-4 Inhibitors for the Treatment of Type 2 Diabetes. ACS Med Chem Lett 2016; 7:498-501. [PMID: 27190600 DOI: 10.1021/acsmedchemlett.6b00027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/12/2016] [Indexed: 11/30/2022] Open
Abstract
In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.
Collapse
Affiliation(s)
- Wen-Lian Wu
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jinsong Hao
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Martin Domalski
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Duane A. Burnett
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Dmitri Pissarnitski
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zhiqiang Zhao
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Andrew Stamford
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Giovanna Scapin
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ying-Duo Gao
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Aileen Soriano
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Terri M. Kelly
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Zuliang Yao
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Mary Ann Powles
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Shiying Chen
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Hong Mei
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Joyce Hwa
- Department of Lead Optimization Chemistry, ∥Department of Structural Chemistry, ‡Department of Pharmacology, and §Department of
Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
50
|
The discovery of novel 5,6,5- and 5,5,6-tricyclic pyrrolidines as potent and selective DPP-4 inhibitors. Bioorg Med Chem Lett 2016; 26:2622-6. [PMID: 27106708 DOI: 10.1016/j.bmcl.2016.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022]
Abstract
Novel potent and selective 5,6,5- and 5,5,6-tricyclic pyrrolidine dipeptidyl peptidase IV (DPP-4) inhibitors were identified. Structure-activity relationship (SAR) efforts focused on improving the intrinsic DPP-4 inhibition potency, increasing protease selectivity, and demonstrating clean ion channel and cytochrome P450 profiles while trying to achieve a pharmacokinetic profile suitable for once weekly dosing in humans.
Collapse
|